1 |
4 |
hellwig |
#include "c.h"
|
2 |
|
|
#include <float.h>
|
3 |
|
|
|
4 |
|
|
static char rcsid[] = "$Id: simp.c,v 1.1 2002/08/28 23:12:45 drh Exp $";
|
5 |
|
|
|
6 |
|
|
#define foldcnst(TYPE,VAR,OP) \
|
7 |
|
|
if (l->op == CNST+TYPE && r->op == CNST+TYPE) \
|
8 |
|
|
return cnsttree(ty, l->u.v.VAR OP r->u.v.VAR)
|
9 |
|
|
#define commute(L,R) \
|
10 |
|
|
if (generic(R->op) == CNST && generic(L->op) != CNST) \
|
11 |
|
|
do { Tree t = L; L = R; R = t; } while(0)
|
12 |
|
|
#define xfoldcnst(TYPE,VAR,OP,FUNC)\
|
13 |
|
|
if (l->op == CNST+TYPE && r->op == CNST+TYPE\
|
14 |
|
|
&& FUNC(l->u.v.VAR,r->u.v.VAR,\
|
15 |
|
|
ty->u.sym->u.limits.min.VAR,\
|
16 |
|
|
ty->u.sym->u.limits.max.VAR, needconst)) \
|
17 |
|
|
return cnsttree(ty, l->u.v.VAR OP r->u.v.VAR)
|
18 |
|
|
#define xcvtcnst(FTYPE,SRC,DST,VAR,EXPR) \
|
19 |
|
|
if (l->op == CNST+FTYPE) do {\
|
20 |
|
|
if (!explicitCast\
|
21 |
|
|
&& ((SRC) < DST->u.sym->u.limits.min.VAR || (SRC) > DST->u.sym->u.limits.max.VAR))\
|
22 |
|
|
warning("overflow in converting constant expression from `%t' to `%t'\n", l->type, DST);\
|
23 |
|
|
if (needconst\
|
24 |
|
|
|| !((SRC) < DST->u.sym->u.limits.min.VAR || (SRC) > DST->u.sym->u.limits.max.VAR))\
|
25 |
|
|
return cnsttree(ty, (EXPR)); } while(0)
|
26 |
|
|
#define identity(X,Y,TYPE,VAR,VAL) \
|
27 |
|
|
if (X->op == CNST+TYPE && X->u.v.VAR == VAL) return Y
|
28 |
|
|
#define zerofield(OP,TYPE,VAR) \
|
29 |
|
|
if (l->op == FIELD \
|
30 |
|
|
&& r->op == CNST+TYPE && r->u.v.VAR == 0)\
|
31 |
|
|
return eqtree(OP, bittree(BAND, l->kids[0],\
|
32 |
|
|
cnsttree(unsignedtype, \
|
33 |
|
|
(unsigned long)fieldmask(l->u.field)<<fieldright(l->u.field))), r)
|
34 |
|
|
#define cfoldcnst(TYPE,VAR,OP) \
|
35 |
|
|
if (l->op == CNST+TYPE && r->op == CNST+TYPE) \
|
36 |
|
|
return cnsttree(inttype, (long)(l->u.v.VAR OP r->u.v.VAR))
|
37 |
|
|
#define foldaddp(L,R,RTYPE,VAR) \
|
38 |
|
|
if (L->op == CNST+P && R->op == CNST+RTYPE) { \
|
39 |
|
|
Tree e = tree(CNST+P, ty, NULL, NULL);\
|
40 |
|
|
e->u.v.p = (char *)L->u.v.p + R->u.v.VAR;\
|
41 |
|
|
return e; }
|
42 |
|
|
#define ufoldcnst(TYPE,EXP) if (l->op == CNST+TYPE) return EXP
|
43 |
|
|
#define sfoldcnst(OP) \
|
44 |
|
|
if (l->op == CNST+U && r->op == CNST+I \
|
45 |
|
|
&& r->u.v.i >= 0 && r->u.v.i < 8*l->type->size) \
|
46 |
|
|
return cnsttree(ty, (unsigned long)(l->u.v.u OP r->u.v.i))
|
47 |
|
|
#define geu(L,R,V) \
|
48 |
|
|
if (R->op == CNST+U && R->u.v.u == 0) do { \
|
49 |
|
|
warning("result of unsigned comparison is constant\n"); \
|
50 |
|
|
return tree(RIGHT, inttype, root(L), cnsttree(inttype, (long)(V))); } while(0)
|
51 |
|
|
#define idempotent(OP) if (l->op == OP) return l->kids[0]
|
52 |
|
|
|
53 |
|
|
int needconst;
|
54 |
|
|
int explicitCast;
|
55 |
|
|
static int addi(long x, long y, long min, long max, int needconst) {
|
56 |
|
|
int cond = x == 0 || y == 0
|
57 |
|
|
|| x < 0 && y < 0 && x >= min - y
