1 |
2 |
trueno |
library ieee;
|
2 |
|
|
use ieee.std_logic_1164.all;
|
3 |
|
|
use ieee.std_logic_arith.all;
|
4 |
|
|
use ieee.std_logic_unsigned.all;
|
5 |
|
|
use work.all;
|
6 |
|
|
|
7 |
|
|
entity gf_multiplier is
|
8 |
|
|
|
9 |
|
|
port (
|
10 |
|
|
reset : in std_logic; -- #RESET
|
11 |
|
|
phi1 : in std_logic;
|
12 |
|
|
phi2 : in std_logic;
|
13 |
|
|
input : in std_logic_vector(31 downto 0);
|
14 |
|
|
-- Input to the Galois Field multiplier. It
|
15 |
|
|
-- comes from the feedback of the FCS
|
16 |
|
|
output_fcs : out std_logic_vector(15 downto 0); -- LS Word
|
17 |
|
|
-- "inout" to be able to read the signal (feedback)
|
18 |
|
|
output_xor : out std_logic_vector(15 downto 0)); -- MS Word
|
19 |
|
|
|
20 |
|
|
end gf_multiplier;
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
|
24 |
|
|
architecture structural of gf_multiplier is
|
25 |
|
|
|
26 |
|
|
-- The output register is half the size of the rest
|
27 |
|
|
component gf_phi1_register_out
|
28 |
|
|
port (
|
29 |
|
|
reset : in std_logic; -- #RESET
|
30 |
|
|
phi1 : in std_logic; -- Clock
|
31 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
32 |
|
|
output_final : out std_logic_vector(31 downto 0));
|
33 |
|
|
end component;
|
34 |
|
|
|
35 |
|
|
-- These components below are the best example of bad VHDL coding
|
36 |
|
|
|
37 |
|
|
component gf_phi1_register_2
|
38 |
|
|
port (
|
39 |
|
|
reset : in std_logic; -- #RESET
|
40 |
|
|
phi1 : in std_logic; -- Clock
|
41 |
|
|
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP
|
42 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
43 |
|
|
-- The original data for that step. Since we are using pipelining
|
44 |
|
|
-- we have to grant that we will have the original FCS data
|
45 |
|
|
-- available.
|
46 |
|
|
output_wip : out std_logic_vector(31 downto 0);
|
47 |
|
|
-- The modified data -our "WIP"-
|
48 |
|
|
output_fcs : out std_logic_vector(31 downto 0));
|
49 |
|
|
-- The original data is kept untouched
|
50 |
|
|
end component;
|
51 |
|
|
|
52 |
|
|
component gf_phi2_register_3
|
53 |
|
|
port (
|
54 |
|
|
reset : in std_logic; -- #RESET
|
55 |
|
|
phi2 : in std_logic; -- Clock
|
56 |
|
|
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP
|
57 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
58 |
|
|
-- The original data for that step. Since we are using pipelining
|
59 |
|
|
-- we have to grant that we will have the original FCS data
|
60 |
|
|
-- available.
|
61 |
|
|
output_wip : out std_logic_vector(31 downto 0);
|
62 |
|
|
-- The modified data -our "WIP"-
|
63 |
|
|
output_fcs : out std_logic_vector(31 downto 0));
|
64 |
|
|
-- The original data is kept untouched
|
65 |
|
|
end component;
|
66 |
|
|
|
67 |
|
|
component gf_phi1_register_4
|
68 |
|
|
port (
|
69 |
|
|
reset : in std_logic; -- #RESET
|
70 |
|
|
phi1 : in std_logic; -- Clock
|
71 |
|
|
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP
|
72 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
73 |
|
|
-- The original data for that step. Since we are using pipelining
|
74 |
|
|
-- we have to grant that we will have the original FCS data
|
75 |
|
|
-- available.
|
76 |
|
|
output_wip : out std_logic_vector(31 downto 0);
|
77 |
|
|
-- The modified data -our "WIP"-
|
78 |
|
|
output_fcs : out std_logic_vector(31 downto 0));
|
79 |
|
|
-- The original data is kept untouched
|
80 |
|
|
end component;
|
81 |
|
|
|
82 |
|
|
component gf_phi2_register_5
|
83 |
|
|
port (
|
84 |
|
|
reset : in std_logic; -- #RESET
|
85 |
|
|
phi2 : in std_logic; -- Clock
|
86 |
|
|
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP
|
87 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
88 |
|
|
-- The original data for that step. Since we are using pipelining
|
89 |
|
|
-- we have to grant that we will have the original FCS data
|
90 |
|
|
-- available.
