1 |
22 |
hellwig |
\section{Computation Instructions}
|
2 |
|
|
|
3 |
|
|
\newcommand{\rdivzero}{\effect if $R_y=0$ then trigger a \name{Division by Zero Fault}}
|
4 |
|
|
\newcommand{\idivzero}{\effect if $y=0$ then trigger a \name{Division by Zero Fault}}
|
5 |
|
|
|
6 |
|
|
The computation instructions compute a function of register values and/or immediate values, and store their result in a general-purpose register.
|
7 |
|
|
|
8 |
|
|
\subsection{ADD}
|
9 |
|
|
|
10 |
|
|
The ADD instruction computes the sum of two 32-bit register operands, truncated to 32 bits.\\
|
11 |
|
|
|
12 |
|
|
\rrrformat{000000}
|
13 |
|
|
|
14 |
|
|
\regeffects{truncate_{32}(R_x + R_y)}
|
15 |
|
|
|
16 |
|
|
\subsection{ADDI}
|
17 |
|
|
|
18 |
|
|
The ADDI instruction computes the sum of a 32-bit register operand and a sign-extended 16-bit immediate operand, truncated to 32 bits.\\
|
19 |
|
|
|
20 |
|
|
\rriformat{000001}
|
21 |
|
|
|
22 |
|
|
\regeffects{truncate_{32}(R_x + signext_{32}(y))}
|
23 |
|
|
|
24 |
|
|
\subsection{SUB}
|
25 |
|
|
|
26 |
|
|
The SUB instruction computes the difference of two 32-bit register operands, truncated to 32 bits.\\
|
27 |
|
|
|
28 |
|
|
\rrrformat{000010}
|
29 |
|
|
|
30 |
|
|
\regeffects{truncate_{32}(R_x - R_y)}
|
31 |
|
|
|
32 |
|
|
\subsection{SUBI}
|
33 |
|
|
|
34 |
|
|
The SUBI instruction computes the difference of a 32-bit register operand and a sign-extended 16-bit immediate operand, truncated to 32 bits.\\
|
35 |
|
|
|
36 |
|
|
\rriformat{000011}
|
37 |
|
|
|
38 |
|
|
\regeffects{truncate_{32}(R_x - signext_{32}(y))}
|
39 |
|
|
|
40 |
|
|
\subsection{MUL}
|
41 |
|
|
|
42 |
|
|
The MUL instruction computes the signed product of two 32-bit register operands, truncated to 32 bits.\\
|
43 |
|
|
|
44 |
|
|
\rrrformat{000100}
|
45 |
|
|
|
46 |
|
|
\regeffects{truncate_{32}(R_x *_{signed} R_y)}
|
47 |
|
|
|
48 |
|
|
\subsection{MULI}
|
49 |
|
|
|
50 |
|
|
The MULI instruction computes the signed product of a 32-bit register operand and a sign-extended 16-bit immediate operand, truncated to 32 bits.\\
|
51 |
|
|
|
52 |
|
|
\rriformat{000101}
|
53 |
|
|
|
54 |
|
|
\regeffects{truncate_{32}(R_x *_{signed} signext_{32}(y))}
|
55 |
|
|
|
56 |
|
|
\subsection{MULU}
|
57 |
|
|
|
58 |
|
|
The MULU instruction computes the unsigned product of two 32-bit register operands, truncated to 32 bits.\\
|
59 |
|
|
|
60 |
|
|
\rrrformat{000110}
|
61 |
|
|
|
62 |
|
|
\regeffects{truncate_{32}(R_x *_{unsigned} R_y)}
|
63 |
|
|
|
64 |
|
|
\subsection{MULUI}
|
65 |
|
|
|
66 |
|
|
The MULUI instruction computes the unsigned product of a 32-bit register operand and a zero-extended 16-bit immediate operand, truncated to 32 bits.\\
|
67 |
|
|
|
68 |
|
|
\rriformat{000111}
|
69 |
|
|
|
70 |
|
|
\regeffects{truncate_{32}(R_x *_{unsigned} zeroext_{32}(y))}
|
71 |
|
|
|
72 |
|
|
\subsection{DIV}
|
73 |
|
|
|
74 |
|
|
The DIV instruction computes the signed quotient of two 32-bit register operands, truncated to 32 bits.\\
|
75 |
|
|
|
76 |
|
|
\rrrformat{001000}
|
77 |
|
|
|
78 |
|
|
\begin{effectize}
|
79 |
|
|
\rdivzero
|
80 |
|
|
\regeffect{truncate_{32}(R_x /_{signed} R_y)}
|
