| 1 |
44 |
Agner |
/**************************** assem4.cpp ********************************
|
| 2 |
|
|
* Author: Agner Fog
|
| 3 |
|
|
* Date created: 2017-04-17
|
| 4 |
|
|
* Last modified: 2021-07-14
|
| 5 |
|
|
* Version: 1.11
|
| 6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
| 7 |
|
|
* Module: assem.cpp
|
| 8 |
|
|
* Description:
|
| 9 |
|
|
* Module for assembling ForwardCom .as files.
|
| 10 |
|
|
* This module contains:
|
| 11 |
|
|
* pass3(): Interpretation of code lines.
|
| 12 |
|
|
* Copyright 2017-2021 GNU General Public License http://www.gnu.org/licenses
|
| 13 |
|
|
******************************************************************************/
|
| 14 |
|
|
#include "stdafx.h"
|
| 15 |
|
|
|
| 16 |
|
|
|
| 17 |
|
|
// Interpret lines. Generate code and data
|
| 18 |
|
|
void CAssembler::pass3() {
|
| 19 |
|
|
uint16_t last_line_type = 0; // type of preceding line
|
| 20 |
|
|
makeFormatLists(); // make formatList3 and formatList4
|
| 21 |
|
|
code_size = cmd.codeSizeOption; // initialize options
|
| 22 |
|
|
data_size = cmd.dataSizeOption;
|
| 23 |
|
|
section = 0;
|
| 24 |
|
|
iLoop = iIf = iSwitch = 0; // index of current high level statements
|
| 25 |
|
|
|
| 26 |
|
|
// lines loop
|
| 27 |
|
|
for (linei = 1; linei < lines.numEntries()-1; linei++) {
|
| 28 |
|
|
tokenB = lines[linei].firstToken; // first token in line
|
| 29 |
|
|
tokenN = lines[linei].numTokens; // number of tokens in line
|
| 30 |
|
|
if (tokenN == 0 || lines[linei].type == LINE_ERROR || lines[linei].type == LINE_METADEF) continue;
|
| 31 |
|
|
lineError = false;
|
| 32 |
|
|
|
| 33 |
|
|
switch (lines[linei].type) {
|
| 34 |
|
|
case LINE_DATADEF:
|
| 35 |
|
|
if (last_line_type == LINE_CODEDEF && (lines[linei].sectionType & SHF_EXEC)) {
|
| 36 |
|
|
/* currently, the assembler cannot mix code and data because they are put in different buffers.
|
| 37 |
|
|
The only way to hard-code instructions is to put them into a separate section. */
|
| 38 |
|
|
errors.reportLine(ERR_MIX_DATA_AND_CODE); // data definition in code section
|
| 39 |
|
|
}
|
| 40 |
|
|
break;
|
| 41 |
|
|
case LINE_CODEDEF:
|
| 42 |
|
|
interpretCodeLine();
|
| 43 |
|
|
if (last_line_type == LINE_DATADEF && !(lines[linei].sectionType & SHF_EXEC)) {
|
| 44 |
|
|
errors.reportLine(ERR_MIX_DATA_AND_CODE); // code definition in data section
|
| 45 |
|
|
}
|
| 46 |
|
|
break;
|
| 47 |
|
|
case LINE_METADEF: case LINE_ERROR:
|
| 48 |
|
|
continue;
|
| 49 |
|
|
case LINE_FUNCTION:
|
| 50 |
|
|
interpretFunctionDirective();
|
| 51 |
|
|
break;
|
| 52 |
|
|
case LINE_SECTION:
|
| 53 |
|
|
interpretSectionDirective();
|
| 54 |
|
|
break;
|
| 55 |
|
|
case LINE_ENDDIR:
|
| 56 |
|
|
interpretEndDirective();
|
| 57 |
|
|
break;
|
| 58 |
|
|
case LINE_OPTIONS:
|
| 59 |
|
|
interpretOptionsLine();
|
| 60 |
|
|
break;
|
| 61 |
|
|
}
|
| 62 |
|
|
|
| 63 |
|
|
last_line_type = lines[linei].type;
|
| 64 |
|
|
}
|
| 65 |
|
|
while (hllBlocks.numEntries()) {
|
| 66 |
|
|
// unfinished block
|
| 67 |
|
|
SBlock block = hllBlocks.pop();
|
| 68 |
|
|
errors.report(tokens[block.startBracket].pos, tokens[block.startBracket].stringLength, ERR_BRACKET_BEGIN);
|
| 69 |
|
|
}
|
| 70 |
|
|
}
|
| 71 |
|
|
|
| 72 |
|
|
// extract subsets of formatList (in disasm1.cpp) for multiformat instructions and jump instructions
|
| 73 |
|
|
void CAssembler::makeFormatLists() {
|
| 74 |
|
|
uint32_t i;
|
| 75 |
|
|
for (i = 0; i < formatListSize; i++) {
|
| 76 |
|
|
if (formatList[i].category == 3) formatList3.push(formatList[i]);
|
| 77 |
|
|
if (formatList[i].category == 4) formatList4.push(formatList[i]);
|
| 78 |
|
|
}
|
| 79 |
|
|
}
|
| 80 |
|
|
|
| 81 |
|
|
// Interpret a line defining code. This covers both assembly style and high level style code
|
| 82 |
|
|
void CAssembler::interpretCodeLine() {
|
| 83 |
|
|
uint32_t tok; // token index
|
| 84 |
|
|
dataType = 0; // data type for current instruction
|
| 85 |
|
|
uint32_t nReg = 0; // number of register source operands
|
| 86 |
|
|
uint32_t state = 0; /* state during interpretation of line. example:
|
| 87 |
|
|
L1: int32 r1 = compare(r2, 5), option = 2 // assembly style
|
| 88 |
|
|
L1: int32 r1 = r2 < 5 // same in high level style
|
| 89 |
|
|
0: begin
|
| 90 |
|
|
1: after label
|
| 91 |
|
|
2: after label:
|
| 92 |
|
|
3: after type
|
| 93 |
|
|
4: after destination
|
| 94 |
|
|
5: after destination = (expecting expression or instruction)
|
| 95 |
|
|
6: after expression or instruction()
|
| 96 |
|
|
7: after instruction
|
| 97 |
|
|
8: after instruction(
|
| 98 |
|
|
9: after operand
|
| 99 |
|
|
10: after instruction(),
|
| 100 |
|
|
11: after jump instruction
|
| 101 |
|
|
*/
|
| 102 |
|
|
SExpression expr; // evaluated expression
|
| 103 |
|
|
SCode code; // current instruction code
|
| 104 |
|
|
zeroAllMembers(code); // reset code structure
|
| 105 |
|
|
|
| 106 |
|
|
if (section == 0) {
|
| 107 |
|
|
errors.reportLine(ERR_CODE_WO_SECTION);
|
| 108 |
|
|
}
|
| 109 |
|
|
|
| 110 |
|
|
// high level instructions with nothing before can be caught already here
|
| 111 |
|
|
if (tokens[tokenB].type == TOK_HLL) {
|
| 112 |
|
|
interpretHighLevelStatement(); // if, else, switch, for, do, while (){} statements
|
| 113 |
|
|
return;
|
| 114 |
|
|
}
|
| 115 |
|
|
if (tokens[tokenB].type == TOK_OPR && tokens[tokenB].id == '}') {
|
| 116 |
|
|
interpretEndBracket(); // end of {} block
|
| 117 |
|
|
return;
|
| 118 |
|
|
}
|
| 119 |
|
|
|
| 120 |
|
|
// interpret line by state machine looping through tokens
|
| 121 |
|
|
for (tok = tokenB; tok < tokenB + tokenN; tok++) {
|
| 122 |
|
|
SToken token = tokens[tok];
|
| 123 |
|
|
if (token.type == TOK_XPR && expressions[token.value.w].etype & XPR_REG) {
|
| 124 |
|
|
// this is an alias for a register. Translate to register
|
| 125 |
|
|
token.type = TOK_REG;
|
| 126 |
|
|
token.id = expressions[token.value.w].reg1;
|
| 127 |
|
|
}
|
| 128 |
|
|
|
| 129 |
|
|
if (lineError) break;
|
| 130 |
|
|
code.section = section;
|
| 131 |
|
|
|
| 132 |
|
|
if (state == 5) { // after '='
|
| 133 |
|
|
if (token.type == TOK_INS) { // instruction
|
| 134 |
|
|
if (code.instruction) errors.report(token); // instruction after += etc.
