| 1 |
36 |
dgisselq |
////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//
|
| 3 |
|
|
// Filename: qtrstage.v
|
| 4 |
|
|
//
|
| 5 |
|
|
// Project: A General Purpose Pipelined FFT Implementation
|
| 6 |
|
|
//
|
| 7 |
|
|
// Purpose: This file encapsulates the 4 point stage of a decimation in
|
| 8 |
|
|
// frequency FFT. This particular implementation is optimized
|
| 9 |
|
|
// so that all of the multiplies are accomplished by additions and
|
| 10 |
|
|
// multiplexers only.
|
| 11 |
|
|
//
|
| 12 |
39 |
dgisselq |
// Operation:
|
| 13 |
|
|
// The operation of this stage is identical to the regular stages of
|
| 14 |
|
|
// the FFT (see them for details), with one additional and critical
|
| 15 |
|
|
// difference: this stage doesn't require any hardware multiplication.
|
| 16 |
|
|
// The multiplies within it may all be accomplished using additions and
|
| 17 |
|
|
// subtractions.
|
| 18 |
36 |
dgisselq |
//
|
| 19 |
39 |
dgisselq |
// Let's see how this is done. Given x[n] and x[n+2], cause thats the
|
| 20 |
|
|
// stage we are working on, with i_sync true for x[0] being input,
|
| 21 |
|
|
// produce the output:
|
| 22 |
|
|
//
|
| 23 |
|
|
// y[n ] = x[n] + x[n+2]
|
| 24 |
|
|
// y[n+2] = (x[n] - x[n+2]) * e^{-j2pi n/2} (forward transform)
|
| 25 |
|
|
// = (x[n] - x[n+2]) * -j^n
|
| 26 |
|
|
//
|
| 27 |
|
|
// y[n].r = x[n].r + x[n+2].r (This is the easy part)
|
| 28 |
|
|
// y[n].i = x[n].i + x[n+2].i
|
| 29 |
|
|
//
|
| 30 |
|
|
// y[2].r = x[0].r - x[2].r
|
| 31 |
|
|
// y[2].i = x[0].i - x[2].i
|
| 32 |
|
|
//
|
| 33 |
|
|
// y[3].r = (x[1].i - x[3].i) (forward transform)
|
| 34 |
|
|
// y[3].i = - (x[1].r - x[3].r)
|
| 35 |
|
|
//
|
| 36 |
|
|
// y[3].r = - (x[1].i - x[3].i) (inverse transform)
|
| 37 |
|
|
// y[3].i = (x[1].r - x[3].r) (INVERSE = 1)
|
| 38 |
|
|
//
|
| 39 |
36 |
dgisselq |
// Creator: Dan Gisselquist, Ph.D.
|
| 40 |
|
|
// Gisselquist Technology, LLC
|
| 41 |
|
|
//
|
| 42 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 43 |
|
|
//
|
| 44 |
|
|
// Copyright (C) 2015-2018, Gisselquist Technology, LLC
|
| 45 |
|
|
//
|
| 46 |
39 |
dgisselq |
// This file is part of the general purpose pipelined FFT project.
|
| 47 |
36 |
dgisselq |
//
|
| 48 |
39 |
dgisselq |
// The pipelined FFT project is free software (firmware): you can redistribute
|
| 49 |
|
|
// it and/or modify it under the terms of the GNU Lesser General Public License
|
| 50 |
|
|
// as published by the Free Software Foundation, either version 3 of the
|
| 51 |
|
|
// License, or (at your option) any later version.
|
| 52 |
36 |
dgisselq |
//
|
| 53 |
39 |
dgisselq |
// The pipelined FFT project is distributed in the hope that it will be useful,
|
| 54 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 55 |
|
|
// MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
|
| 56 |
|
|
// General Public License for more details.
|
| 57 |
|
|
//
|
| 58 |
|
|
// You should have received a copy of the GNU Lesser General Public License
|
| 59 |
|
|
// along with this program. (It's in the $(ROOT)/doc directory. Run make
|
| 60 |
|
|
// with no target there if the PDF file isn't present.) If not, see
|
| 61 |
36 |
dgisselq |
// <http://www.gnu.org/licenses/> for a copy.