81 |
|
|
\end{effectize}
|
82 |
|
|
|
83 |
|
|
\subsection{DIVI}
|
84 |
|
|
|
85 |
|
|
The DIVI instruction computes the signed quotient of a 32-bit register operand and a sign-extended 16-bit immediate operand, truncated to 32 bits.\\
|
86 |
|
|
|
87 |
|
|
\rrrformat{001001}
|
88 |
|
|
|
89 |
|
|
\begin{effectize}
|
90 |
|
|
\idivzero
|
91 |
|
|
\regeffect{truncate_{32}(R_x /_{signed} signext_{32}(y))}
|
92 |
|
|
\end{effectize}
|
93 |
|
|
|
94 |
|
|
\subsection{DIVU}
|
95 |
|
|
|
96 |
|
|
The DIVU instruction computes the unsigned quotient of two unsigned 32-bit register operands, truncated to 32 bits.\\
|
97 |
|
|
|
98 |
|
|
\rrrformat{001010}
|
99 |
|
|
|
100 |
|
|
\begin{effectize}
|
101 |
|
|
\rdivzero
|
102 |
|
|
\regeffect{truncate_{32}(R_x /_{unsigned} R_y)}
|
103 |
|
|
\end{effectize}
|
104 |
|
|
|
105 |
|
|
\subsection{DIVUI}
|
106 |
|
|
|
107 |
|
|
The DIVUI instruction computes the unsigned quotient of a 32-bit register operand and a zero-extended 16-bit immediate operand, truncated to 32 bits.\\
|
108 |
|
|
|
109 |
|
|
\rrrformat{001011}
|
110 |
|
|
|
111 |
|
|
\begin{effectize}
|
112 |
|
|
\idivzero
|
113 |
|
|
\regeffect{truncate_{32}(R_x /_{unsigned} zeroext_{32}(y))}
|
114 |
|
|
\end{effectize}
|
115 |
|
|
|
116 |
|
|
\subsection{REM}
|
117 |
|
|
|
118 |
|
|
The REM instruction computes the signed remainder of two 32-bit register operands, truncated to 32 bits.\\
|
119 |
|
|
|
120 |
|
|
\rrrformat{001100}
|
121 |
|
|
|
122 |
|
|
\begin{effectize}
|
123 |
|
|
\rdivzero
|
124 |
|
|
\regeffect{truncate_{32}(R_x MOD_{signed} R_y)}
|
125 |
|
|
\end{effectize}
|
126 |
|
|
|
127 |
|
|
\subsection{REMI}
|
128 |
|
|
|
129 |
|
|
The REMI instruction computes the signed remainder of a 32-bit register operand and a sign-extended 16-bit immediate operand, truncated to 32 bits.\\
|
130 |
|
|
|
131 |
|
|
\rrrformat{001101}
|
132 |
|
|
|
133 |
|
|
\begin{effectize}
|
134 |
|
|
\idivzero
|
135 |
|
|
\regeffect{truncate_{32}(R_x MOD_{signed} signext_{32}(y))}
|
136 |
|
|
\end{effectize}
|
137 |
|
|
|
138 |
|
|
\subsection{REMU}
|
139 |
|
|
|
140 |
|
|
The REMU instruction computes the unsigned remainder of two unsigned 32-bit register operands, truncated to 32 bits.\\
|
141 |
|
|
|
142 |
|
|
\rrrformat{001110}
|
143 |
|
|
|
144 |
|
|
\begin{effectize}
|
145 |
|
|
\rdivzero
|
146 |
|
|
\regeffect{truncate_{32}(R_x MOD_{unsigned} R_y)}
|
147 |
|
|
\end{effectize}
|
148 |
|
|
|
149 |
|
|
\subsection{REMUI}
|
150 |
|
|
|
151 |
|
|
The REMUI instruction computes the unsigned remainder of a 32-bit register operand and a zero-extended 16-bit immediate operand, truncated to 32 bits.\\
|
152 |
|
|
|
153 |
|
|
\rrrformat{001111}
|
154 |
|
|
|
155 |
|
|
\begin{effectize}
|
156 |
|
|
\idivzero
|
157 |
|
|
\regeffect{truncate_{32}(R_x MOD_{unsigned} zeroext_{32}(y))}
|
158 |
|
|
\end{effectize}
|
159 |
|
|
|
160 |
|
|
\subsection{AND}
|
161 |
|
|
|
162 |
|
|
The AND instruction computes the bitwise AND of two 32-bit register operands.\\
|
163 |
|
|
|
164 |
|
|
\rrrformat{010000}
|
165 |
|
|
|
166 |
|
|
\bitregeffects{R_{x,i} \wedge R_{y,i}}
|
167 |
|
|
|
168 |
|
|
\subsection{ANDI}
|