|
| 135 |
|
|
code.instruction = token.id;
|
| 136 |
|
|
state = 7;
|
| 137 |
|
|
}
|
| 138 |
|
|
else { // expression after equal sign
|
| 139 |
|
|
// interpret expression representing operands and operator
|
| 140 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
| 141 |
|
|
if (lineError) return;
|
| 142 |
|
|
if (code.instruction) {
|
| 143 |
|
|
// += operator etc. already encountered. combine the operands
|
| 144 |
|
|
uint32_t op = code.instruction; code.instruction = 0;
|
| 145 |
|
|
code.reg1 = code.dest; // first source operand is same as destination
|
| 146 |
|
|
code.etype |= XPR_REG1; code.tokens = 0;
|
| 147 |
|
|
expr = op2(op, code, expr); // operation '+' for '+=', etc.
|
| 148 |
|
|
code.instruction = 0; code.reg1 = 0;
|
| 149 |
|
|
}
|
| 150 |
|
|
if (code.etype & XPR_ERROR) {
|
| 151 |
|
|
errors.reportLine(code.value.w); // report error
|
| 152 |
|
|
}
|
| 153 |
|
|
// ordinary '=' goes here
|
| 154 |
|
|
if (lineError) return;
|
| 155 |
|
|
insertAll(code, expr);
|
| 156 |
|
|
tok += expr.tokens - 1;
|
| 157 |
|
|
state = 6;
|
| 158 |
|
|
}
|
| 159 |
|
|
}
|
| 160 |
|
|
else if (state == 11) {
|
| 161 |
|
|
// interpret jump target
|
| 162 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
| 163 |
|
|
state = 6;
|
| 164 |
|
|
if (expr.etype & XPR_REG) {
|
| 165 |
|
|
code = code | expr;
|
| 166 |
|
|
tok += expr.tokens - 1;
|
| 167 |
|
|
}
|
| 168 |
|
|
else if (expr.etype & (XPR_INT | XPR_SYM1)) {
|
| 169 |
|
|
code.sym5 = expr.sym3 ? expr.sym3 : expr.sym1;
|
| 170 |
|
|
code.offset_jump = expr.value.w;
|
| 171 |
|
|
if (expr.value.w & 3) errors.report(token.pos, token.stringLength, ERR_JUMP_TARGET_MISALIGN);
|
| 172 |
|
|
tok += expr.tokens - 1;
|
| 173 |
|
|
code.etype |= XPR_JUMPOS | (expr.etype & ~XPR_IMMEDIATE);
|
| 174 |
|
|
}
|
| 175 |
|
|
else {
|
| 176 |
|
|
errors.report(token.pos, token.stringLength, ERR_EXPECT_JUMP_TARGET);
|
| 177 |
|
|
break;
|
| 178 |
|
|
}
|
| 179 |
|
|
}
|
| 180 |
|
|
else if (state == 8 && token.type != TOK_OPT && token.type != TOK_REG) {
|
| 181 |
|
|
// expression in parameter list
|
| 182 |
|
|
if (token.type == TOK_OPR && token.id == ')') {
|
| 183 |
|
|
state = 6; break; // end of parameter list
|
| 184 |
|
|
}
|
| 185 |
|
|
// interpret any expression, except register or option
|
| 186 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
| 187 |
|
|
tok += expr.tokens - 1;
|
| 188 |
|
|
if (code.etype & expr.etype & XPR_INT) {
|
| 189 |
|
|
// multiple immediate integer constants
|
| 190 |
|
|
if (code.etype & XPR_INT2) {
|
| 191 |
|
|
// three integer operands
|
| 192 |
|
|
if (code.etype & XPR_OPTIONS) errors.report(token.pos, token.stringLength, ERR_TOO_MANY_OPERANDS);
|
| 193 |
|
|
code.optionbits = uint8_t(expr.value.w);
|
| 194 |
|
|
code.etype |= XPR_OPTIONS;
|
| 195 |
|
|
expr.value.u = 0;
|
| 196 |
|
|
}
|
| 197 |
|
|
else {
|
| 198 |
|
|
// two integer operands
|
| 199 |
|
|
if (code.value.u >> 32 != 0) errors.report(token.pos, token.stringLength, ERR_TOO_MANY_OPERANDS);
|
| 200 |
|
|
code.value.u = code.value.w | expr.value.u << 32;
|
| 201 |
|
|
code.etype |= XPR_INT2;
|
| 202 |
|
|
expr.value.u = 0;
|
| 203 |
|
|
}
|
| 204 |
|
|
}
|
| 205 |
|
|
else if (expr.etype & XPR_MEM) {
|
| 206 |
|
|
if (expr.etype & XPR_OFFSET) code.offset_mem += expr.offset_mem;
|
| 207 |
|
|
//else code.offset += expr.value.i;
|
| 208 |
|
|
if (expr.etype & XPR_IMMEDIATE) { // both memory and immediate operands
|
| 209 |
|
|
code.value.i = expr.value.i;
|
| 210 |
|
|
}
|
| 211 |
|
|
}
|
| 212 |
|
|
else if (expr.etype & XPR_IMMEDIATE) {
|
| 213 |
|
|
code.value.i = expr.value.i;
|
| 214 |
|
|
}
|
| 215 |
|
|
expr.value.i = 0;
|
| 216 |
|
|
code = code | expr;
|
| 217 |
|
|
state = 9;
|
| 218 |
|
|
}
|
| 219 |
|
|
else {
|
| 220 |
|
|
switch (token.type) {
|
| 221 |
|
|
case TOK_LAB: case TOK_SYM:
|
| 222 |
|
|
if (state == 0) {
|
| 223 |
|
|
//code.label = token.value.w;
|
| 224 |
|
|
code.label = token.id;
|
| 225 |
|
|
if (code.label) {
|
| 226 |
|
|
int32_t symi = findSymbol(code.label);
|
| 227 |
|
|
if (symi > 0) symbols[symi].st_section = section;
|
| 228 |
|
|
}
|
| 229 |
|
|
state = 1;
|
| 230 |
|
|
}
|
| 231 |
|
|
else goto ST_ERROR;
|
| 232 |
|
|
break;
|
| 233 |
|
|
case TOK_OPR:
|
| 234 |
|
|
if (token.id == ':' && state == 1) {
|
| 235 |
|
|
state = 2;
|
| 236 |
|
|
}
|
| 237 |
|
|
else if (token.id == '+' && state == 3) {
|
| 238 |
|
|
code.dtype |= TYP_PLUS;
|
| 239 |
|
|
}
|
| 240 |
|
|
else if (token.priority == 15 && state == 4) {
|
| 241 |
|
|
// assignment operator
|
| 242 |
|
|
state = 5;
|
| 243 |
|
|
if (token.id & EQ) { // combined operator and assignment: += -= *= etc.