|
58 |
|
|
|| x < 0 && y > 0
|
59 |
|
|
|| x > 0 && y < 0
|
60 |
|
|
|| x > 0 && y > 0 && x <= max - y;
|
61 |
|
|
if (!cond && needconst) {
|
62 |
|
|
warning("overflow in constant expression\n");
|
63 |
|
|
cond = 1;
|
64 |
|
|
}
|
65 |
|
|
return cond;
|
66 |
|
|
|
67 |
|
|
|
68 |
|
|
}
|
69 |
|
|
|
70 |
|
|
static int addd(double x, double y, double min, double max, int needconst) {
|
71 |
|
|
int cond = x == 0 || y == 0
|
72 |
|
|
|| x < 0 && y < 0 && x >= min - y
|
73 |
|
|
|| x < 0 && y > 0
|
74 |
|
|
|| x > 0 && y < 0
|
75 |
|
|
|| x > 0 && y > 0 && x <= max - y;
|
76 |
|
|
if (!cond && needconst) {
|
77 |
|
|
warning("overflow in constant expression\n");
|
78 |
|
|
cond = 1;
|
79 |
|
|
}
|
80 |
|
|
return cond;
|
81 |
|
|
|
82 |
|
|
|
83 |
|
|
}
|
84 |
|
|
|
85 |
|
|
static Tree addrtree(Tree e, long n, Type ty) {
|
86 |
|
|
Symbol p = e->u.sym, q;
|
87 |
|
|
|
88 |
|
|
if (p->scope == GLOBAL
|
89 |
|
|
|| p->sclass == STATIC || p->sclass == EXTERN)
|
90 |
|
|
NEW0(q, PERM);
|
91 |
|
|
else
|
92 |
|
|
NEW0(q, FUNC);
|
93 |
|
|
q->name = stringd(genlabel(1));
|
94 |
|
|
q->sclass = p->sclass;
|
95 |
|
|
q->scope = p->scope;
|
96 |
|
|
assert(isptr(ty) || isarray(ty));
|
97 |
|
|
q->type = isptr(ty) ? ty->type : ty;
|
98 |
|
|
q->temporary = p->temporary;
|
99 |
|
|
q->generated = p->generated;
|
100 |
|
|
q->addressed = p->addressed;
|
101 |
|
|
q->computed = 1;
|
102 |
|
|
q->defined = 1;
|
103 |
|
|
q->ref = 1;
|
104 |
|
|
assert(IR->address);
|
105 |
|
|
if (p->scope == GLOBAL
|
106 |
|
|
|| p->sclass == STATIC || p->sclass == EXTERN) {
|
107 |
|
|
if (p->sclass == AUTO)
|
108 |
|
|
q->sclass = STATIC;
|
109 |
|
|
(*IR->address)(q, p, n);
|
110 |
|
|
} else {
|
111 |
|
|
Code cp;
|
112 |
|
|
addlocal(p);
|
113 |
|
|
cp = code(Address);
|
114 |
|
|
cp->u.addr.sym = q;
|
115 |
|
|
cp->u.addr.base = p;
|
116 |
|
|
cp->u.addr.offset = n;
|
117 |
|
|
}
|
118 |
|
|
e = tree(e->op, ty, NULL, NULL);
|
119 |
|
|
e->u.sym = q;
|
120 |
|
|
return e;
|
121 |
|
|
}
|
122 |
|
|
|
123 |
|
|
/* div[id] - return 1 if min <= x/y <= max, 0 otherwise */
|
124 |
|
|
static int divi(long x, long y, long min, long max, int needconst) {
|
125 |
|
|
int cond = y != 0 && !(x == min && y == -1);
|
126 |
|
|
if (!cond && needconst) {
|
127 |
|
|
warning("overflow in constant expression\n");
|
128 |
|
|
cond = 1;
|
129 |
|
|
}
|
130 |
|
|
return cond;
|
131 |
|
|
|
132 |
|
|
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
static int divd(double x, double y, double min, double max, int needconst) {
|
136 |
|
|
int cond;
|
137 |
|
|
|
138 |
|
|
if (x < 0) x = -x;
|
139 |
|
|
if (y < 0) y = -y;
|
140 |
|
|
cond = y != 0 && !(y < 1 && x > max*y);
|
141 |
|
|
if (!cond && needconst) {
|
142 |
|
|
warning("overflow in constant expression\n");
|
143 |
|
|
cond = 1;
|
144 |
|
|
}
|
145 |
|
|
return cond;
|
146 |
|
|
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