|
91 |
|
|
output_wip : out std_logic_vector(31 downto 0);
|
92 |
|
|
-- The modified data -our "WIP"-
|
93 |
|
|
output_fcs : out std_logic_vector(31 downto 0));
|
94 |
|
|
-- The original data is kept untouched
|
95 |
|
|
end component;
|
96 |
|
|
|
97 |
|
|
component gf_phi1_register_6
|
98 |
|
|
port (
|
99 |
|
|
reset : in std_logic; -- #RESET
|
100 |
|
|
phi1 : in std_logic; -- Clock
|
101 |
|
|
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP
|
102 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
103 |
|
|
-- The original data for that step. Since we are using pipelining
|
104 |
|
|
-- we have to grant that we will have the original FCS data
|
105 |
|
|
-- available.
|
106 |
|
|
output_wip : out std_logic_vector(31 downto 0);
|
107 |
|
|
-- The modified data -our "WIP"-
|
108 |
|
|
output_fcs : out std_logic_vector(31 downto 0));
|
109 |
|
|
-- The original data is kept untouched
|
110 |
|
|
end component;
|
111 |
|
|
|
112 |
|
|
component gf_phi2_register_7
|
113 |
|
|
port (
|
114 |
|
|
reset : in std_logic; -- #RESET
|
115 |
|
|
phi2 : in std_logic; -- Clock
|
116 |
|
|
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP
|
117 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
118 |
|
|
-- The original data for that step. Since we are using pipelining
|
119 |
|
|
-- we have to grant that we will have the original FCS data
|
120 |
|
|
-- available.
|
121 |
|
|
output_wip : out std_logic_vector(31 downto 0);
|
122 |
|
|
-- The modified data -our "WIP"-
|
123 |
|
|
output_fcs : out std_logic_vector(31 downto 0));
|
124 |
|
|
-- The original data is kept untouched
|
125 |
|
|
end component;
|
126 |
|
|
|
127 |
|
|
component gf_phi1_register_8
|
128 |
|
|
port (
|
129 |
|
|
reset : in std_logic; -- #RESET
|
130 |
|
|
phi1 : in std_logic; -- Clock
|
131 |
|
|
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP
|
132 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
133 |
|
|
-- The original data for that step. Since we are using pipelining
|
134 |
|
|
-- we have to grant that we will have the original FCS data
|
135 |
|
|
-- available.
|
136 |
|
|
output_wip : out std_logic_vector(31 downto 0);
|
137 |
|
|
-- The modified data -our "WIP"-
|
138 |
|
|
output_fcs : out std_logic_vector(31 downto 0));
|
139 |
|
|
-- The original data is kept untouched
|
140 |
|
|
end component;
|
141 |
|
|
|
142 |
|
|
component gf_phi2_register_9
|
143 |
|
|
port (
|
144 |
|
|
reset : in std_logic; -- #RESET
|
145 |
|
|
phi2 : in std_logic; -- Clock
|
146 |
|
|
input_wip : in std_logic_vector(31 downto 0); -- The incoming WIP
|
147 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
148 |
|
|
-- The original data for that step. Since we are using pipelining
|
149 |
|
|
-- we have to grant that we will have the original FCS data
|
150 |
|
|
-- available.