|
| 244 |
|
|
code.reg1 = code.dest;
|
| 245 |
|
|
code.etype |= XPR_REG | XPR_REG1;
|
| 246 |
|
|
code.instruction = token.id & ~EQ; // temporarily store operator in .instruction
|
| 247 |
|
|
}
|
| 248 |
|
|
else if (token.id != '=') errors.report(token);
|
| 249 |
|
|
}
|
| 250 |
|
|
else if (token.id == '=' && state == 11) {
|
| 251 |
|
|
state = 12;
|
| 252 |
|
|
}
|
| 253 |
|
|
else if (token.id == ',' && state == 6) {
|
| 254 |
|
|
state = 10;
|
| 255 |
|
|
}
|
| 256 |
|
|
else if (token.id == ',' && state == 9) {
|
| 257 |
|
|
state = 8;
|
| 258 |
|
|
}
|
| 259 |
|
|
else if (token.id == '(' && state == 7) {
|
| 260 |
|
|
state = 8;
|
| 261 |
|
|
}
|
| 262 |
|
|
else if (token.id == ')' && (state == 8 || state == 9)) {
|
| 263 |
|
|
state = 6;
|
| 264 |
|
|
}
|
| 265 |
|
|
else if (token.id == '[' && (state == 0 || state == 2 || state == 3)) {
|
| 266 |
|
|
// interpret memory destination
|
| 267 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
| 268 |
|
|
tok += expr.tokens - 1;
|
| 269 |
|
|
insertMem(code, expr);
|
| 270 |
|
|
code.dest = 2;
|
| 271 |
|
|
state = 4;
|
| 272 |
|
|
}
|
| 273 |
|
|
else if (token.id == '[' && state == 7 && code.instruction == II_ADDRESS) {
|
| 274 |
|
|
// address []. expect memory operand
|
| 275 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
| 276 |
|
|
tok += expr.tokens - 1;
|
| 277 |
|
|
insertMem(code, expr);
|
| 278 |
|
|
state = 6;
|
| 279 |
|
|
}
|
| 280 |
|
|
else if ((token.id == '+' + D2 || token.id == '-' + D2) && (state == 3 || state == 4)) {
|
| 281 |
|
|
// ++ and -- operators
|
| 282 |
|
|
code.instruction = (token.id == '+' + D2) ? II_ADD : II_SUB;
|
| 283 |
|
|
// operand is 1, integer or float
|
| 284 |
|
|
if (dataType & TYP_FLOAT) {
|
| 285 |
|
|
code.value.d = 1.0;
|
| 286 |
|
|
code.etype |= XPR_FLT;
|
| 287 |
|
|
}
|
| 288 |
|
|
else {
|
| 289 |
|
|
code.value.i = 1;
|
| 290 |
|
|
code.etype |= XPR_INT;
|
| 291 |
|
|
}
|
| 292 |
|
|
if (state == 3) { // prefix operator. expect register
|
| 293 |
|
|
tok++;
|
| 294 |
|
|
if (token.type != TOK_REG) errors.report(token);
|
| 295 |
|
|
code.dest = token.id;
|
| 296 |
|
|
}
|
| 297 |
|
|
code.reg1 = code.dest;
|
| 298 |
|
|
code.etype |= XPR_REG1;
|
| 299 |
|
|
state = 6;
|
| 300 |
|
|
}
|
| 301 |
|
|
else if (token.id == ';') {} // ignore terminating ';'
|
| 302 |
|
|
else goto ST_ERROR;
|
| 303 |
|
|
break;
|
| 304 |
|
|
case TOK_TYP:
|
| 305 |
|
|
if (state == 0 || state == 2) {
|
| 306 |
|
|
dataType = code.dtype = token.id;
|
| 307 |
|
|
state = 3;
|
| 308 |
|
|
}
|
| 309 |
|
|
else goto ST_ERROR;
|
| 310 |
|
|
break;
|
| 311 |
|
|
case TOK_REG:
|
| 312 |
|
|
if (state == 0 || state == 2 || state == 3) {
|
| 313 |
|
|
code.dest = uint8_t(token.id);
|
| 314 |
|
|
state = 4;
|
| 315 |
|
|
}
|
| 316 |
|
|
else if (state == 8) {
|
| 317 |
|
|
if (nReg < 3) {
|
| 318 |
|
|
(&code.reg1)[nReg] = (uint8_t)token.id; // insert register in expression
|
| 319 |
|
|
code.etype |= XPR_REG1 << nReg++;
|
| 320 |
|
|
if ((code.etype & (XPR_INT | XPR_FLT | XPR_MEM)) && code.dest != 2) errors.report(token.pos, token.stringLength, ERR_OPERANDS_WRONG_ORDER);
|
| 321 |
|
|
}
|
| 322 |
|
|
else errors.report(token.pos, token.stringLength, ERR_TOO_MANY_OPERANDS);
|
| 323 |
|
|
state = 9;
|
| 324 |
|
|
}
|
| 325 |
|
|
else goto ST_ERROR;
|
| 326 |
|
|
break;
|
| 327 |
|
|
case TOK_XPR:
|
| 328 |
|
|
if (token.value.u >= expressions.numEntries()) goto ST_ERROR; // expression not found
|
| 329 |
|
|
if (expressions[token.value.w].etype & XPR_MEM) { // this is an alias for a memory operand
|
| 330 |
|
|
insertMem(code, expressions[token.value.w]);
|
| 331 |
|
|
code.dest = 2;
|
| 332 |
|
|
state = 4;
|
| 333 |
|
|
}
|
| 334 |
|
|
else goto ST_ERROR;
|
| 335 |
|
|
break;
|
| 336 |
|
|
case TOK_INS:
|
| 337 |
|
|
if (state == 0 || state == 2 || state == 3) {
|
| 338 |
|
|
// interpret instruction name
|
| 339 |
|
|
code.instruction = token.id;
|
| 340 |
|
|
state = 7; // expect parenthesis and parameters
|
| 341 |
|
|
if (code.instruction & II_JUMP_INSTR) {
|
| 342 |
|
|
// Jump or call instruction. The next may be a jump target, a register or a memory operand
|
| 343 |
|
|
state = 11; // expect jump target
|
| 344 |
|
|
// Check if there is a memory operand
|
| 345 |
|
|
for (uint32_t tok2 = tok+1; tok2 < tokenB + tokenN; tok2++) {
|
| 346 |
|
|
if (tokens[tok2].type == TOK_OPR && tokens[tok2].id == '[') {
|
| 347 |
|
|
// a jump instruction with memory operand is treated as a normal instruction
|
| 348 |
|
|
state = 7; break;
|
| 349 |
|
|
}
|
| 350 |
|
|
}
|
| 351 |
|
|
}
|
| 352 |
|
|
}
|
| 353 |
|
|
else if ((state == 6 || state == 10) && (token.id & II_JUMP_INSTR)) {
|
| 354 |
|
|
// second half of jump instruction
|
| 355 |
|
|
code.instruction |= token.id; // combine two partial instruction names
|
| 356 |
|
|
state = 11; // expect jump target
|
| 357 |
|
|
}
|
| 358 |
|
|
else goto ST_ERROR;
|
| 359 |
|
|
break;
|
| 360 |
|
|
case TOK_OPT: // option keyword
|
| 361 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 4); // this will read option = value
|
| 362 |
|
|
tok += expr.tokens - 1;
|
| 363 |
|
|
code.etype |= expr.etype;
|
| 364 |
|
|
if (expr.etype & XPR_LIMIT) {
|
| 365 |
|
|
code.value.i = expr.value.i;
|
| 366 |
|
|
if (expr.value.u >= 0x100000000U) { // limit too high
|
| 367 |
|
|
errors.report(tokens[tok - 1].pos, tokens[tok - 1].stringLength, ERR_LIMIT_TOO_HIGH);
|
| 368 |
|
|
}
|
| 369 |
|
|
}
|
| 370 |
|
|
if (expr.etype & (XPR_LENGTH | XPR_BROADC)) code.length = expr.length;
|
| 371 |
|
|
if (expr.etype & XPR_MASK) code.mask = expr.mask;
|
| 372 |
|
|
if (expr.etype & XPR_FALLBACK) code.fallback = expr.fallback;
|
| 373 |
|
|
if (expr.etype & XPR_OPTIONS) code.optionbits = expr.optionbits;
|
| 374 |
|
|
if (state == 8) state = 9;
|
| 375 |
|
|
else if (state == 6 || state == 10) state = 6;
|
| 376 |
|
|
else goto ST_ERROR;
|
| 377 |
|
|
break;
|
| 378 |
|
|
case TOK_ATT:
|
| 379 |
|
|
if (token.id == ATT_ALIGN && state == 0 && tokenN >= 2) {
|
| 380 |
|
|
// align n directive
|
| 381 |
|
|
code.instruction = II_ALIGN;
|
| 382 |
|
|
expr = expression(tok + 1, tokenB + tokenN - tok - 1, 0);
|
| 383 |
|
|
tok = tokenB + tokenN;
|
| 384 |
|
|
code.value.u = expr.value.u;
|
| 385 |
|
|
code.sizeUnknown = 0x80;
|
| 386 |
|
|
if ((code.value.u & (code.value.u - 1)) || code.value.u > MAX_ALIGN
|
| 387 |
|
|
|| (expr.etype & XPR_IMMEDIATE) != XPR_INT || (expr.etype & (XPR_REG|XPR_OPTION|XPR_MEM))) {
|
| 388 |
|
|
errors.reportLine(ERR_ALIGNMENT);
|
| 389 |
|
|
}
|
| 390 |
|
|
}
|
| 391 |
|
|
else goto ST_ERROR;
|
| 392 |
|
|
break;
|
| 393 |
|
|
case TOK_HLL: // high level directive: if, else, while, for, etc.