/* mul[id] - return 1 if min <= x*y <= max, 0 otherwise */
|
150 |
|
|
static int muli(long x, long y, long min, long max, int needconst) {
|
151 |
|
|
int cond = x > -1 && x <= 1 || y > -1 && y <= 1
|
152 |
|
|
|| x < 0 && y < 0 && -x <= max/-y
|
153 |
|
|
|| x < 0 && y > 0 && x >= min/y
|
154 |
|
|
|| x > 0 && y < 0 && y >= min/x
|
155 |
|
|
|| x > 0 && y > 0 && x <= max/y;
|
156 |
|
|
if (!cond && needconst) {
|
157 |
|
|
warning("overflow in constant expression\n");
|
158 |
|
|
cond = 1;
|
159 |
|
|
}
|
160 |
|
|
return cond;
|
161 |
|
|
|
162 |
|
|
|
163 |
|
|
}
|
164 |
|
|
|
165 |
|
|
static int muld(double x, double y, double min, double max, int needconst) {
|
166 |
|
|
int cond = x >= -1 && x <= 1 || y >= -1 && y <= 1
|
167 |
|
|
|| x < 0 && y < 0 && -x <= max/-y
|
168 |
|
|
|| x < 0 && y > 0 && x >= min/y
|
169 |
|
|
|| x > 0 && y < 0 && y >= min/x
|
170 |
|
|
|| x > 0 && y > 0 && x <= max/y;
|
171 |
|
|
if (!cond && needconst) {
|
172 |
|
|
warning("overflow in constant expression\n");
|
173 |
|
|
cond = 1;
|
174 |
|
|
}
|
175 |
|
|
return cond;
|
176 |
|
|
|
177 |
|
|
|
178 |
|
|
}
|
179 |
|
|
/* sub[id] - return 1 if min <= x-y <= max, 0 otherwise */
|
180 |
|
|
static int subi(long x, long y, long min, long max, int needconst) {
|
181 |
|
|
return addi(x, -y, min, max, needconst);
|
182 |
|
|
}
|
183 |
|
|
|
184 |
|
|
static int subd(double x, double y, double min, double max, int needconst) {
|
185 |
|
|
return addd(x, -y, min, max, needconst);
|
186 |
|
|
}
|
187 |
|
|
Tree constexpr(int tok) {
|
188 |
|
|
Tree p;
|
189 |
|
|
|
190 |
|
|
needconst++;
|
191 |
|
|
p = expr1(tok);
|
192 |
|
|
needconst--;
|
193 |
|
|
return p;
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
int intexpr(int tok, int n) {
|
197 |
|
|
Tree p = constexpr(tok);
|
198 |
|
|
|
199 |
|
|
needconst++;
|
200 |
|
|
if (p->op == CNST+I || p->op == CNST+U)
|
201 |
|
|
n = cast(p, inttype)->u.v.i;
|
202 |
|
|
else
|
203 |
|
|
error("integer expression must be constant\n");
|
204 |
|
|
needconst--;
|
205 |
|
|
return n;
|
206 |
|
|
}
|
207 |
|
|
Tree simplify(int op, Type ty, Tree l, Tree r) {
|
208 |
|
|
int n;
|
209 |
|
|
Tree p;
|
210 |
|
|
|
211 |
|
|
if (optype(op) == 0)
|
212 |
|
|
op = mkop(op, ty);
|
213 |
|
|
switch (op) {
|
214 |
|
|
case ADD+U:
|
215 |
|
|
foldcnst(U,u,+);
|
216 |
|
|
commute(r,l);
|
217 |
|
|
identity(r,l,U,u,0);
|
218 |
|
|
break;
|
219 |
|
|
case ADD+I:
|
220 |
|
|
xfoldcnst(I,i,+,addi);
|
221 |
|
|
commute(r,l);
|
222 |
|
|
identity(r,l,I,i,0);
|
223 |
|
|
break;
|
224 |
|
|
case CVI+I:
|
225 |
|
|
xcvtcnst(I,l->u.v.i,ty,i,(long)extend(l->u.v.i,ty));
|
226 |
|
|
break;
|
227 |
|
|
case CVU+I:
|
228 |
|
|
if (l->op == CNST+U) {
|
229 |
|
|
if (!explicitCast && l->u.v.u > ty->u.sym->u.limits.max.i)
|
230 |
|
|
warning("overflow in converting constant expression from `%t' to `%t'\n", l->type, ty);
|
231 |
|
|
if (needconst || !(l->u.v.u > ty->u.sym->u.limits.max.i))