|
151 |
|
|
output_wip : out std_logic_vector(31 downto 0);
|
152 |
|
|
-- The modified data -our "WIP"-
|
153 |
|
|
output_fcs : out std_logic_vector(31 downto 0));
|
154 |
|
|
-- The original data is kept untouched
|
155 |
|
|
end component;
|
156 |
|
|
|
157 |
|
|
-- These components below are the best example of bad VHDL coding
|
158 |
|
|
|
159 |
|
|
component gf_xor_2x
|
160 |
|
|
port (
|
161 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
162 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
163 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
164 |
|
|
end component;
|
165 |
|
|
|
166 |
|
|
component gf_xor_3x
|
167 |
|
|
port (
|
168 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
169 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
170 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
171 |
|
|
end component;
|
172 |
|
|
|
173 |
|
|
component gf_xor_4x
|
174 |
|
|
port (
|
175 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
176 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
177 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
178 |
|
|
end component;
|
179 |
|
|
|
180 |
|
|
component gf_xor_5x
|
181 |
|
|
port (
|
182 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
183 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
184 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
185 |
|
|
end component;
|
186 |
|
|
|
187 |
|
|
component gf_xor_6x
|
188 |
|
|
port (
|
189 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
190 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
191 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
192 |
|
|
end component;
|
193 |
|
|
|
194 |
|
|
component gf_xor_7x
|
195 |
|
|
port (
|
196 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
197 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
198 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
199 |
|
|
end component;
|
200 |
|
|
|
201 |
|
|
component gf_xor_8x
|
202 |
|
|
port (
|
203 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
204 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
205 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
206 |
|
|
end component;
|
207 |
|
|
|
208 |
|
|
component gf_xor_9x
|
209 |
|
|
port (
|
210 |
|
|
input_wip : in std_logic_vector(31 downto 0);
|
211 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
212 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
213 |
|
|
end component;
|
214 |
|
|
|
215 |
|
|
-- component gf_xor_10x
|
216 |
|
|
-- port (
|
217 |
|
|
-- input_wip : in std_logic_vector(31 downto 0);
|
218 |
|
|
-- input_fcs : in std_logic_vector(31 downto 0);
|
219 |
|
|
-- output_wip : out std_logic_vector(31 downto 0));
|
220 |
|
|
-- end component;
|
221 |
|
|
|
222 |
|
|
|
223 |
|
|
-- The XOR right after the input is smaller
|
224 |
|
|
component gf_xor_input
|
225 |
|
|
port (
|
226 |
|
|
input_fcs : in std_logic_vector(31 downto 0);
|
227 |
|
|
output_wip : out std_logic_vector(31 downto 0));
|
228 |
|
|
end component;
|
229 |
|
|
|
230 |
|
|
-- We now declare all the signals needed to comunicate the
|
231 |
|
|
-- different components
|
232 |
|
|
signal btw2_3 : std_logic_vector(31 downto 0); -- Original data
|
233 |
|
|
signal btw3_4 : std_logic_vector(31 downto 0); -- Original data
|
234 |
|
|
signal btw4_5 : std_logic_vector(31 downto 0); -- Original data
|
235 |
|
|
signal btw5_6 : std_logic_vector(31 downto 0); -- Original data
|
236 |
|
|
signal btw6_7 : std_logic_vector(31 downto 0); -- Original data
|
237 |
|
|
signal btw7_8 : std_logic_vector(31 downto 0); -- Original data
|
238 |
|
|
signal btw8_9 : std_logic_vector(31 downto 0); -- Original data
|
239 |
|
|
signal btw9_10 : std_logic_vector(31 downto 0); -- Original data
|
240 |
|
|
-- signal btw10_11 : std_logic_vector(31 downto 0); -- Original data
