| 1 |
36 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
// Filename: fftmain.v
|
| 4 |
|
|
//
|
| 5 |
|
|
// Project: A General Purpose Pipelined FFT Implementation
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: This is the main module in the General Purpose FPGA FFT
|
| 8 |
|
|
// implementation. As such, all other modules are subordinate
|
| 9 |
|
|
// to this one. This module accomplish a fixed size Complex FFT on
|
| 10 |
|
|
// 2048 data points.
|
| 11 |
39 |
dgisselq |
// The FFT is fully pipelined, and accepts as inputs one complex two's
|
| 12 |
|
|
// complement sample per clock.
|
| 13 |
36 |
dgisselq |
//
|
| 14 |
|
|
// Parameters:
|
| 15 |
|
|
// i_clk The clock. All operations are synchronous with this clock.
|
| 16 |
|
|
// i_reset Synchronous reset, active high. Setting this line will
|
| 17 |
|
|
// force the reset of all of the internals to this routine.
|
| 18 |
|
|
// Further, following a reset, the o_sync line will go
|
| 19 |
|
|
// high the same time the first output sample is valid.
|
| 20 |
|
|
// i_ce A clock enable line. If this line is set, this module
|
| 21 |
39 |
dgisselq |
// will accept one complex input value, and produce
|
| 22 |
|
|
// one (possibly empty) complex output value.
|
| 23 |
|
|
// i_sample The complex input sample. This value is split
|
| 24 |
36 |
dgisselq |
// into two two's complement numbers, 15 bits each, with
|
| 25 |
|
|
// the real portion in the high order bits, and the
|
| 26 |
|
|
// imaginary portion taking the bottom 15 bits.
|
| 27 |
39 |
dgisselq |
// o_result The output result, of the same format as i_sample,
|
| 28 |
36 |
dgisselq |
// only having 21 bits for each of the real and imaginary
|
| 29 |
|
|
// components, leading to 42 bits total.
|
| 30 |
39 |
dgisselq |
// o_sync A one bit output indicating the first sample of the FFT frame.
|
| 31 |
|
|
// It also indicates the first valid sample out of the FFT
|
| 32 |
|
|
// on the first frame.
|
| 33 |
36 |
dgisselq |
//
|
| 34 |
|
|
// Arguments: This file was computer generated using the following command
|
| 35 |
|
|
// line:
|
| 36 |
|
|
//
|
| 37 |
39 |
dgisselq |
// % ./fftgen -v -d ../rtl -f 2048 -1 -k 1 -p 0 -n 15 -a ../bench/cpp/fftsize.h
|
| 38 |
36 |
dgisselq |
//
|
| 39 |
39 |
dgisselq |
// This core will use hardware accelerated multiplies (DSPs)
|
| 40 |
|
|
// for 0 of the 11 stages
|
| 41 |
|
|
//
|
| 42 |
36 |
dgisselq |
// Creator: Dan Gisselquist, Ph.D.
|
| 43 |
|
|
// Gisselquist Technology, LLC
|
| 44 |
|
|
//
|
| 45 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 46 |
|
|
//
|
| 47 |
|
|
// Copyright (C) 2015-2018, Gisselquist Technology, LLC
|
| 48 |
|
|
//
|
| 49 |
39 |
dgisselq |
// This file is part of the general purpose pipelined FFT project.
|
| 50 |
36 |
dgisselq |
//
|
| 51 |
39 |
dgisselq |
// The pipelined FFT project is free software (firmware): you can redistribute
|
| 52 |
|
|
// it and/or modify it under the terms of the GNU Lesser General Public License
|
| 53 |
|
|
// as published by the Free Software Foundation, either version 3 of the
|
| 54 |
|
|
// License, or (at your option) any later version.
|
| 55 |
36 |
dgisselq |
//
|
| 56 |
39 |
dgisselq |
// The pipelined FFT project is distributed in the hope that it will be useful,
|
| 57 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 58 |
|
|
// MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
|
| 59 |
|
|
// General Public License for more details.
|
| 60 |
|
|
//
|
| 61 |
|
|
// You should have received a copy of the GNU Lesser General Public License
|
| 62 |
|
|
// along with this program. (It's in the $(ROOT)/doc directory. Run make
|
| 63 |
|
|
// with no target there if the PDF file isn't present.) If not, see
|
| 64 |
36 |
dgisselq |
// <http://www.gnu.org/licenses/> for a copy.