|
| 62 |
|
|
//
|
| 63 |
39 |
dgisselq |
// License: LGPL, v3, as defined and found on www.gnu.org,
|
| 64 |
|
|
// http://www.gnu.org/licenses/lgpl.html
|
| 65 |
36 |
dgisselq |
//
|
| 66 |
|
|
//
|
| 67 |
|
|
////////////////////////////////////////////////////////////////////////////////
|
| 68 |
|
|
//
|
| 69 |
|
|
//
|
| 70 |
|
|
`default_nettype none
|
| 71 |
|
|
//
|
| 72 |
|
|
module qtrstage(i_clk, i_reset, i_ce, i_sync, i_data, o_data, o_sync);
|
| 73 |
|
|
parameter IWIDTH=16, OWIDTH=IWIDTH+1;
|
| 74 |
39 |
dgisselq |
parameter LGWIDTH=8, INVERSE=0,SHIFT=0;
|
| 75 |
|
|
input wire i_clk, i_reset, i_ce, i_sync;
|
| 76 |
|
|
input wire [(2*IWIDTH-1):0] i_data;
|
| 77 |
36 |
dgisselq |
output reg [(2*OWIDTH-1):0] o_data;
|
| 78 |
|
|
output reg o_sync;
|
| 79 |
|
|
|
| 80 |
|
|
reg wait_for_sync;
|
| 81 |
39 |
dgisselq |
reg [2:0] pipeline;
|
| 82 |
36 |
dgisselq |
|
| 83 |
39 |
dgisselq |
reg signed [(IWIDTH):0] sum_r, sum_i, diff_r, diff_i;
|
| 84 |
36 |
dgisselq |
|
| 85 |
|
|
reg [(2*OWIDTH-1):0] ob_a;
|
| 86 |
|
|
wire [(2*OWIDTH-1):0] ob_b;
|
| 87 |
|
|
reg [(OWIDTH-1):0] ob_b_r, ob_b_i;
|
| 88 |
|
|
assign ob_b = { ob_b_r, ob_b_i };
|
| 89 |
|
|
|
| 90 |
|
|
reg [(LGWIDTH-1):0] iaddr;
|
| 91 |
39 |
dgisselq |
reg [(2*IWIDTH-1):0] imem [0:1];
|
| 92 |
36 |
dgisselq |
|
| 93 |
|
|
wire signed [(IWIDTH-1):0] imem_r, imem_i;
|
| 94 |
39 |
dgisselq |
assign imem_r = imem[1][(2*IWIDTH-1):(IWIDTH)];
|
| 95 |
|
|
assign imem_i = imem[1][(IWIDTH-1):0];
|
| 96 |
36 |
dgisselq |
|
| 97 |
|
|
wire signed [(IWIDTH-1):0] i_data_r, i_data_i;
|
| 98 |
|
|
assign i_data_r = i_data[(2*IWIDTH-1):(IWIDTH)];
|
| 99 |
|
|
assign i_data_i = i_data[(IWIDTH-1):0];
|
| 100 |
|
|
|
| 101 |
39 |
dgisselq |
reg [(2*OWIDTH-1):0] omem [0:1];
|
| 102 |
36 |
dgisselq |
|
| 103 |
39 |
dgisselq |
//
|
| 104 |
|
|
// Round our output values down to OWIDTH bits
|
| 105 |
|
|
//
|
| 106 |
|
|
wire signed [(OWIDTH-1):0] rnd_sum_r, rnd_sum_i,
|
| 107 |
|
|
rnd_diff_r, rnd_diff_i, n_rnd_diff_r, n_rnd_diff_i;
|
| 108 |
36 |
dgisselq |
convround #(IWIDTH+1,OWIDTH,SHIFT) do_rnd_sum_r(i_clk, i_ce,
|
| 109 |
|
|
sum_r, rnd_sum_r);
|
| 110 |
|
|
|
| 111 |
|
|
convround #(IWIDTH+1,OWIDTH,SHIFT) do_rnd_sum_i(i_clk, i_ce,
|
| 112 |
|
|
sum_i, rnd_sum_i);
|
| 113 |
|
|
|
| 114 |
|
|