|
| 394 |
|
|
interpretHighLevelStatement();
|
| 395 |
|
|
return;
|
| 396 |
|
|
default:;
|
| 397 |
|
|
ST_ERROR:
|
| 398 |
|
|
errors.report(token);
|
| 399 |
|
|
break;
|
| 400 |
|
|
}
|
| 401 |
|
|
}
|
| 402 |
|
|
}
|
| 403 |
|
|
if (lineError) return;
|
| 404 |
|
|
// check if state machine ends with a finished instruction
|
| 405 |
|
|
if (state != 0 && state != 2 && state != 6 && state != 7) {
|
| 406 |
|
|
errors.report(tokens[tok-1].pos, tokens[tok-1].stringLength, ERR_UNFINISHED_INSTRUCTION);
|
| 407 |
|
|
return;
|
| 408 |
|
|
}
|
| 409 |
|
|
|
| 410 |
|
|
// move and store instruction has no operator yet
|
| 411 |
|
|
if (code.instruction == 0 && code.etype) {
|
| 412 |
|
|
if (code.dest == 2) code.instruction = II_STORE; // store to memory
|
| 413 |
|
|
else {
|
| 414 |
|
|
code.instruction = II_MOVE; // move constant to register
|
| 415 |
|
|
if (cmd.optiLevel && (code.etype & XPR_INT) && code.value.i >= 0 && !code.sym3 && (code.dtype & TYP_INT) && (code.dest & REG_R)) {
|
| 416 |
|
|
code.dtype |= TYP_PLUS; // optimize to larger type for positive constant because it is zero-extended anyway
|
| 417 |
|
|
}
|
| 418 |
|
|
}
|
| 419 |
|
|
}
|
| 420 |
|
|
|
| 421 |
|
|
if (code.instruction) { // a code record with no instruction represents a label only
|
| 422 |
|
|
// code record contains instruction
|
| 423 |
|
|
if (code.etype & XPR_JUMPOS) mergeJump(code);
|
| 424 |
|
|
|
| 425 |
|
|
checkCode1(code);
|
| 426 |
|
|
if (lineError) return;
|
| 427 |
|
|
|
| 428 |
|
|
// find an instruction variant that fits
|
| 429 |
|
|
fitCode(code);
|
| 430 |
|
|
if (lineError) return;
|
| 431 |
|
|
}
|
| 432 |
|
|
|
| 433 |
|
|
// save code structure
|
| 434 |
|
|
codeBuffer.push(code);
|
| 435 |
|
|
}
|
| 436 |
|
|
|
| 437 |
|
|
|
| 438 |
|
|
// Check how many bits are needed to contain immediate constant of an instruction.
|
| 439 |
|
|
// The result is returned as bit-flags in code.fitNumX.
|
| 440 |
|
|
// The return value is nonzero if the size cannot be resolved yet.
|
| 441 |
|
|
int CAssembler::fitConstant(SCode & code) {
|
| 442 |
|
|
int64_t value = 0; // the constant or address to fit
|
| 443 |
|
|
int64_t valueScaled; // value divided by scale factor
|
| 444 |
|
|
double dvalue = 0; // floating point value if needed
|
| 445 |
|
|
bool floatType = false; // a floating point type is needed
|
| 446 |
|
|
bool floatConst = false; // a floating point constant is provided
|
| 447 |
|
|
uint32_t fitNum = 0; // return value
|
| 448 |
|
|
uint32_t sym3 = 0, sym4 = 0; // symbols
|
| 449 |
|
|
int32_t isym3 = 0, isym4 = 0; // symbol index
|
| 450 |
|
|
int32_t uncertainty; // maximum deviance if the value is uncertain
|
| 451 |
|
|
int uncertain = 0; // return value
|
| 452 |
|
|
int symscale; // scaling of difference between symbols
|
| 453 |
|
|
|
| 454 |
|
|
if (code.instruction == II_ALIGN) return 0; // not an instruction
|
| 455 |
|
|
if (!(code.etype & (XPR_IMMEDIATE | XPR_SYM1))) return 0; // has no immediate
|
| 456 |
|
|
|
| 457 |
|
|
value = value0 = code.value.i; // immediate constant
|
| 458 |
|
|
floatType = uint8_t(code.dtype) >= uint8_t(TYP_FLOAT16); // floating point needed
|
| 459 |
|
|
floatConst = (code.etype & XPR_FLT) != 0; // floating point provided
|
| 460 |
|
|
if (floatType) {
|
| 461 |
|
|
if (floatConst) dvalue = code.value.d;
|
| 462 |
|
|
else {
|
| 463 |
|
|
// Note: We are converting the immediate constant to floating point here in order to find
|
| 464 |
|
|
// the optimal representation. We have not identified the instruction yet so we don't know
|
| 465 |
|
|
// if it actually needs a floating point constant or an integer. We have saved the original
|
| 466 |
|
|
// integer value in value0 so that we can undo the conversion in case an instruction with
|
| 467 |
|
|
// floating point type needs an integer operand.