|
| 65 |
|
|
//
|
| 66 |
39 |
dgisselq |
// License: LGPL, v3, as defined and found on www.gnu.org,
|
| 67 |
|
|
// http://www.gnu.org/licenses/lgpl.html
|
| 68 |
36 |
dgisselq |
//
|
| 69 |
|
|
//
|
| 70 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 71 |
|
|
//
|
| 72 |
|
|
//
|
| 73 |
|
|
`default_nettype none
|
| 74 |
|
|
//
|
| 75 |
|
|
//
|
| 76 |
|
|
//
|
| 77 |
|
|
module fftmain(i_clk, i_reset, i_ce,
|
| 78 |
39 |
dgisselq |
i_sample, o_result, o_sync);
|
| 79 |
|
|
// The bit-width of the input, IWIDTH, output, OWIDTH, and the log
|
| 80 |
|
|
// of the FFT size. These are localparams, rather than parameters,
|
| 81 |
|
|
// because once the core has been generated, they can no longer be
|
| 82 |
|
|
// changed. (These values can be adjusted by running the core
|
| 83 |
|
|
// generator again.) The reason is simply that these values have
|
| 84 |
|
|
// been hardwired into the core at several places.
|
| 85 |
|
|
localparam IWIDTH=15, OWIDTH=21, LGWIDTH=11;
|
| 86 |
36 |
dgisselq |
//
|
| 87 |
39 |
dgisselq |
input wire i_clk, i_reset, i_ce;
|
| 88 |
36 |
dgisselq |
//
|
| 89 |
39 |
dgisselq |
input wire [(2*IWIDTH-1):0] i_sample;
|
| 90 |
|
|
output reg [(2*OWIDTH-1):0] o_result;
|
| 91 |
36 |
dgisselq |
output reg o_sync;
|
| 92 |
|
|
|
| 93 |
|
|
|
| 94 |
|
|
// Outputs of the FFT, ready for bit reversal.
|
| 95 |
39 |
dgisselq |
wire [(2*OWIDTH-1):0] br_sample;
|
| 96 |
36 |
dgisselq |
|
| 97 |
|
|
|
| 98 |
|
|
wire w_s2048;
|
| 99 |
39 |
dgisselq |
wire [31:0] w_d2048;
|
| 100 |
|
|
fftstage #(IWIDTH,IWIDTH+4,16,10,0,
|
| 101 |
|
|
0, 1, "cmem_2048.hex")
|
| 102 |
|
|
stage_2048(i_clk, i_reset, i_ce,
|
| 103 |
|
|
(!i_reset), i_sample, w_d2048, w_s2048);
|
| 104 |
36 |
dgisselq |
|
| 105 |
|
|
|
| 106 |
|
|
wire w_s1024;
|
| 107 |
39 |
dgisselq |
wire [33:0] w_d1024;
|
| 108 |
|
|
fftstage #(16,20,17,9,0,
|
| 109 |
|
|
0, 1, "cmem_1024.hex")
|
| 110 |
|
|
stage_1024(i_clk, i_reset, i_ce,
|
| 111 |
|
|
w_s2048, w_d2048, w_d1024, w_s1024);
|
| 112 |
36 |
dgisselq |
|
| 113 |
|
|
wire w_s512;
|
| 114 |
39 |
dgisselq |
wire [33:0] w_d512;
|
| 115 |
|
|
fftstage #(17,21,17,8,0,
|
| 116 |
|
|
0, 1, "cmem_512.hex")
|
| 117 |
|
|
stage_512(i_clk, i_reset, i_ce,
|
| 118 |
|
|
w_s1024, w_d1024, w_d512, w_s512);
|
| 119 |
36 |
dgisselq |
|
| 120 |
|
|
wire w_s256;
|
| 121 |
39 |
dgisselq |
wire [35:0] w_d256;
|
| 122 |
|
|
fftstage #(17,21,18,7,0,
|
| 123 |
|
|
0, 1, "cmem_256.hex")
|
| 124 |
|
|
stage_256(i_clk, i_reset, i_ce,
|
| 125 |
|
|
w_s512, w_d512, w_d256, w_s256);
|
| 126 |
36 |
dgisselq |
|
| 127 |
|
|
wire w_s128;
|
| 128 |
39 |
dgisselq |
wire [35:0] w_d128;
|
| 129 |
|
|
fftstage #(18,22,18,6,0,
|
| 130 |
|
|
0, 1, "cmem_128.hex")
|
| 131 |
|
|
stage_128(i_clk, i_reset, i_ce,
|
| 132 |
|
|
w_s256, w_d256, w_d128, w_s128);