|
232 |
|
|
return cnsttree(ty, (long)extend(l->u.v.u,ty));
|
233 |
|
|
}
|
234 |
|
|
break;
|
235 |
|
|
case CVP+U:
|
236 |
|
|
xcvtcnst(P,(unsigned long)l->u.v.p,ty,u,(unsigned long)l->u.v.p);
|
237 |
|
|
break;
|
238 |
|
|
case CVU+P:
|
239 |
|
|
xcvtcnst(U,(void*)l->u.v.u,ty,p,(void*)l->u.v.u);
|
240 |
|
|
break;
|
241 |
|
|
case CVP+P:
|
242 |
|
|
xcvtcnst(P,l->u.v.p,ty,p,l->u.v.p);
|
243 |
|
|
break;
|
244 |
|
|
case CVI+U:
|
245 |
|
|
xcvtcnst(I,l->u.v.i,ty,u,((unsigned long)l->u.v.i)&ones(8*ty->size));
|
246 |
|
|
break;
|
247 |
|
|
case CVU+U:
|
248 |
|
|
xcvtcnst(U,l->u.v.u,ty,u,l->u.v.u&ones(8*ty->size));
|
249 |
|
|
break;
|
250 |
|
|
|
251 |
|
|
case CVI+F:
|
252 |
|
|
xcvtcnst(I,l->u.v.i,ty,d,(long double)l->u.v.i);
|
253 |
|
|
case CVU+F:
|
254 |
|
|
xcvtcnst(U,l->u.v.u,ty,d,(long double)l->u.v.u);
|
255 |
|
|
break;
|
256 |
|
|
case CVF+I:
|
257 |
|
|
xcvtcnst(F,l->u.v.d,ty,i,(long)l->u.v.d);
|
258 |
|
|
break;
|
259 |
|
|
case CVF+F: {
|
260 |
|
|
float d;
|
261 |
|
|
if (l->op == CNST+F)
|
262 |
|
|
if (l->u.v.d < ty->u.sym->u.limits.min.d)
|
263 |
|
|
d = ty->u.sym->u.limits.min.d;
|
264 |
|
|
else if (l->u.v.d > ty->u.sym->u.limits.max.d)
|
265 |
|
|
d = ty->u.sym->u.limits.max.d;
|
266 |
|
|
else
|
267 |
|
|
d = l->u.v.d;
|
268 |
|
|
xcvtcnst(F,l->u.v.d,ty,d,(long double)d);
|
269 |
|
|
break;
|
270 |
|
|
}
|
271 |
|
|
case BAND+U:
|
272 |
|
|
foldcnst(U,u,&);
|
273 |
|
|
commute(r,l);
|
274 |
|
|
identity(r,l,U,u,ones(8*ty->size));
|
275 |
|
|
if (r->op == CNST+U && r->u.v.u == 0)
|
276 |
|
|
return tree(RIGHT, ty, root(l), cnsttree(ty, 0UL));
|
277 |
|
|
break;
|
278 |
|
|
case BAND+I:
|
279 |
|
|
foldcnst(I,i,&);
|
280 |
|
|
commute(r,l);
|
281 |
|
|
identity(r,l,I,i,ones(8*ty->size));
|
282 |
|
|
if (r->op == CNST+I && r->u.v.u == 0)
|
283 |
|
|
return tree(RIGHT, ty, root(l), cnsttree(ty, 0L));
|
284 |
|
|
break;
|
285 |
|
|
|
286 |
|
|
case MUL+U:
|
287 |
|
|
commute(l,r);
|
288 |
|
|
if (l->op == CNST+U && (n = ispow2(l->u.v.u)) != 0)
|
289 |
|
|
return simplify(LSH, ty, r, cnsttree(inttype, (long)n));
|
290 |
|
|
foldcnst(U,u,*);
|
291 |
|
|
identity(r,l,U,u,1);
|
292 |
|
|
break;
|
293 |
|
|
case NE+I:
|
294 |
|
|
cfoldcnst(I,i,!=);
|
295 |
|
|
commute(r,l);
|
296 |
|
|
zerofield(NE,I,i);
|
297 |
|
|
break;
|
298 |
|
|
|
299 |
|
|
case EQ+I:
|
300 |
|
|
cfoldcnst(I,i,==);
|
301 |
|
|
commute(r,l);
|
302 |
|
|
zerofield(EQ,I,i);
|
303 |
|
|
break;
|
304 |
|
|
case ADD+P:
|
305 |
|
|
foldaddp(l,r,I,i);
|
306 |
|
|
foldaddp(l,r,U,u);
|
307 |
|
|
foldaddp(r,l,I,i);
|
308 |
|
|
foldaddp(r,l,U,u);
|
309 |
|
|
commute(r,l);
|
310 |
|
|
identity(r,retype(l,ty),I,i,0);
|
311 |
|
|
identity(r,retype(l,ty),U,u,0);
|
312 |
|
|
/*
|
313 |
|
|
Some assemblers, e.g., the MIPS, can't handle offsets
|
314 |
|
|
larger than 16 bits. A better solution would be to change
|
315 |
|
|
the interface so that address() could fail.