|
| 468 |
|
|
dvalue = (double)value; // value as float
|
| 469 |
|
|
if (code.etype & XPR_INT) {
|
| 470 |
|
|
// convert integer constant to float
|
| 471 |
|
|
code.value.d = dvalue;
|
| 472 |
|
|
code.etype = (code.etype & ~XPR_IMMEDIATE) | XPR_FLT;
|
| 473 |
|
|
floatConst = true;
|
| 474 |
|
|
}
|
| 475 |
|
|
}
|
| 476 |
|
|
if ((code.etype & XPR_FLT) && uint8_t(code.dtype) == uint8_t(TYP_FLOAT32)) {
|
| 477 |
|
|
union { // check for overflow in single precision float
|
| 478 |
|
|
float f;
|
| 479 |
|
|
uint32_t i;
|
| 480 |
|
|
} u;
|
| 481 |
|
|
u.f = float(code.value.d);
|
| 482 |
|
|
if (isinf_f(u.i) && u.f > code.value.d) errors.reportLine(ERR_CONSTANT_TOO_LARGE);
|
| 483 |
|
|
}
|
| 484 |
|
|
if ((code.etype & XPR_FLT) && uint8_t(code.dtype) == uint8_t(TYP_FLOAT16)) {
|
| 485 |
|
|
// check for overflow in half precision float
|
| 486 |
|
|
if (isinf_h(double2half(code.value.d) && !isinf_d(code.value.i))) errors.reportLine(ERR_CONSTANT_TOO_LARGE);
|
| 487 |
|
|
}
|
| 488 |
|
|
}
|
| 489 |
|
|
|
| 490 |
|
|
// check for symbols
|
| 491 |
|
|
if (code.sym3) {
|
| 492 |
|
|
sym3 = code.sym3; sym4 = code.sym4;
|
| 493 |
|
|
symscale = code.symscale3;
|
| 494 |
|
|
isym3 = findSymbol(sym3);
|
| 495 |
|
|
if (isym3 < 1) {
|
| 496 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
| 497 |
|
|
}
|
| 498 |
|
|
}
|
| 499 |
|
|
|
| 500 |
|
|
if (code.sym3 && !code.sym4 && int32_t(symbols[isym3].st_section) == SECTION_LOCAL_VAR && symbols[isym3].st_type == STT_CONSTANT) {
|
| 501 |
|
|
// convert local symbol to constant
|
| 502 |
|
|
value = symbols[isym3].st_value;
|
| 503 |
|
|
code.value.i = value;
|
| 504 |
|
|
code.sym3 = 0;
|
| 505 |
|
|
if (cmd.optiLevel && value >= 0 && (code.dtype & TYP_INT) && (code.dest & REG_R)) {
|
| 506 |
|
|
code.dtype |= TYP_PLUS; // optimize to larger type for positive constant because it is zero-extended anyway
|
| 507 |
|
|
}
|
| 508 |
|
|
}
|
| 509 |
|
|
else if (sym3) {
|
| 510 |
|
|
// there is a symbol
|
| 511 |
|
|
if (symbols[isym3].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
| 512 |
|
|
uint32_t sym3section = symbols[isym3].st_section; // symbol section
|
| 513 |
|
|
// determine necessary relocation size if relocation needed
|
| 514 |
|
|
uint64_t relSize; // maximum size of relocated address
|
| 515 |
|
|
if (symbols[isym3].st_type == STT_CONSTANT) {
|
| 516 |
|
|
relSize = 0x10000000; // there is no command line option for the size of absolute symbols. assume 32 bit
|
| 517 |
|
|
code.etype |= XPR_INT;
|
| 518 |
|
|
}
|
| 519 |
|
|
else if (sym3section && symbols[isym3].st_type != STT_CONSTANT) { // local symbol with known section
|
| 520 |
|
|
relSize = (sectionHeaders[sym3section].sh_flags & (SHF_EXEC | SHF_IP)) ? code_size : data_size;
|
| 521 |
|
|
}
|
| 522 |
|
|
else { // external symbol with unknown section. look at symbol attributes
|
| 523 |
|
|
relSize = (symbols[isym3].st_other & (STV_EXEC | STV_IP)) ? code_size : data_size;
|
| 524 |
|
|
if (!(code.etype & (XPR_MEM | XPR_SYM2))) {
|
| 525 |
|
|
errors.reportLine(ERR_CONFLICT_TYPE); // must be memory operand
|
| 526 |
|
|
}
|
| 527 |
|
|
}
|
| 528 |
|
|
if (sym4) {
|
| 529 |
|
|
// value is (sym3 - sym4) / scale factor
|
| 530 |
|
|
isym4 = findSymbol(sym4);
|
| 531 |
|
|
if (isym4 <= 0) {
|
| 532 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
| 533 |
|
|
}
|
| 534 |
|
|
code.etype |= XPR_INT; // symbol difference gives an integer
|
| 535 |
|
|
if (symbols[isym3].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
| 536 |
|
|
if (symbols[isym3].st_section != symbols[isym4].st_section || symbols[isym3].st_bind != STB_LOCAL || symbols[isym4].st_bind != STB_LOCAL) {
|
| 537 |
|
|
// different sections or not local. relocation needed
|
| 538 |
|
|
fitNum = IFIT_RELOC;
|
| 539 |
|
|
if (code.symscale1 > 1) relSize /= code.symscale1; // value is scaled
|
| 540 |
|
|
if (relSize <= 1 << 7) fitNum |= IFIT_I8;
|
| 541 |
|
|
if (relSize <= 1 << 15) fitNum |= IFIT_I16;
|
| 542 |
|
|
if (relSize <= (uint64_t)1 << 31) fitNum |= IFIT_I32;
|
| 543 |
|
|
code.fitNum = fitNum;
|
| 544 |
|
|
code.sizeUnknown = uncertain;
|
| 545 |
|
|
return uncertain;
|
| 546 |
|
|
}
|
| 547 |
|
|
// difference between two local symbols
|
| 548 |
|
|
if (pass < 4) {
|
| 549 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32; // symbol values are not available yet
|
| 550 |
|
|
code.sizeUnknown = 1;
|
| 551 |
|
|
return 1;
|
| 552 |
|
|
}
|
| 553 |
|
|
value += int32_t(uint32_t(symbols[isym3].st_value) - uint32_t(symbols[isym4].st_value));
|
| 554 |
|
|
if (symscale < 1) symscale = 1;
|
| 555 |
|
|
valueScaled = value / symscale + code.offset_mem;
|
| 556 |
|
|
if (valueScaled >= -(1 << 7) && valueScaled < (1 << 7)) fitNum |= IFIT_I8;
|
| 557 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitNum |= IFIT_I16;
|
| 558 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitNum |= IFIT_I32;
|
| 559 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value
|
| 560 |
|
|
uncertainty = (symbols[isym3].st_value >> 32) - (symbols[isym4].st_value >> 32);
|
| 561 |
|
|
valueScaled = value / symscale + code.offset_mem + uncertainty;
|
| 562 |
|
|
if (symscale > 1) valueScaled /= symscale; // value is scaled
|
| 563 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitNum & IFIT_I8)) uncertain |= 1;
|
| 564 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitNum & IFIT_I16)) uncertain |= 1;
|
| 565 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitNum & IFIT_I32)) uncertain |= 1;
|
| 566 |
|
|
|
| 567 |
|
|
if (uncertain && (code.fitNum & IFIT_LARGE)) {
|
| 568 |
|
|
// choose the larger version if optimization process has convergence problems
|
| 569 |
|
|
fitNum = (fitNum & (fitNum - 1)) | IFIT_I32; // remove the lowest set bit
|
| 570 |
|
|
uncertain &= ~1;
|
| 571 |
|
|
}
|
| 572 |
|
|
code.fitNum = fitNum;
|
| 573 |
|
|
code.sizeUnknown = uncertain;
|
| 574 |
|
|
return uncertain;
|
| 575 |
|
|
}
|
| 576 |
|
|
// one symbol. must be constant
|
| 577 |
|
|
if (sym3section != 0 && symbols[isym3].st_type != STT_CONSTANT && !(code.etype & XPR_MEM)) {