169 |
|
|
|
170 |
|
|
The ANDI instruction computes the bitwise AND of a 32-bit register operand and a zero-extended 16-bit immediate operand.\\
|
171 |
|
|
|
172 |
|
|
\rriformat{010001}
|
173 |
|
|
|
174 |
|
|
\bitregeffects{R_{x,i} \wedge zeroext_{32}(y)_i}
|
175 |
|
|
|
176 |
|
|
\subsection{OR}
|
177 |
|
|
|
178 |
|
|
The OR instruction computes the bitwise OR of two 32-bit register operands.\\
|
179 |
|
|
|
180 |
|
|
\rrrformat{010010}
|
181 |
|
|
|
182 |
|
|
\bitregeffects{R_{x,i} \vee R_{y,i}}
|
183 |
|
|
|
184 |
|
|
\subsection{ORI}
|
185 |
|
|
|
186 |
|
|
The ORI instruction computes the bitwise OR of a 32-bit register operand and a zero-extended 16-bit immediate operand.\\
|
187 |
|
|
|
188 |
|
|
\rriformat{010011}
|
189 |
|
|
|
190 |
|
|
\bitregeffects{R_{x,i} \vee zeroext_{32}(y)_i}
|
191 |
|
|
|
192 |
|
|
\subsection{XOR}
|
193 |
|
|
|
194 |
|
|
The XOR instruction computes the bitwise XOR of two 32-bit register operands.\\
|
195 |
|
|
|
196 |
|
|
\rrrformat{010100}
|
197 |
|
|
|
198 |
|
|
\bitregeffects{R_{x,i} \oplus R_{y,i}}
|
199 |
|
|
|
200 |
|
|
\subsection{XORI}
|
201 |
|
|
|
202 |
|
|
The XORI instruction computes the bitwise XOR of a 32-bit register operand and a zero-extended 16-bit immediate operand.\\
|
203 |
|
|
|
204 |
|
|
\rriformat{010101}
|
205 |
|
|
|
206 |
|
|
\bitregeffects{R_{x,i} \oplus zeroext_{32}(y)_i}
|
207 |
|
|
|
208 |
|
|
\subsection{XNOR}
|
209 |
|
|
|
210 |
|
|
The XNOR instruction computes the bitwise XNOR of two 32-bit register operands.\\
|
211 |
|
|
|
212 |
|
|
\rrrformat{010110}
|
213 |
|
|
|
214 |
|
|
\bitregeffects{\overline{R_{x,i} \oplus R_{y,i}}}
|
215 |
|
|
|
216 |
|
|
\subsection{XNORI}
|
217 |
|
|
|
218 |
|
|
The XNORI instruction computes the bitwise XNOR of a 32-bit register operand and a zero-extended 16-bit immediate operand.\\
|
219 |
|
|
|
220 |
|
|
\rriformat{010111}
|
221 |
|
|
|
222 |
|
|
\bitregeffects{\overline{R_{x,i} \oplus zeroext_{32}(y)_i}}
|
223 |
|
|
|
224 |
|
|
\subsection{SLL}
|
225 |
|
|
|
226 |
|
|
The SLL instruction computes the result of shifting the first 32-bit register operand to the left by a number of bits specified by the 5 least significant bits of the second 32-bit register operand, and filling up with 0 bits.\\
|
227 |
|
|
|
228 |
|
|
\rrrformat{011000}
|
229 |
|
|
|
230 |
|
|
\begin{effectize}
|
231 |
|
|
\effect $shift \leftarrow unsigned(R_{y,4..0})$
|
232 |
|
|
\effect $temp_i \leftarrow R_{x,i-shift}$ if $i \geq shift$
|
233 |
|
|
\effect $temp_i \leftarrow 0$ if $i < shift$
|
234 |
|
|
\effect $R_r \leftarrow temp$
|
235 |
|
|
\end{effectize}
|
236 |
|
|
|
237 |
|
|
\subsection{SLLI}
|
238 |
|
|
|
239 |
|
|
The SLLI instruction computes the result of shifting the 32-bit register operand to the left by a number of bits specified by the 5 least significant bits of the immediate operand, and filling up with 0 bits.\\
|
240 |
|
|
|
241 |
|
|
\rriformat{011001}
|
242 |
|
|
|
243 |
|
|
\begin{effectize}
|
244 |
|
|
\effect $shift \leftarrow unsigned(y_{4..0})$
|
245 |
|
|
\effect $temp_i \leftarrow R_{x,i-shift}$ if $i \geq shift$
|
246 |
|
|
\effect $temp_i \leftarrow 0$ if $i < shift$