convround #(IWIDTH+1,OWIDTH,SHIFT) do_rnd_diff_r(i_clk, i_ce,
|
| 115 |
|
|
diff_r, rnd_diff_r);
|
| 116 |
|
|
|
| 117 |
|
|
convround #(IWIDTH+1,OWIDTH,SHIFT) do_rnd_diff_i(i_clk, i_ce,
|
| 118 |
|
|
diff_i, rnd_diff_i);
|
| 119 |
|
|
|
| 120 |
|
|
assign n_rnd_diff_r = - rnd_diff_r;
|
| 121 |
|
|
assign n_rnd_diff_i = - rnd_diff_i;
|
| 122 |
|
|
initial wait_for_sync = 1'b1;
|
| 123 |
|
|
initial iaddr = 0;
|
| 124 |
|
|
always @(posedge i_clk)
|
| 125 |
|
|
if (i_reset)
|
| 126 |
|
|
begin
|
| 127 |
|
|
wait_for_sync <= 1'b1;
|
| 128 |
|
|
iaddr <= 0;
|
| 129 |
|
|
end else if ((i_ce)&&((!wait_for_sync)||(i_sync)))
|
| 130 |
|
|
begin
|
| 131 |
39 |
dgisselq |
iaddr <= iaddr + 1'b1;
|
| 132 |
36 |
dgisselq |
wait_for_sync <= 1'b0;
|
| 133 |
|
|
end
|
| 134 |
|
|
|
| 135 |
|
|
always @(posedge i_clk)
|
| 136 |
|
|
if (i_ce)
|
| 137 |
39 |
dgisselq |
begin
|
| 138 |
|
|
imem[0] <= i_data;
|
| 139 |
|
|
imem[1] <= imem[0];
|
| 140 |
|
|
end
|
| 141 |
36 |
dgisselq |
|
| 142 |
|
|
|
| 143 |
|
|
// Note that we don't check on wait_for_sync or i_sync here.
|
| 144 |
|
|
// Why not? Because iaddr will always be zero until after the
|
| 145 |
|
|
// first i_ce, so we are safe.
|
| 146 |
39 |
dgisselq |
initial pipeline = 3'h0;
|
| 147 |
36 |
dgisselq |
always @(posedge i_clk)
|
| 148 |
|
|
if (i_reset)
|
| 149 |
39 |
dgisselq |
pipeline <= 3'h0;
|
| 150 |
36 |
dgisselq |
else if (i_ce) // is our pipeline process full? Which stages?
|
| 151 |
39 |
dgisselq |
pipeline <= { pipeline[1:0], iaddr[1] };
|
| 152 |
36 |
dgisselq |
|
| 153 |
|
|
// This is the pipeline[-1] stage, pipeline[0] will be set next.
|
| 154 |
|
|
always @(posedge i_clk)
|
| 155 |
39 |
dgisselq |
if ((i_ce)&&(iaddr[1]))
|
| 156 |
36 |
dgisselq |
begin
|
| 157 |
|
|
sum_r <= imem_r + i_data_r;
|
| 158 |
|
|
sum_i <= imem_i + i_data_i;
|
| 159 |
|
|
diff_r <= imem_r - i_data_r;
|
| 160 |
|
|
diff_i <= imem_i - i_data_i;
|
| 161 |
|
|
end
|
| 162 |
|
|
|
| 163 |
|
|
// pipeline[1] takes sum_x and diff_x and produces rnd_x
|
| 164 |
|
|
|
| 165 |
|
|
// Now for pipeline[2]. We can actually do this at all i_ce
|
| 166 |
|
|
// clock times, since nothing will listen unless pipeline[3]
|
| 167 |
|
|
// on the next clock. Thus, we simplify this logic and do
|
| 168 |
|
|
// it independent of pipeline[2].