|
| 578 |
|
|
errors.reportLine(ERR_MEM_WO_BRACKET);
|
| 579 |
|
|
return 1;
|
| 580 |
|
|
}
|
| 581 |
|
|
|
| 582 |
|
|
if (sym3section && symbols[isym3].st_type != STT_CONSTANT && (sectionHeaders[sym3section].sh_flags & SHF_IP)) {
|
| 583 |
|
|
// relative to instruction pointer
|
| 584 |
|
|
if (sym3section != code.section || symbols[isym3].st_bind != STB_LOCAL) {
|
| 585 |
|
|
// symbol is in different section or not local. relocation needed
|
| 586 |
|
|
fitNum = IFIT_RELOC;
|
| 587 |
|
|
if (relSize <= 1 << 7) fitNum |= IFIT_I8; // necessary relocation size
|
| 588 |
|
|
if (relSize <= 1 << 15) fitNum |= IFIT_I16;
|
| 589 |
|
|
if (relSize <= (uint64_t)1 << 31) fitNum |= IFIT_I32;
|
| 590 |
|
|
code.fitNum = fitNum;
|
| 591 |
|
|
code.sizeUnknown = uncertain;
|
| 592 |
|
|
return uncertain;
|
| 593 |
|
|
}
|
| 594 |
|
|
if (pass < 4) {
|
| 595 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32; // symbol values are not available yet
|
| 596 |
|
|
code.sizeUnknown = 1;
|
| 597 |
|
|
return 1;
|
| 598 |
|
|
}
|
| 599 |
|
|
// self-relative address to local symbol
|
| 600 |
|
|
value = int32_t((uint32_t)symbols[isym3].st_value - (code.address + code.size * 4));
|
| 601 |
|
|
valueScaled = value + code.offset_mem;
|
| 602 |
|
|
if (valueScaled >= -(1 << 7) && valueScaled < (1 << 7)) fitNum |= IFIT_I8;
|
| 603 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitNum |= IFIT_I16;
|
| 604 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitNum |= IFIT_I32;
|
| 605 |
|
|
code.fitNum = fitNum;
|
| 606 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value and sh_link
|
| 607 |
|
|
uncertainty = int32_t((symbols[isym3].st_value >> 32) - sectionHeaders[code.section].sh_link);
|
| 608 |
|
|
valueScaled += uncertainty;
|
| 609 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitNum & IFIT_I8)) uncertain |= 1;
|
| 610 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitNum & IFIT_I16)) uncertain |= 1;
|
| 611 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitNum & IFIT_I32)) uncertain |= 1;
|
| 612 |
|
|
if (uncertain && (code.fitNum & IFIT_LARGE)) {
|
| 613 |
|
|
// choose the larger version if optimization process has convergence problems
|
| 614 |
|
|
fitNum = (fitNum & (fitNum - 1)) | IFIT_I32; // remove the lowest set bit
|
| 615 |
|
|
uncertain &= ~1;
|
| 616 |
|
|
}
|
| 617 |
|
|
code.fitNum = fitNum;
|
| 618 |
|
|
code.sizeUnknown = uncertain;
|
| 619 |
|
|
return uncertain;
|
| 620 |
|
|
}
|
| 621 |
|
|
|
| 622 |
|
|
// symbol is relative to data pointer or external constant. relocation needed
|
| 623 |
|
|
fitNum = IFIT_RELOC;
|
| 624 |
|
|
if (relSize <= 1 << 7) fitNum |= IFIT_I8;
|
| 625 |
|
|
if (relSize <= 1 << 15) fitNum |= IFIT_I16;
|
| 626 |
|
|
if (relSize <= (uint64_t)1 << 31) fitNum |= IFIT_I32;
|
| 627 |
|
|
code.fitNum = fitNum;
|
| 628 |
|
|
code.sizeUnknown = uncertain;
|
| 629 |
|
|
return uncertain;
|
| 630 |
|
|
}
|
| 631 |
|
|
// no symbol. only a constant
|
| 632 |
|
|
if (floatType) {
|
| 633 |
|
|
// floating point constant
|
| 634 |
|
|
code.fitNum = fitFloat(dvalue);
|
| 635 |
|
|
if (uint8_t(code.dtype) < uint8_t(TYP_FLOAT64)) code.fitNum |= FFIT_32;
|
| 636 |
|
|
code.sizeUnknown = 0;
|
| 637 |
|
|
return 0;
|
| 638 |
|
|
}
|
| 639 |
|
|
// integer constant
|
| 640 |
|
|
uint32_t low; // index of lowest set bit
|
| 641 |
|
|
uint32_t high; // index of highest set bit
|
| 642 |
|
|
fitNum = 0;
|
| 643 |
|
|
int nbits;
|
| 644 |
|
|
if (value == int64_t(0x8000000000000000)) { // prevent overflow of -value
|
| 645 |
|
|
fitNum = 0;
|
| 646 |
|
|
}
|
| 647 |
|
|
else if (value >= 0) {
|
| 648 |
|
|
low = bitScanForward((uint64_t)value); // lowest set bit
|
| 649 |
|
|
high = bitScanReverse((uint64_t)value); // highest set bit
|
| 650 |
|
|
//if (value < 8) fitNum |= IFIT_I4;
|
| 651 |
|
|
//if (value == 8) fitNum |= IFIT_J4;
|
| 652 |
|
|
//if (value < 0x10) fitNum |= IFIT_U4;
|
| 653 |
|
|
if (value < 0x80) fitNum |= IFIT_I8 | IFIT_I8SHIFT;
|
| 654 |
|
|
if (value == 0x80) fitNum |= IFIT_J8;
|
| 655 |
|
|
if (value <= 0xFF) fitNum |= IFIT_U8;
|
| 656 |
|
|
if (value < 0x8000) fitNum |= IFIT_I16 | IFIT_I16SH16;
|
| 657 |
|
|
if (value == 0x8000) fitNum |= IFIT_J16;
|
| 658 |
|
|
if (value <= 0xFFFF) fitNum |= IFIT_U16;
|
| 659 |
|
|
if (high < 31) fitNum |= IFIT_I32;
|
| 660 |
|
|
if (high < 32) fitNum |= IFIT_U32;
|
| 661 |
|
|
if (value == 0x80000000U) fitNum |= IFIT_J32;
|
| 662 |
|
|
nbits = high - low + 1;
|
| 663 |
|
|
if (nbits < 8) fitNum |= IFIT_I8SHIFT;
|
| 664 |
|
|
if (nbits < 16) {
|
| 665 |
|
|
fitNum |= IFIT_I16SHIFT;
|
| 666 |
|
|
if (low >= 16 && high < 31) fitNum |= IFIT_I16SH16;
|
| 667 |
|
|
}
|
| 668 |
|
|
if (nbits < 32) fitNum |= IFIT_I32SHIFT;
|
| 669 |
|
|
if (low >= 32) fitNum |= IFIT_I32SH32;
|
| 670 |
|
|
}
|
| 671 |
|
|
else { // x < 0
|
| 672 |
|
|
value = -value;
|
| 673 |
|
|
low = bitScanForward(value); // lowest set bit
|
| 674 |
|
|
high = bitScanReverse(value); // highest set bit
|
| 675 |
|
|
//if (value <= 8) fitNum |= IFIT_I4;
|
| 676 |
|
|
if (value <= 0x80) fitNum |= IFIT_I8 | IFIT_I8SHIFT;
|
| 677 |
|
|
if (value <= 0x8000) fitNum |= IFIT_I16 |IFIT_I16SH16 ;
|
| 678 |
|
|
if (value <= 0x80000000U) fitNum |= IFIT_I32;
|
| 679 |
|
|
nbits = high - low + 1;
|
| 680 |
|
|
if (nbits < 8) fitNum |= IFIT_I8SHIFT;
|
| 681 |
|
|
if (nbits < 16) {
|
| 682 |
|
|
fitNum |= IFIT_I16SHIFT;
|
| 683 |
|
|
if (low >= 16 && high <= 31) fitNum |= IFIT_I16SH16;
|
| 684 |
|
|
}
|
| 685 |
|
|
if (nbits < 32) fitNum |= IFIT_I32SHIFT;
|
| 686 |
|
|
if (low >= 32) fitNum |= IFIT_I32SH32;
|
| 687 |
|
|
}
|
| 688 |
|
|
code.fitNum = fitNum;
|
| 689 |
|
|
code.sizeUnknown = 0;
|
| 690 |
|
|
return 0;
|
| 691 |
|
|
}
|
| 692 |
|
|
|
| 693 |
|
|
|
| 694 |
|
|
// Check how many bits are needed to a relative address or jump offset of an instruction.
|
| 695 |
|
|
// This result is returned as bit-flags in codefitAddr, code.fitJump, and code.fitNum
|
| 696 |
|
|
// The return value is nonzero if the size cannot be resolved yet.