|
316 |
|
|
*/
|
317 |
|
|
if (l->op == ADDRG+P && l->u.sym->generated
|
318 |
|
|
&& (r->op == CNST+I && (r->u.v.i > 32767 || r->u.v.i < -32768)
|
319 |
|
|
|| r->op == CNST+U && r->u.v.u > 65536))
|
320 |
|
|
break;
|
321 |
|
|
if (IR->address
|
322 |
|
|
&& isaddrop(l->op)
|
323 |
|
|
&& (r->op == CNST+I && r->u.v.i <= longtype->u.sym->u.limits.max.i
|
324 |
|
|
&& r->u.v.i >= longtype->u.sym->u.limits.min.i
|
325 |
|
|
|| r->op == CNST+U && r->u.v.u <= longtype->u.sym->u.limits.max.i))
|
326 |
|
|
return addrtree(l, cast(r, longtype)->u.v.i, ty);
|
327 |
|
|
if (IR->address
|
328 |
|
|
&& l->op == ADD+P && isaddrop(l->kids[1]->op)
|
329 |
|
|
&& (r->op == CNST+I && r->u.v.i <= longtype->u.sym->u.limits.max.i
|
330 |
|
|
&& r->u.v.i >= longtype->u.sym->u.limits.min.i
|
331 |
|
|
|| r->op == CNST+U && r->u.v.u <= longtype->u.sym->u.limits.max.i))
|
332 |
|
|
return simplify(ADD+P, ty, l->kids[0],
|
333 |
|
|
addrtree(l->kids[1], cast(r, longtype)->u.v.i, ty));
|
334 |
|
|
if ((l->op == ADD+I || l->op == SUB+I)
|
335 |
|
|
&& l->kids[1]->op == CNST+I && isaddrop(r->op))
|
336 |
|
|
return simplify(ADD+P, ty, l->kids[0],
|
337 |
|
|
simplify(generic(l->op)+P, ty, r, l->kids[1]));
|
338 |
|
|
if (l->op == ADD+P && generic(l->kids[1]->op) == CNST
|
339 |
|
|
&& generic(r->op) == CNST)
|
340 |
|
|
return simplify(ADD+P, ty, l->kids[0],
|
341 |
|
|
simplify(ADD, l->kids[1]->type, l->kids[1], r));
|
342 |
|
|
if (l->op == ADD+I && generic(l->kids[1]->op) == CNST
|
343 |
|
|
&& r->op == ADD+P && generic(r->kids[1]->op) == CNST)
|
344 |
|
|
return simplify(ADD+P, ty, l->kids[0],
|
345 |
|
|
simplify(ADD+P, ty, r->kids[0],
|
346 |
|
|
simplify(ADD, r->kids[1]->type, l->kids[1], r->kids[1])));
|
347 |
|
|
if (l->op == RIGHT && l->kids[1])
|
348 |
|
|
return tree(RIGHT, ty, l->kids[0],
|
349 |
|
|
simplify(ADD+P, ty, l->kids[1], r));
|
350 |
|
|
else if (l->op == RIGHT && l->kids[0])
|
351 |
|
|
return tree(RIGHT, ty,
|
352 |
|
|
simplify(ADD+P, ty, l->kids[0], r), NULL);
|
353 |
|
|
break;
|
354 |
|
|
|
355 |
|
|
case ADD+F:
|
356 |
|
|
xfoldcnst(F,d,+,addd);
|
357 |
|
|
commute(r,l);
|
358 |
|
|
break;
|
359 |
|
|
case AND+I:
|
360 |
|
|
op = AND;
|
361 |
|
|
ufoldcnst(I,l->u.v.i ? cond(r) : l); /* 0&&r => 0, 1&&r => r */
|
362 |
|
|
break;
|
363 |
|
|
case OR+I:
|
364 |
|
|
op = OR;
|
365 |
|
|
/* 0||r => r, 1||r => 1 */
|
366 |
|
|
ufoldcnst(I,l->u.v.i ? cnsttree(ty, 1L) : cond(r));
|
367 |
|
|
break;
|
368 |
|
|
case BCOM+I:
|
369 |
|
|
ufoldcnst(I,cnsttree(ty, (long)extend((~l->u.v.i)&ones(8*ty->size), ty)));
|
370 |
|
|
idempotent(BCOM+U);
|
371 |
|
|
break;
|
372 |
|
|
case BCOM+U:
|
373 |
|
|
ufoldcnst(U,cnsttree(ty, (unsigned long)((~l->u.v.u)&ones(8*ty->size))));
|
374 |
|
|
idempotent(BCOM+U);