|
| 169 |
|
|
always @(posedge i_clk)
|
| 170 |
|
|
if (i_ce)
|
| 171 |
|
|
begin
|
| 172 |
|
|
ob_a <= { rnd_sum_r, rnd_sum_i };
|
| 173 |
|
|
// on Even, W = e^{-j2pi 1/4 0} = 1
|
| 174 |
39 |
dgisselq |
if (!iaddr[0])
|
| 175 |
36 |
dgisselq |
begin
|
| 176 |
|
|
ob_b_r <= rnd_diff_r;
|
| 177 |
|
|
ob_b_i <= rnd_diff_i;
|
| 178 |
|
|
end else if (INVERSE==0) begin
|
| 179 |
|
|
// on Odd, W = e^{-j2pi 1/4} = -j
|
| 180 |
|
|
ob_b_r <= rnd_diff_i;
|
| 181 |
|
|
ob_b_i <= n_rnd_diff_r;
|
| 182 |
|
|
end else begin
|
| 183 |
|
|
// on Odd, W = e^{j2pi 1/4} = j
|
| 184 |
|
|
ob_b_r <= n_rnd_diff_i;
|
| 185 |
|
|
ob_b_i <= rnd_diff_r;
|
| 186 |
|
|
end
|
| 187 |
|
|
end
|
| 188 |
|
|
|
| 189 |
|
|
always @(posedge i_clk)
|
| 190 |
|
|
if (i_ce)
|
| 191 |
|
|
begin // In sequence, clock = 3
|
| 192 |
39 |
dgisselq |
omem[0] <= ob_b;
|
| 193 |
|
|
omem[1] <= omem[0];
|
| 194 |
|
|
if (pipeline[2])
|
| 195 |
36 |
dgisselq |
o_data <= ob_a;
|
| 196 |
39 |
dgisselq |
else
|
| 197 |
|
|
o_data <= omem[1];
|
| 198 |
36 |
dgisselq |
end
|
| 199 |
|
|
|
| 200 |
|
|
initial o_sync = 1'b0;
|
| 201 |
|
|
always @(posedge i_clk)
|
| 202 |
|
|
if (i_reset)
|
| 203 |
|
|
o_sync <= 1'b0;
|
| 204 |
|
|
else if (i_ce)
|
| 205 |
39 |
dgisselq |
o_sync <= (iaddr[2:0] == 3'b101);
|
| 206 |
|
|
|
| 207 |
|
|
`ifdef FORMAL
|
| 208 |
|
|
reg f_past_valid;
|
| 209 |
|
|
initial f_past_valid = 1'b0;
|
| 210 |
|
|
always @(posedge i_clk)
|
| 211 |
|
|
f_past_valid = 1'b1;
|
| 212 |
|
|
|
| 213 |
|
|
`ifdef QTRSTAGE
|
| 214 |
|
|
always @(posedge i_clk)
|
| 215 |
|
|
assume((i_ce)||($past(i_ce))||($past(i_ce,2)));
|
| 216 |
|
|
`endif
|
| 217 |
|
|
|
| 218 |
|
|
// The below logic only works if the rounding stage does nothing
|
| 219 |
|
|
initial assert(IWIDTH+1 == OWIDTH);
|
| 220 |
|
|
|
| 221 |
|
|
reg signed [IWIDTH-1:0] f_piped_real [0:7];
|
| 222 |
|
|
reg signed [IWIDTH-1:0] f_piped_imag [0:7];
|
| 223 |
|
|
|
| 224 |
|
|
always @(posedge i_clk)
|
| 225 |
|
|
if (i_ce)
|
| 226 |
|
|
begin
|
| 227 |
|
|
f_piped_real[0] <= i_data[2*IWIDTH-1:IWIDTH];
|
| 228 |
|
|
f_piped_imag[0] <= i_data[ IWIDTH-1:0];
|
| 229 |
|
|
|
| 230 |
|
|
f_piped_real[1] <= f_piped_real[0];
|
| 231 |
|
|
f_piped_imag[1] <= f_piped_imag[0];
|
| 232 |
|
|
|
| 233 |
|
|
f_piped_real[2] <= f_piped_real[1];
|
| 234 |
|
|
f_piped_imag[2] <= f_piped_imag[1];
|
| 235 |
|