|
247 |
|
|
\effect $R_r \leftarrow temp$
|
248 |
|
|
\end{effectize}
|
249 |
|
|
|
250 |
|
|
\subsection{SLR}
|
251 |
|
|
|
252 |
|
|
The SLR instruction computes the result of shifting the first 32-bit register operand to the right by a number of bits specified by the 5 least significant bits of the second 32-bit register operand, and filling up with 0 bits.\\
|
253 |
|
|
|
254 |
|
|
\rrrformat{011010}
|
255 |
|
|
|
256 |
|
|
\begin{effectize}
|
257 |
|
|
\effect $shift \leftarrow unsigned(R_{y,4..0})$
|
258 |
|
|
\effect $temp_i \leftarrow R_{x,i+shift}$ if $i + shift < 32$
|
259 |
|
|
\effect $temp_i \leftarrow 0$ if $i + shift \geq 32$
|
260 |
|
|
\effect $R_r \leftarrow temp$
|
261 |
|
|
\end{effectize}
|
262 |
|
|
|
263 |
|
|
\subsection{SLRI}
|
264 |
|
|
|
265 |
|
|
The SLRI instruction computes the result of shifting the 32-bit register operand to the right by a number of bits specified by the 5 least significant bits of the immediate operand, and filling up with 0 bits.\\
|
266 |
|
|
|
267 |
|
|
\rriformat{011011}
|
268 |
|
|
|
269 |
|
|
\begin{effectize}
|
270 |
|
|
\effect $shift \leftarrow unsigned(y_{4..0})$
|
271 |
|
|
\effect $temp_i \leftarrow R_{x,i+shift}$ if $i + shift < 32$
|
272 |
|
|
\effect $temp_i \leftarrow 0$ if $i + shift \geq 32$
|
273 |
|
|
\effect $R_r \leftarrow temp$
|
274 |
|
|
\end{effectize}
|
275 |
|
|
|
276 |
|
|
\subsection{SAR}
|
277 |
|
|
|
278 |
|
|
The SAR instruction computes the result of shifting the first 32-bit register operand to the right by a number of bits specified by the 5 least significant bits of the second 32-bit register operand, and replicating the topmost (sign) bit.\\
|
279 |
|
|
|
280 |
|
|
\rrrformat{011100}
|
281 |
|
|
|
282 |
|
|
\begin{effectize}
|
283 |
|
|
\effect $shift \leftarrow unsigned(R_{y,4..0})$
|
284 |
|
|
\effect $temp_i \leftarrow R_{x,i+shift}$ if $i + shift < 32$
|
285 |
|
|
\effect $temp_i \leftarrow R_{x,31}$ if $i + shift \geq 32$
|
286 |
|
|
\effect $R_r \leftarrow temp$
|
287 |
|
|
\end{effectize}
|
288 |
|
|
|
289 |
|
|
\subsection{SARI}
|
290 |
|
|
|
291 |
|
|
The SARI instruction computes the result of shifting the 32-bit register operand to the right by a number of bits specified by the 5 least significant bits of the immediate operand, and replicating the topmost (sign) bit.\\
|
292 |
|
|
|
293 |
|
|
\rriformat{011101}
|
294 |
|
|
|
295 |
|
|
\begin{effectize}
|
296 |
|
|
\effect $shift \leftarrow unsigned(y_{4..0})$
|
297 |
|
|
\effect $temp_i \leftarrow R_{x,i+shift}$ if $i + shift < 32$
|
298 |
|
|
\effect $temp_i \leftarrow R_{x,31}$ if $i + shift \geq 32$
|
299 |
|
|
\effect $R_r \leftarrow temp$
|
300 |
|
|
\end{effectize}
|
301 |
|
|
|
302 |
|
|
\subsection{LDHI}
|
303 |
|
|
|
304 |
|
|
The LDHI instruction is used to generate large constants. The upper 16 bits of the result are taken from the 16-bit immediate operand. The lower 16 bits of the result are 0.\\
|
305 |
|
|
|
306 |
|
|
\rriformat{011111}
|
307 |
|
|
|
308 |
|
|
\begin{effectize}
|
309 |
|
|
\effect $R_{r,31..16} \leftarrow y_{15..0}$
|
310 |
|
|
\effect $R_{r,15..0} \leftarrow 0$
|
311 |
|
|
\end{effectize}
|