|
375 |
|
|
break;
|
376 |
|
|
case BOR+U:
|
377 |
|
|
foldcnst(U,u,|);
|
378 |
|
|
commute(r,l);
|
379 |
|
|
identity(r,l,U,u,0);
|
380 |
|
|
break;
|
381 |
|
|
case BOR+I:
|
382 |
|
|
foldcnst(I,i,|);
|
383 |
|
|
commute(r,l);
|
384 |
|
|
identity(r,l,I,i,0);
|
385 |
|
|
break;
|
386 |
|
|
case BXOR+U:
|
387 |
|
|
foldcnst(U,u,^);
|
388 |
|
|
commute(r,l);
|
389 |
|
|
identity(r,l,U,u,0);
|
390 |
|
|
break;
|
391 |
|
|
case BXOR+I:
|
392 |
|
|
foldcnst(I,i,^);
|
393 |
|
|
commute(r,l);
|
394 |
|
|
identity(r,l,I,i,0);
|
395 |
|
|
break;
|
396 |
|
|
case DIV+F:
|
397 |
|
|
xfoldcnst(F,d,/,divd);
|
398 |
|
|
break;
|
399 |
|
|
case DIV+I:
|
400 |
|
|
identity(r,l,I,i,1);
|
401 |
|
|
if (r->op == CNST+I && r->u.v.i == 0
|
402 |
|
|
|| l->op == CNST+I && l->u.v.i == ty->u.sym->u.limits.min.i
|
403 |
|
|
&& r->op == CNST+I && r->u.v.i == -1)
|
404 |
|
|
break;
|
405 |
|
|
xfoldcnst(I,i,/,divi);
|
406 |
|
|
break;
|
407 |
|
|
case DIV+U:
|
408 |
|
|
identity(r,l,U,u,1);
|
409 |
|
|
if (r->op == CNST+U && r->u.v.u == 0)
|
410 |
|
|
break;
|
411 |
|
|
if (r->op == CNST+U && (n = ispow2(r->u.v.u)) != 0)
|
412 |
|
|
return simplify(RSH, ty, l, cnsttree(inttype, (long)n));
|
413 |
|
|
foldcnst(U,u,/);
|
414 |
|
|
break;
|
415 |
|
|
case EQ+F:
|
416 |
|
|
cfoldcnst(F,d,==);
|
417 |
|
|
commute(r,l);
|
418 |
|
|
break;
|
419 |
|
|
case EQ+U:
|
420 |
|
|
cfoldcnst(U,u,==);
|
421 |
|
|
commute(r,l);
|
422 |
|
|
zerofield(EQ,U,u);
|
423 |
|
|
break;
|
424 |
|
|
case GE+F: cfoldcnst(F,d,>=); break;
|
425 |
|
|
case GE+I: cfoldcnst(I,i,>=); break;
|
426 |
|
|
case GE+U:
|
427 |
|
|
geu(l,r,1); /* l >= 0 => (l,1) */
|
428 |
|
|
cfoldcnst(U,u,>=);
|
429 |
|
|
if (l->op == CNST+U && l->u.v.u == 0) /* 0 >= r => r == 0 */
|
430 |
|
|
return eqtree(EQ, r, l);
|
431 |
|
|
break;
|
432 |
|
|
case GT+F: cfoldcnst(F,d, >); break;
|
433 |
|
|
case GT+I: cfoldcnst(I,i, >); break;
|
434 |
|
|
case GT+U:
|
435 |
|
|
geu(r,l,0); /* 0 > r => (r,0) */
|
436 |
|
|
cfoldcnst(U,u, >);
|
437 |
|
|
if (r->op == CNST+U && r->u.v.u == 0) /* l > 0 => l != 0 */
|
438 |
|
|
return eqtree(NE, l, r);
|
439 |
|
|
break;
|
440 |
|
|
case LE+F: cfoldcnst(F,d,<=); break;
|
441 |
|
|
case LE+I: cfoldcnst(I,i,<=); break;
|
442 |
|
|
case LE+U:
|
443 |
|
|
geu(r,l,1); /* 0 <= r => (r,1) */
|
444 |
|
|
cfoldcnst(U,u,<=);
|
445 |
|
|
if (r->op == CNST+U && r->u.v.u == 0) /* l <= 0 => l == 0 */
|
446 |
|
|
return eqtree(EQ, l, r);
|
447 |
|
|
break;
|
448 |
|
|
case LSH+I:
|
449 |
|
|
identity(r,l,I,i,0);
|
450 |
|
|
if (l->op == CNST+I && r->op == CNST+I
|
451 |
|
|
&& r->u.v.i >= 0 && r->u.v.i < 8*l->type->size
|
452 |
|
|
&& muli(l->u.v.i, 1<<r->u.v.i, ty->u.sym->u.limits.min.i, ty->u.sym->u.limits.max.i, needconst))
|
453 |
|
|