|
| 697 |
|
|
int CAssembler::fitAddress(SCode & code) {
|
| 698 |
|
|
int64_t value = 0; // the constant or address to fit
|
| 699 |
|
|
int64_t valueScaled; // value divided by scale factor
|
| 700 |
|
|
uint32_t fitBits = 0; // bit flags indicating fit
|
| 701 |
|
|
int32_t isym1 = 0, isym2 = 0; // symbol index
|
| 702 |
|
|
int32_t uncertainty; // maximum deviance if the value is uncertain
|
| 703 |
|
|
int uncertain = 0; // return value
|
| 704 |
|
|
|
| 705 |
|
|
if (code.instruction == II_ALIGN) return 0; // not an instruction
|
| 706 |
|
|
if (!(code.etype & (XPR_OFFSET | XPR_JUMPOS | XPR_MEM))) return 0; // has no address
|
| 707 |
|
|
|
| 708 |
|
|
// check address of memory operand
|
| 709 |
|
|
if (code.sym1) {
|
| 710 |
|
|
// there is a memory operand symbol
|
| 711 |
|
|
code.etype |= XPR_OFFSET;
|
| 712 |
|
|
|
| 713 |
|
|
value = code.offset_mem; // memory offset
|
| 714 |
|
|
isym1 = findSymbol(code.sym1);
|
| 715 |
|
|
if (isym1 <= 0) {
|
| 716 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
| 717 |
|
|
}
|
| 718 |
|
|
if (symbols[isym1].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
| 719 |
|
|
uint32_t sym1section = symbols[isym1].st_section; // symbol section
|
| 720 |
|
|
if (sym1section < sectionHeaders.numEntries()) {
|
| 721 |
|
|
// determine necessary relocation size if relocation needed
|
| 722 |
|
|
uint64_t relSize; // maximum size of relocated address
|
| 723 |
|
|
if (symbols[isym1].st_type == STT_CONSTANT) {
|
| 724 |
|
|
// assume that constant offset is limited by dataSizeOption
|
| 725 |
|
|
relSize = data_size; // relocation size for code and constant data
|
| 726 |
|
|
}
|
| 727 |
|
|
else if (sym1section
|
| 728 |
|
|
&& !(sectionHeaders[sym1section].sh_flags & (SHF_WRITE | SHF_DATAP | SHF_THREADP))) {
|
| 729 |
|
|
relSize = code_size; // relocation size for code and constant data
|
| 730 |
|
|
}
|
| 731 |
|
|
else if (sym1section) { // local symbol with known section
|
| 732 |
|
|
relSize = (sectionHeaders[sym1section].sh_flags & (SHF_EXEC | SHF_IP)) ? code_size : data_size;
|
| 733 |
|
|
}
|
| 734 |
|
|
else { // external symbol with unknown section. look at symbol attributes
|
| 735 |
|
|
relSize = (symbols[isym1].st_other & (STV_EXEC | STV_IP)) ? code_size : data_size;
|
| 736 |
|
|
}
|
| 737 |
|
|
if (code.sym2) {
|
| 738 |
|
|
// value is (sym1 - sym2) / scale factor
|
| 739 |
|
|
isym2 = findSymbol(code.sym2);
|
| 740 |
|
|
if (isym2 <= 0) {
|
| 741 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
| 742 |
|
|
}
|
| 743 |
|
|
if (symbols[isym1].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
| 744 |
|
|
if (symbols[isym1].st_section != symbols[isym2].st_section || symbols[isym1].st_bind != STB_LOCAL || symbols[isym2].st_bind != STB_LOCAL) {
|
| 745 |
|
|
// different sections or not local. relocation needed
|
| 746 |
|
|
fitBits = IFIT_RELOC;
|
| 747 |
|
|
if (code.symscale1 > 1) relSize /= code.symscale1; // value is scaled
|
| 748 |
|
|
if (relSize <= 1 << 7) fitBits |= IFIT_I8;
|
| 749 |
|
|
if (relSize <= 1 << 15) fitBits |= IFIT_I16;
|
| 750 |
|
|
//if (relSize <= 1 << 23) fitBits |= IFIT_I24;
|
| 751 |
|
|
if (relSize <= (uint64_t)1 << 31) fitBits |= IFIT_I32;
|
| 752 |
|
|
code.fitAddr = fitBits;
|
| 753 |
|
|
code.sizeUnknown += uncertain;
|
| 754 |
|
|
//return uncertain;
|
| 755 |
|
|
}
|
| 756 |
|
|
// difference between two local symbols
|
| 757 |
|
|
else if (pass < 4) {
|
| 758 |
|
|
code.fitAddr = IFIT_I8 | IFIT_I16 | IFIT_I32; // symbol values are not available yet
|
| 759 |
|
|
code.sizeUnknown += 1;
|
| 760 |
|
|
uncertain += 1;
|
| 761 |
|
|
//return 1;
|
| 762 |
|
|
}
|
| 763 |
|
|
else {
|
| 764 |
|
|
value += int32_t(uint32_t(symbols[isym1].st_value) - uint32_t(symbols[isym2].st_value));
|
| 765 |
|
|
int scale = code.symscale1;
|
| 766 |
|
|
if (scale < 1) scale = 1;
|
| 767 |
|
|
valueScaled = value / scale + code.offset_mem;
|
| 768 |
|
|
if (valueScaled >= -(1 << 7) && valueScaled < (1 << 7)) fitBits |= IFIT_I8;
|
| 769 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitBits |= IFIT_I16;
|
| 770 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitBits |= IFIT_I32;
|
| 771 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value
|
| 772 |
|
|
uncertainty = (symbols[isym1].st_value >> 32) - (symbols[isym2].st_value >> 32);
|
| 773 |
|
|
valueScaled = value / scale + code.offset_mem + uncertainty;
|
| 774 |
|
|
if (code.symscale1 > 1) valueScaled /= code.symscale1; // value is scaled
|
| 775 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitBits & IFIT_I8)) uncertain |= 1;
|
| 776 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitBits & IFIT_I16)) uncertain |= 1;
|
| 777 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitBits & IFIT_I32)) uncertain |= 1;
|
| 778 |
|
|
if (uncertain && (code.fitAddr & IFIT_LARGE)) {
|
| 779 |
|
|
// choose the larger version if optimization process has convergence problems
|
| 780 |
|
|
fitBits = (fitBits & (fitBits - 1)) | IFIT_I32; // remove the lowest set bit
|
| 781 |
|
|
uncertain &= ~1;
|
| 782 |
|
|
}
|
| 783 |
|
|
code.fitAddr = fitBits;
|
| 784 |
|
|
code.sizeUnknown += uncertain;
|
| 785 |
|
|
//return uncertain;
|
| 786 |
|
|
}
|
| 787 |
|
|
}
|
| 788 |
|
|
// one symbol
|
| 789 |
|
|
else if (sectionHeaders[sym1section].sh_flags & SHF_IP) {
|
| 790 |
|
|
// relative to instruction pointer
|
| 791 |
|
|
if (sym1section != code.section || symbols[isym1].st_bind != STB_LOCAL) {
|
| 792 |
|
|
// symbol is in different section or not local. relocation needed
|
| 793 |
|
|
fitBits = IFIT_RELOC;
|
| 794 |
|
|
if (code.etype & XPR_JUMPOS) relSize >>= 2; // value is scaled by 4
|
| 795 |
|
|
if (relSize <= 1 << 7) fitBits |= IFIT_I8; // necessary relocation size
|
| 796 |
|
|
if (relSize <= 1 << 15) fitBits |= IFIT_I16;
|
| 797 |
|
|
if (relSize <= 1 << 23) fitBits |= IFIT_I24;
|
| 798 |
|
|
if (relSize <= (uint64_t)1 << 31) fitBits |= IFIT_I32;
|
| 799 |
|
|
code.fitAddr = fitBits;
|
| 800 |
|
|
code.sizeUnknown += uncertain;
|
| 801 |
|
|
//return uncertain;
|
| 802 |
|
|
}
|
| 803 |
|
|
else if (pass < 4) {
|
| 804 |
|
|
// code.fitBits = IFIT_I16 | IFIT_I32; // symbol values are not available yet