|
241 |
|
|
|
242 |
|
|
signal btw1x_2 : std_logic_vector(31 downto 0); -- WIP data
|
243 |
|
|
signal btw2_2x : std_logic_vector(31 downto 0); -- WIP data
|
244 |
|
|
signal btw2x_3 : std_logic_vector(31 downto 0); -- WIP data
|
245 |
|
|
signal btw3_3x : std_logic_vector(31 downto 0); -- WIP data
|
246 |
|
|
signal btw3x_4 : std_logic_vector(31 downto 0); -- WIP data
|
247 |
|
|
signal btw4_4x : std_logic_vector(31 downto 0); -- WIP data
|
248 |
|
|
signal btw4x_5 : std_logic_vector(31 downto 0); -- WIP data
|
249 |
|
|
signal btw5_5x : std_logic_vector(31 downto 0); -- WIP data
|
250 |
|
|
signal btw5x_6 : std_logic_vector(31 downto 0); -- WIP data
|
251 |
|
|
signal btw6_6x : std_logic_vector(31 downto 0); -- WIP data
|
252 |
|
|
signal btw6x_7 : std_logic_vector(31 downto 0); -- WIP data
|
253 |
|
|
signal btw7_7x : std_logic_vector(31 downto 0); -- WIP data
|
254 |
|
|
signal btw7x_8 : std_logic_vector(31 downto 0); -- WIP data
|
255 |
|
|
signal btw8_8x : std_logic_vector(31 downto 0); -- WIP data
|
256 |
|
|
signal btw8x_9 : std_logic_vector(31 downto 0); -- WIP data
|
257 |
|
|
signal btw9_9x : std_logic_vector(31 downto 0); -- WIP data
|
258 |
|
|
signal btw9x_10 : std_logic_vector(31 downto 0); -- WIP data
|
259 |
|
|
-- signal btw10_10x : std_logic_vector(31 downto 0); -- WIP data
|
260 |
|
|
-- signal btw10x_11 : std_logic_vector(31 downto 0); -- WIP data
|
261 |
|
|
-- signal btw11_11x : std_logic_vector(31 downto 0); -- WIP data
|
262 |
|
|
-- signal btw11_12 : std_logic_vector(31 downto 0); -- Not connected
|
263 |
|
|
|
264 |
|
|
begin -- structural
|
265 |
|
|
|
266 |
|
|
GF1x : gf_xor_input port map (input_fcs => input, output_wip => btw1x_2);
|
267 |
|
|
GF2 : gf_phi1_register_2 port map (reset => reset, phi1 => phi1,
|
268 |
|
|
input_wip => btw1x_2, input_fcs => input,
|
269 |
|
|
output_wip => btw2_2x, output_fcs => btw2_3);
|
270 |
|
|
|
271 |
|
|
GF2x : gf_xor_2x port map (input_wip => btw2_2x, input_fcs => btw2_3,
|
272 |
|
|
output_wip => btw2x_3);
|
273 |
|
|
GF3 : gf_phi2_register_3 port map (reset => reset, phi2 => phi2,
|
274 |
|
|
input_wip => btw2x_3, input_fcs => btw2_3,
|
275 |
|
|
output_wip => btw3_3x, output_fcs => btw3_4);
|
276 |
|
|
|
277 |
|
|
GF3x : gf_xor_3x port map (input_wip => btw3_3x, input_fcs => btw3_4,
|
278 |
|
|
output_wip => btw3x_4);
|
279 |
|
|
GF4 : gf_phi1_register_4 port map (reset => reset, phi1 => phi1,
|
280 |
|
|
input_wip => btw3x_4, input_fcs => btw3_4,
|
281 |
|
|
output_wip => btw4_4x, output_fcs => btw4_5);
|
282 |
|
|
|
283 |
|
|
GF4x : gf_xor_4x port map (input_wip => btw4_4x, input_fcs => btw4_5,
|
284 |
|
|
output_wip => btw4x_5);
|
285 |
|
|
GF5 : gf_phi2_register_5 port map (reset => reset, phi2 => phi2,
|
286 |
|
|
input_wip => btw4x_5, input_fcs => btw4_5,
|
287 |
|
|
output_wip => btw5_5x, output_fcs => btw5_6);
|
288 |
|
|
|
289 |
|
|
GF5x : gf_xor_5x port map (input_wip => btw5_5x, input_fcs => btw5_6,
|
290 |
|
|
output_wip => btw5x_6);
|
291 |
|
|
GF6 : gf_phi1_register_6 port map (reset => reset, phi1 => phi1,
|
292 |
|
|
input_wip => btw5x_6, input_fcs => btw5_6,
|
293 |
|
|
output_wip => btw6_6x, output_fcs => btw6_7);
|
294 |
|
|
|
295 |
|
|
GF6x : gf_xor_6x port map (input_wip => btw6_6x, input_fcs => btw6_7,
|
296 |
|
|
output_wip => btw6x_7);
|
297 |
|
|
GF7 : gf_phi2_register_7 port map (reset => reset, phi2 => phi2,
|
298 |
|
|
input_wip => btw6x_7, input_fcs => btw6_7,
|
299 |
|
|
output_wip => btw7_7x, output_fcs => btw7_8);
|
300 |
|
|
|
301 |
|
|
GF7x : gf_xor_7x port map (input_wip => btw7_7x, input_fcs => btw7_8,
|
302 |
|
|
output_wip => btw7x_8);
|
303 |
|
|
GF8 : gf_phi1_register_8 port map (reset => reset, phi1 => phi1,
|
304 |
|
|
input_wip => btw7x_8, input_fcs => btw7_8,
|
305 |
|
|
output_wip => btw8_8x, output_fcs => btw8_9);