return cnsttree(ty, (long)(l->u.v.i<<r->u.v.i));
|
454 |
|
|
if (r->op == CNST+I && (r->u.v.i >= 8*ty->size || r->u.v.i < 0)) {
|
455 |
|
|
warning("shifting an `%t' by %d bits is undefined\n", ty, r->u.v.i);
|
456 |
|
|
break;
|
457 |
|
|
}
|
458 |
|
|
|
459 |
|
|
break;
|
460 |
|
|
case LSH+U:
|
461 |
|
|
identity(r,l,I,i,0);
|
462 |
|
|
sfoldcnst(<<);
|
463 |
|
|
if (r->op == CNST+I && (r->u.v.i >= 8*ty->size || r->u.v.i < 0)) {
|
464 |
|
|
warning("shifting an `%t' by %d bits is undefined\n", ty, r->u.v.i);
|
465 |
|
|
break;
|
466 |
|
|
}
|
467 |
|
|
|
468 |
|
|
break;
|
469 |
|
|
|
470 |
|
|
case LT+F: cfoldcnst(F,d, <); break;
|
471 |
|
|
case LT+I: cfoldcnst(I,i, <); break;
|
472 |
|
|
case LT+U:
|
473 |
|
|
geu(l,r,0); /* l < 0 => (l,0) */
|
474 |
|
|
cfoldcnst(U,u, <);
|
475 |
|
|
if (l->op == CNST+U && l->u.v.u == 0) /* 0 < r => r != 0 */
|
476 |
|
|
return eqtree(NE, r, l);
|
477 |
|
|
break;
|
478 |
|
|
case MOD+I:
|
479 |
|
|
if (r->op == CNST+I && r->u.v.i == 0
|
480 |
|
|
|| l->op == CNST+I && l->u.v.i == ty->u.sym->u.limits.min.i
|
481 |
|
|
&& r->op == CNST+I && r->u.v.i == -1)
|
482 |
|
|
break;
|
483 |
|
|
xfoldcnst(I,i,%,divi);
|
484 |
|
|
if (r->op == CNST+I && r->u.v.i == 1) /* l%1 => (l,0) */
|
485 |
|
|
return tree(RIGHT, ty, root(l), cnsttree(ty, 0L));
|
486 |
|
|
break;
|
487 |
|
|
case MOD+U:
|
488 |
|
|
if (r->op == CNST+U && ispow2(r->u.v.u)) /* l%2^n => l&(2^n-1) */
|
489 |
|
|
return bittree(BAND, l, cnsttree(ty, r->u.v.u - 1));
|
490 |
|
|
if (r->op == CNST+U && r->u.v.u == 0)
|
491 |
|
|
break;
|
492 |
|
|
foldcnst(U,u,%);
|
493 |
|
|
break;
|
494 |
|
|
case MUL+F:
|
495 |
|
|
xfoldcnst(F,d,*,muld);
|
496 |
|
|
commute(l,r);
|
497 |
|
|
break;
|
498 |
|
|
case MUL+I:
|
499 |
|
|
commute(l,r);
|
500 |
|
|
xfoldcnst(I,i,*,muli);
|
501 |
|
|
if (l->op == CNST+I && r->op == ADD+I && r->kids[1]->op == CNST+I)
|
502 |
|
|
/* c1*(x + c2) => c1*x + c1*c2 */
|
503 |
|
|
return simplify(ADD, ty, simplify(MUL, ty, l, r->kids[0]),
|
504 |
|
|
simplify(MUL, ty, l, r->kids[1]));
|
505 |
|
|
if (l->op == CNST+I && r->op == SUB+I && r->kids[1]->op == CNST+I)
|
506 |
|
|
/* c1*(x - c2) => c1*x - c1*c2 */
|
507 |
|
|
return simplify(SUB, ty, simplify(MUL, ty, l, r->kids[0]),
|
508 |
|
|
simplify(MUL, ty, l, r->kids[1]));
|
509 |
|
|
if (l->op == CNST+I && l->u.v.i > 0 && (n = ispow2(l->u.v.i)) != 0)
|
510 |
|
|
/* 2^n * r => r<<n */
|
511 |
|
|
return simplify(LSH, ty, r, cnsttree(inttype, (long)n));
|
512 |
|
|
identity(r,l,I,i,1);
|
513 |
|
|
break;
|
514 |
|
|
case NE+F:
|
515 |
|
|
cfoldcnst(F,d,!=);
|
516 |
|
|
commute(r,l);
|
517 |
|
|
break;
|
518 |
|
|
case NE+U:
|
519 |
|
|
cfoldcnst(U,u,!=);
|
520 |
|
|
commute(r,l);
|
521 |
|
|
zerofield(NE,U,u);
|
522 |
|
|
break;
|
523 |
|
|