|
|
| 236 |
|
|
f_piped_real[3] <= f_piped_real[2];
|
| 237 |
|
|
f_piped_imag[3] <= f_piped_imag[2];
|
| 238 |
|
|
|
| 239 |
|
|
f_piped_real[4] <= f_piped_real[3];
|
| 240 |
|
|
f_piped_imag[4] <= f_piped_imag[3];
|
| 241 |
|
|
|
| 242 |
|
|
f_piped_real[5] <= f_piped_real[4];
|
| 243 |
|
|
f_piped_imag[5] <= f_piped_imag[4];
|
| 244 |
|
|
|
| 245 |
|
|
f_piped_real[6] <= f_piped_real[5];
|
| 246 |
|
|
f_piped_imag[6] <= f_piped_imag[5];
|
| 247 |
|
|
|
| 248 |
|
|
f_piped_real[7] <= f_piped_real[6];
|
| 249 |
|
|
f_piped_imag[7] <= f_piped_imag[6];
|
| 250 |
|
|
end
|
| 251 |
|
|
|
| 252 |
|
|
reg f_rsyncd;
|
| 253 |
|
|
wire f_syncd;
|
| 254 |
|
|
|
| 255 |
|
|
initial f_rsyncd = 0;
|
| 256 |
|
|
always @(posedge i_clk)
|
| 257 |
|
|
if(i_reset)
|
| 258 |
|
|
f_rsyncd <= 1'b0;
|
| 259 |
|
|
else if (!f_rsyncd)
|
| 260 |
|
|
f_rsyncd <= (o_sync);
|
| 261 |
|
|
assign f_syncd = (f_rsyncd)||(o_sync);
|
| 262 |
|
|
|
| 263 |
|
|
reg [1:0] f_state;
|
| 264 |
|
|
|
| 265 |
|
|
|
| 266 |
|
|
initial f_state = 0;
|
| 267 |
|
|
always @(posedge i_clk)
|
| 268 |
|
|
if (i_reset)
|
| 269 |
|
|
f_state <= 0;
|
| 270 |
|
|
else if ((i_ce)&&((!wait_for_sync)||(i_sync)))
|
| 271 |
|
|
f_state <= f_state + 1;
|
| 272 |
|
|
|
| 273 |
|
|
always @(*)
|
| 274 |
|
|
if (f_state != 0)
|
| 275 |
|
|
assume(!i_sync);
|
| 276 |
|
|
|
| 277 |
|
|
always @(posedge i_clk)
|
| 278 |
|
|
assert(f_state[1:0] == iaddr[1:0]);
|
| 279 |
|
|
|
| 280 |
|
|
wire signed [2*IWIDTH-1:0] f_i_real, f_i_imag;
|
| 281 |
|
|
assign f_i_real = i_data[2*IWIDTH-1:IWIDTH];
|
| 282 |
|
|
assign f_i_imag = i_data[ IWIDTH-1:0];
|
| 283 |
|
|
|
| 284 |
|
|
wire signed [OWIDTH-1:0] f_o_real, f_o_imag;
|
| 285 |
|
|
assign f_o_real = o_data[2*OWIDTH-1:OWIDTH];
|
| 286 |
|
|
assign f_o_imag = o_data[ OWIDTH-1:0];
|
| 287 |
|
|
|
| 288 |
|
|
always @(posedge i_clk)
|
| 289 |
|
|
if (f_state == 2'b11)
|
| 290 |
|
|
begin
|
| 291 |
|
|
assume(f_piped_real[0] != 3'sb100);
|
| 292 |
|
|
assume(f_piped_real[2] != 3'sb100);
|
| 293 |
|
|
assert(sum_r == f_piped_real[2] + f_piped_real[0]);
|
| 294 |
|
|
assert(sum_i == f_piped_imag[2] + f_piped_imag[0]);
|
| 295 |
|
|
|
| 296 |
|
|
assert(diff_r == f_piped_real[2] - f_piped_real[0]);
|
| 297 |
|
|
assert(diff_i == f_piped_imag[2] - f_piped_imag[0]);
|
| 298 |
|
|
end
|
| 299 |
|
|
|
| 300 |
|
|
always @(posedge i_clk)
|