|
306 |
|
|
|
307 |
|
|
GF8x : gf_xor_8x port map (input_wip => btw8_8x, input_fcs => btw8_9,
|
308 |
|
|
output_wip => btw8x_9);
|
309 |
|
|
GF9 : gf_phi2_register_9 port map (reset => reset, phi2 => phi2,
|
310 |
|
|
input_wip => btw8x_9, input_fcs => btw8_9,
|
311 |
|
|
output_wip => btw9_9x, output_fcs => btw9_10);
|
312 |
|
|
|
313 |
|
|
GF9x : gf_xor_9x port map (input_wip => btw9_9x, input_fcs => btw9_10,
|
314 |
|
|
output_wip => btw9x_10);
|
315 |
|
|
GF10 : gf_phi1_register_out port map (reset => reset, phi1 => phi1,
|
316 |
|
|
input_wip => btw9x_10,
|
317 |
|
|
output_final(15 downto 0) => output_xor,
|
318 |
|
|
output_final(31 downto 16) => output_fcs);
|
319 |
|
|
|
320 |
|
|
-- GF10x : gf_xor_10x port map (input_wip => btw10_10x, input_fcs => btw10_11,
|
321 |
|
|
-- output_wip => btw10x_11);
|
322 |
|
|
-- GF11 : gf_phi2_register port map (reset => reset, phi2 => phi2,
|
323 |
|
|
-- input_wip => btw10x_11, input_fcs => btw10_11,
|
324 |
|
|
-- output_wip => btw11_11x, output_fcs => btw11_12);
|
325 |
|
|
|
326 |
|
|
-- The last register is smaller since it just have to plug its output into
|
327 |
|
|
-- the FCS and the final big XOR
|
328 |
|
|
|
329 |
|
|
-- GF12 : gf_phi1_register_out port map (reset => reset, phi1 => phi1,
|
330 |
|
|
-- input_wip => btw11_11x,
|
331 |
|
|
-- output_final(31 downto 16) => output_xor,
|
332 |
|
|
-- output_final(15 downto 0) => output_fcs);
|
333 |
|
|
|
334 |
|
|
end structural;
|
335 |
|
|
|
336 |
|
|
|
337 |
|
|
configuration cfg_gf_multiplier of gf_multiplier is
|
338 |
|
|
|
339 |
|
|
for structural
|
340 |
|
|
for GF1x : gf_xor_input use entity work.gf_xor_input(behavior); end for;
|
341 |
|
|
for GF2 : gf_phi1_register_2
|
342 |
|
|
use entity work.gf_phi1_register_2(behavior); end for;
|
343 |
|
|
for GF2x : gf_xor_2x
|
344 |
|
|
use entity work.gf_xor_2x(behavior); end for;
|
345 |
|
|
for GF3 : gf_phi2_register_3
|
346 |
|
|
use entity work.gf_phi2_register_3(behavior); end for;
|
347 |
|
|
for GF3x : gf_xor_3x
|
348 |
|
|
use entity work.gf_xor_3x(behavior); end for;
|
349 |
|
|
for GF4 : gf_phi1_register_4
|
350 |
|
|
use entity work.gf_phi1_register_4(behavior); end for;
|
351 |
|
|
for GF4x : gf_xor_4x
|
352 |
|
|
use entity work.gf_xor_4x(behavior); end for;
|
353 |
|
|
for GF5 : gf_phi2_register_5
|
354 |
|
|
use entity work.gf_phi2_register_5(behavior); end for;
|
355 |
|
|
for GF5x : gf_xor_5x
|
356 |
|
|
use entity work.gf_xor_5x(behavior); end for;
|
357 |
|
|
for GF6 : gf_phi1_register_6
|
358 |
|
|
use entity work.gf_phi1_register_6(behavior); end for;
|
359 |
|
|
for GF6x : gf_xor_6x
|
360 |
|
|
use entity work.gf_xor_6x(behavior); end for;
|
361 |
|
|
for GF7 : gf_phi2_register_7
|
362 |
|
|
use entity work.gf_phi2_register_7(behavior); end for;
|
363 |
|
|
for GF7x : gf_xor_7x
|
364 |
|
|
use entity work.gf_xor_7x(behavior); end for;
|
365 |
|
|
for GF8 : gf_phi1_register_8
|
366 |
|
|
use entity work.gf_phi1_register_8(behavior); end for;
|
367 |
|
|
for GF8x : gf_xor_8x
|
368 |
|
|
use entity work.gf_xor_8x(behavior); end for;
|
369 |
|
|
for GF9 : gf_phi2_register_9
|
370 |
|
|
use entity work.gf_phi2_register_9(behavior); end for;
|
371 |
|
|
for GF9x : gf_xor_9x
|
372 |
|
|
use entity work.gf_xor_9x(behavior); end for;
|
373 |
|
|
for GF10 : gf_phi1_register_out
|
374 |
|
|
use entity work.gf_phi1_register_out(behavior); end for;
|
375 |
|
|
-- for GF10x : gf_xor_10x
|
376 |
|
|
-- use entity work.gf_xor_10x(behavior); end for;
|
377 |
|
|
-- for GF11 : gf_phi2_register
|
378 |
|
|
-- use entity work.gf_phi2_register(behavior); end for;
|
379 |
|
|
-- for GF12 : gf_phi1_register_out
|
380 |
|
|
-- use entity work.gf_phi1_register_out(behavior); end for;
|
381 |
|
|
end for;
|
382 |
|
|
|
383 |
|
|
end cfg_gf_multiplier;
|
384 |
|
|
|