case NEG+F:
|
524 |
|
|
ufoldcnst(F,cnsttree(ty, -l->u.v.d));
|
525 |
|
|
idempotent(NEG+F);
|
526 |
|
|
break;
|
527 |
|
|
case NEG+I:
|
528 |
|
|
if (l->op == CNST+I) {
|
529 |
|
|
if (needconst && l->u.v.i == ty->u.sym->u.limits.min.i)
|
530 |
|
|
warning("overflow in constant expression\n");
|
531 |
|
|
if (needconst || l->u.v.i != ty->u.sym->u.limits.min.i)
|
532 |
|
|
return cnsttree(ty, -l->u.v.i);
|
533 |
|
|
}
|
534 |
|
|
idempotent(NEG+I);
|
535 |
|
|
break;
|
536 |
|
|
case NOT+I:
|
537 |
|
|
op = NOT;
|
538 |
|
|
ufoldcnst(I,cnsttree(ty, !l->u.v.i));
|
539 |
|
|
break;
|
540 |
|
|
case RSH+I:
|
541 |
|
|
identity(r,l,I,i,0);
|
542 |
|
|
if (l->op == CNST+I && r->op == CNST+I
|
543 |
|
|
&& r->u.v.i >= 0 && r->u.v.i < 8*l->type->size) {
|
544 |
|
|
long n = l->u.v.i>>r->u.v.i;
|
545 |
|
|
if (l->u.v.i < 0)
|
546 |
|
|
n |= ~0UL<<(8*l->type->size - r->u.v.i);
|
547 |
|
|
return cnsttree(ty, n);
|
548 |
|
|
}
|
549 |
|
|
if (r->op == CNST+I && (r->u.v.i >= 8*ty->size || r->u.v.i < 0)) {
|
550 |
|
|
warning("shifting an `%t' by %d bits is undefined\n", ty, r->u.v.i);
|
551 |
|
|
break;
|
552 |
|
|
}
|
553 |
|
|
|
554 |
|
|
break;
|
555 |
|
|
case RSH+U:
|
556 |
|
|
identity(r,l,I,i,0);
|
557 |
|
|
sfoldcnst(>>);
|
558 |
|
|
if (r->op == CNST+I && (r->u.v.i >= 8*ty->size || r->u.v.i < 0)) {
|
559 |
|
|
warning("shifting an `%t' by %d bits is undefined\n", ty, r->u.v.i);
|
560 |
|
|
break;
|
561 |
|
|
}
|
562 |
|
|
|
563 |
|
|
break;
|
564 |
|
|
case SUB+F:
|
565 |
|
|
xfoldcnst(F,d,-,subd);
|
566 |
|
|
break;
|
567 |
|
|
case SUB+I:
|
568 |
|
|
xfoldcnst(I,i,-,subi);
|
569 |
|
|
identity(r,l,I,i,0);
|
570 |
|
|
break;
|
571 |
|
|
case SUB+U:
|
572 |
|
|
foldcnst(U,u,-);
|
573 |
|
|
identity(r,l,U,u,0);
|
574 |
|
|
break;
|
575 |
|
|
case SUB+P:
|
576 |
|
|
if (l->op == CNST+P && r->op == CNST+P)
|
577 |
|
|
return cnsttree(ty, (long)((char *)l->u.v.p - (char *)r->u.v.p));
|
578 |
|
|
if (r->op == CNST+I || r->op == CNST+U)
|
579 |
|
|
return simplify(ADD, ty, l,
|
580 |
|
|
cnsttree(inttype, r->op == CNST+I ? -r->u.v.i : -(long)r->u.v.u));
|
581 |
|
|
if (isaddrop(l->op) && r->op == ADD+I && r->kids[1]->op == CNST+I)
|
582 |
|
|
/* l - (x + c) => l-c - x */
|
583 |
|
|
return simplify(SUB, ty,
|
584 |
|
|
simplify(SUB, ty, l, r->kids[1]), r->kids[0]);
|
585 |
|
|
break;
|
586 |
|
|
default:assert(0);
|
587 |
|
|
}
|
588 |
|
|
return tree(op, ty, l, r);
|
589 |
|
|
}
|
590 |
|
|
/* ispow2 - if u > 1 && u == 2^n, return n, otherwise return 0 */
|
591 |
|
|
int ispow2(unsigned long u) {
|
592 |
|
|
int n;
|
593 |
|
|
|
594 |
|
|
if (u > 1 && (u&(u-1)) == 0)
|
595 |
|
|
for (n = 0; u; u >>= 1, n++)
|
596 |
|
|
if (u&1)
|
597 |
|
|
return n;
|
598 |
|
|
return 0;
|
599 |
|
|
}
|
600 |
|
|
|