| 301 |
|
|
if ((f_state == 2'b00)&&((f_syncd)||(iaddr >= 4)))
|
| 302 |
|
|
begin
|
| 303 |
|
|
assert(rnd_sum_r == f_piped_real[3]+f_piped_real[1]);
|
| 304 |
|
|
assert(rnd_sum_i == f_piped_imag[3]+f_piped_imag[1]);
|
| 305 |
|
|
assert(rnd_diff_r == f_piped_real[3]-f_piped_real[1]);
|
| 306 |
|
|
assert(rnd_diff_i == f_piped_imag[3]-f_piped_imag[1]);
|
| 307 |
|
|
end
|
| 308 |
|
|
|
| 309 |
|
|
always @(posedge i_clk)
|
| 310 |
|
|
if ((f_state == 2'b10)&&(f_syncd))
|
| 311 |
|
|
begin
|
| 312 |
|
|
// assert(o_sync);
|
| 313 |
|
|
assert(f_o_real == f_piped_real[5] + f_piped_real[3]);
|
| 314 |
|
|
assert(f_o_imag == f_piped_imag[5] + f_piped_imag[3]);
|
| 315 |
|
|
end
|
| 316 |
|
|
|
| 317 |
|
|
always @(posedge i_clk)
|
| 318 |
|
|
if ((f_state == 2'b11)&&(f_syncd))
|
| 319 |
|
|
begin
|
| 320 |
|
|
assert(!o_sync);
|
| 321 |
|
|
assert(f_o_real == f_piped_real[5] + f_piped_real[3]);
|
| 322 |
|
|
assert(f_o_imag == f_piped_imag[5] + f_piped_imag[3]);
|
| 323 |
|
|
end
|
| 324 |
|
|
|
| 325 |
|
|
always @(posedge i_clk)
|
| 326 |
|
|
if ((f_state == 2'b00)&&(f_syncd))
|
| 327 |
|
|
begin
|
| 328 |
|
|
assert(!o_sync);
|
| 329 |
|
|
assert(f_o_real == f_piped_real[7] - f_piped_real[5]);
|
| 330 |
|
|
assert(f_o_imag == f_piped_imag[7] - f_piped_imag[5]);
|
| 331 |
|
|
end
|
| 332 |
|
|
|
| 333 |
|
|
always @(*)
|
| 334 |
|
|
if ((iaddr[2:0] == 0)&&(!wait_for_sync))
|
| 335 |
|
|
assume(i_sync);
|
| 336 |
|
|
|
| 337 |
|
|
always @(*)
|
| 338 |
|
|
if (wait_for_sync)
|
| 339 |
|
|
assert((iaddr == 0)&&(f_state == 2'b00)&&(!o_sync)&&(!f_rsyncd));
|
| 340 |
|
|
|
| 341 |
|
|
always @(posedge i_clk)
|
| 342 |
|
|
if ((f_past_valid)&&($past(i_ce))&&($past(i_sync))&&(!$past(i_reset)))
|
| 343 |
|
|
assert(!wait_for_sync);
|
| 344 |
|
|
|
| 345 |
|
|
always @(posedge i_clk)
|
| 346 |
|
|
if ((f_state == 2'b01)&&(f_syncd))
|
| 347 |
|
|
begin
|
| 348 |
|
|
assert(!o_sync);
|
| 349 |
|
|
if (INVERSE)
|
| 350 |
|
|
begin
|
| 351 |
|
|
assert(f_o_real == -f_piped_imag[7]+f_piped_imag[5]);
|
| 352 |
|
|
assert(f_o_imag == f_piped_real[7]-f_piped_real[5]);
|
| 353 |
|
|
end else begin
|
| 354 |
|
|
assert(f_o_real == f_piped_imag[7]-f_piped_imag[5]);
|
| 355 |
|
|
assert(f_o_imag == -f_piped_real[7]+f_piped_real[5]);
|
| 356 |
|
|
end
|
| 357 |
|
|
end
|
| 358 |
|
|
|
| 359 |
|
|
`endif
|
| 360 |
36 |
dgisselq |
endmodule
|