|
| 133 |
36 |
dgisselq |
|
| 134 |
|
|
wire w_s64;
|
| 135 |
39 |
dgisselq |
wire [37:0] w_d64;
|
| 136 |
|
|
fftstage #(18,22,19,5,0,
|
| 137 |
|
|
0, 1, "cmem_64.hex")
|
| 138 |
|
|
stage_64(i_clk, i_reset, i_ce,
|
| 139 |
|
|
w_s128, w_d128, w_d64, w_s64);
|
| 140 |
36 |
dgisselq |
|
| 141 |
|
|
wire w_s32;
|
| 142 |
39 |
dgisselq |
wire [37:0] w_d32;
|
| 143 |
|
|
fftstage #(19,23,19,4,0,
|
| 144 |
|
|
0, 1, "cmem_32.hex")
|
| 145 |
|
|
stage_32(i_clk, i_reset, i_ce,
|
| 146 |
|
|
w_s64, w_d64, w_d32, w_s32);
|
| 147 |
36 |
dgisselq |
|
| 148 |
|
|
wire w_s16;
|
| 149 |
39 |
dgisselq |
wire [39:0] w_d16;
|
| 150 |
|
|
fftstage #(19,23,20,3,0,
|
| 151 |
|
|
0, 1, "cmem_16.hex")
|
| 152 |
|
|
stage_16(i_clk, i_reset, i_ce,
|
| 153 |
|
|
w_s32, w_d32, w_d16, w_s16);
|
| 154 |
36 |
dgisselq |
|
| 155 |
|
|
wire w_s8;
|
| 156 |
39 |
dgisselq |
wire [39:0] w_d8;
|
| 157 |
|
|
fftstage #(20,24,20,2,0,
|
| 158 |
|
|
0, 1, "cmem_8.hex")
|
| 159 |
|
|
stage_8(i_clk, i_reset, i_ce,
|
| 160 |
|
|
w_s16, w_d16, w_d8, w_s8);
|
| 161 |
36 |
dgisselq |
|
| 162 |
|
|
wire w_s4;
|
| 163 |
39 |
dgisselq |
wire [41:0] w_d4;
|
| 164 |
|
|
qtrstage #(20,21,11,0,0) stage_4(i_clk, i_reset, i_ce,
|
| 165 |
|
|
w_s8, w_d8, w_d4, w_s4);
|
| 166 |
36 |
dgisselq |
wire w_s2;
|
| 167 |
39 |
dgisselq |
wire [41:0] w_d2;
|
| 168 |
36 |
dgisselq |
laststage #(21,21,0) stage_2(i_clk, i_reset, i_ce,
|
| 169 |
39 |
dgisselq |
w_s4, w_d4, w_d2, w_s2);
|
| 170 |
36 |
dgisselq |
|
| 171 |
|
|
|
| 172 |
|
|
// Prepare for a (potential) bit-reverse stage.
|
| 173 |
39 |
dgisselq |
assign br_sample= w_d2;
|
| 174 |
36 |
dgisselq |
|
| 175 |
|
|
wire br_start;
|
| 176 |
|
|
reg r_br_started;
|
| 177 |
|
|
initial r_br_started = 1'b0;
|
| 178 |
|
|
always @(posedge i_clk)
|
| 179 |
|
|
if (i_reset)
|
| 180 |
|
|
r_br_started <= 1'b0;
|
| 181 |
|
|
else if (i_ce)
|
| 182 |
|
|
r_br_started <= r_br_started || w_s2;
|
| 183 |
|
|
assign br_start = r_br_started || w_s2;
|
| 184 |
|
|
|
| 185 |
|
|
// Now for the bit-reversal stage.
|
| 186 |
|
|
wire br_sync;
|
| 187 |
39 |
dgisselq |
wire [(2*OWIDTH-1):0] br_o_result;
|
| 188 |
36 |
dgisselq |
bitreverse #(11,21)
|
| 189 |
|
|
revstage(i_clk, i_reset,
|
| 190 |
39 |
dgisselq |
(i_ce & br_start), br_sample,
|
| 191 |
|
|
br_o_result, br_sync);
|
| 192 |
36 |
dgisselq |
|
| 193 |
|
|
|
| 194 |
|
|
// Last clock: Register our outputs, we're done.
|
| 195 |
|
|
initial o_sync = 1'b0;
|
| 196 |
|
|
always @(posedge i_clk)
|
| 197 |
|
|
if (i_reset)
|
| 198 |
|
|
o_sync <= 1'b0;
|
| 199 |
|
|
else if (i_ce)
|
| 200 |
|
|
o_sync <= br_sync;
|
| 201 |
|
|
|
| 202 |
|
|
always @(posedge i_clk)
|
| 203 |
|
|
if (i_ce)
|
| 204 |
39 |
dgisselq |
o_result <= br_o_result;
|
| 205 |
36 |
dgisselq |
|
| 206 |
|
|
|
| 207 |
|
|
endmodule
|