|
| 805 |
|
|
code.fitAddr = IFIT_I16 | IFIT_I24 | IFIT_I32; // symbol values are not available yet
|
| 806 |
|
|
code.sizeUnknown += 1;
|
| 807 |
|
|
uncertain |= 1;
|
| 808 |
|
|
//return 1;
|
| 809 |
|
|
}
|
| 810 |
|
|
else { // self-relative address to local symbol
|
| 811 |
|
|
value = int32_t((uint32_t)symbols[isym1].st_value - (code.address + code.size * 4));
|
| 812 |
|
|
valueScaled = value;
|
| 813 |
|
|
valueScaled += code.offset_mem;
|
| 814 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitBits |= IFIT_I16;
|
| 815 |
|
|
if (valueScaled >= -(1 << 23) && valueScaled < (1 << 23)) fitBits |= IFIT_I24;
|
| 816 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitBits |= IFIT_I32;
|
| 817 |
|
|
code.fitAddr = fitBits;
|
| 818 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value and sh_link
|
| 819 |
|
|
uncertainty = int32_t((symbols[isym1].st_value >> 32) - sectionHeaders[code.section].sh_link);
|
| 820 |
|
|
valueScaled += uncertainty;
|
| 821 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitBits & IFIT_I8)) uncertain |= 1;
|
| 822 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitBits & IFIT_I16)) uncertain |= 1;
|
| 823 |
|
|
if ((valueScaled < -(1 << 23) || valueScaled >= (1 << 23)) && (fitBits & IFIT_I24)) uncertain |= 1;
|
| 824 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitBits & IFIT_I32)) uncertain |= 1;
|
| 825 |
|
|
if (uncertain && (code.fitAddr & IFIT_LARGE)) {
|
| 826 |
|
|
// choose the larger version if optimization process has convergence problems
|
| 827 |
|
|
fitBits = (fitBits & (fitBits - 1)) | IFIT_I32; // remove the lowest set bit
|
| 828 |
|
|
uncertain &= ~1;
|
| 829 |
|
|
}
|
| 830 |
|
|
code.fitAddr = fitBits;
|
| 831 |
|
|
code.sizeUnknown += uncertain;
|
| 832 |
|
|
//return uncertain;
|
| 833 |
|
|
}
|
| 834 |
|
|
}
|
| 835 |
|
|
else {
|
| 836 |
|
|
// symbol is relative to data pointer. relocation needed
|
| 837 |
|
|
fitBits = IFIT_RELOC;
|
| 838 |
|
|
if (relSize <= 1 << 7) fitBits |= IFIT_I8;
|
| 839 |
|
|
if (relSize <= 1 << 15) fitBits |= IFIT_I16;
|
| 840 |
|
|
if (relSize <= (uint64_t)1 << 31) fitBits |= IFIT_I32;
|
| 841 |
|
|
code.fitAddr = fitBits;
|
| 842 |
|
|
code.sizeUnknown += uncertain;
|
| 843 |
|
|
}
|
| 844 |
|
|
}
|
| 845 |
|
|
}
|
| 846 |
|
|
else {
|
| 847 |
|
|
// no symbol. only a signed integer constant
|
| 848 |
|
|
value = code.offset_mem;
|
| 849 |
|
|
fitBits = 0;
|
| 850 |
|
|
if (value >= -(int64_t)0x80 && value < 0x80) fitBits |= IFIT_I8;
|
| 851 |
|
|
if (value >= -(int64_t)0x8000 && value < 0x8000) fitBits |= IFIT_I16;
|
| 852 |
|
|
if (value >= -(int64_t)0x80000000 && value < 0x80000000) fitBits |= IFIT_I32;
|
| 853 |
|
|
code.fitAddr = fitBits;
|
| 854 |
|
|
}
|
| 855 |
|
|
|
| 856 |
|
|
// check jump offset symbol
|
| 857 |
|
|
if (code.sym5) {
|
| 858 |
|
|
// there is a jump offset symbol
|
| 859 |
|
|
value = code.offset_jump; // jump offset
|
| 860 |
|
|
fitBits = 0;
|
| 861 |
|
|
|
| 862 |
|
|
isym1 = findSymbol(code.sym5);
|
| 863 |
|
|
if (isym1 <= 0) {
|
| 864 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
| 865 |
|
|
}
|
| 866 |
|
|
// one symbol relative to instruction pointer
|
| 867 |
|
|
if (symbols[isym1].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
| 868 |
|
|
uint32_t sym1section = symbols[isym1].st_section; // symbol section
|
| 869 |
|
|
if (sym1section < sectionHeaders.numEntries()) {
|
| 870 |
|
|
// determine necessary relocation size if relocation needed
|
| 871 |
|
|
uint64_t relSize; // maximum size of relocated address
|
| 872 |
|
|
relSize = code_size >> 2; // relocation size for code and constant data, scaled by 4
|
| 873 |
|
|
|
| 874 |
|
|
if (sym1section != code.section || symbols[isym1].st_bind != STB_LOCAL) {
|
| 875 |
|
|
// symbol is in different section or not local. relocation needed
|
| 876 |
|
|
fitBits = IFIT_RELOC;
|
| 877 |
|
|
if (relSize <= 1 << 7) fitBits |= IFIT_I8; // necessary relocation size
|
| 878 |
|
|
if (relSize <= 1 << 15) fitBits |= IFIT_I16;
|
| 879 |
|
|
if (relSize <= 1 << 23) fitBits |= IFIT_I24;
|
| 880 |
|
|
if (relSize <= (uint64_t)1 << 31) fitBits |= IFIT_I32;
|
| 881 |
|
|
code.fitJump = fitBits;
|
| 882 |
|
|
code.sizeUnknown += uncertain;
|
| 883 |
|
|
//return uncertain;
|
| 884 |
|
|
}
|
| 885 |
|
|
else if (pass < 4) {
|
| 886 |
|
|
code.fitJump = IFIT_I16 | IFIT_I24 | IFIT_I32; // symbol values are not available yet
|
| 887 |
|
|
code.sizeUnknown += 1;
|
| 888 |
|
|
uncertain = 1;
|
| 889 |
|
|
//return 1;
|
| 890 |
|
|
}
|
| 891 |
|
|
else {
|
| 892 |
|
|
// self-relative address to local symbol
|
| 893 |
|
|
value = int32_t((uint32_t)symbols[isym1].st_value - (code.address + code.size * 4));
|
| 894 |
|
|
valueScaled = value >> 2; // jump address is scaled
|
| 895 |
|
|
valueScaled += code.offset_jump;
|
| 896 |
|
|
if (valueScaled >= -(1 << 7) && valueScaled < (1 << 7)) fitBits |= IFIT_I8;
|
| 897 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitBits |= IFIT_I16;
|
| 898 |
|
|
if (valueScaled >= -(1 << 23) && valueScaled < (1 << 23)) fitBits |= IFIT_I24;
|
| 899 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitBits |= IFIT_I32;
|
| 900 |
|
|
code.fitJump = fitBits;
|
| 901 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value and sh_link
|
| 902 |
|
|
uncertainty = int32_t((symbols[isym1].st_value >> 32) - sectionHeaders[code.section].sh_link);
|
| 903 |
|
|
valueScaled += uncertainty;
|
| 904 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitBits & IFIT_I8)) uncertain |= 1;
|
| 905 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitBits & IFIT_I16)) uncertain |= 1;
|
| 906 |
|
|
if ((valueScaled < -(1 << 23) || valueScaled >= (1 << 23)) && (fitBits & IFIT_I24)) uncertain |= 1;
|
| 907 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitBits & IFIT_I32)) uncertain |= 1;
|
| 908 |
|
|
if (uncertain && (code.fitAddr & IFIT_LARGE)) {
|
| 909 |
|
|
// choose the larger version if optimization process has convergence problems
|
| 910 |
|
|
fitBits = (fitBits & (fitBits - 1)) | IFIT_I32; // remove the lowest set bit
|
| 911 |
|
|
uncertain &= ~1;
|
| 912 |
|
|
code.fitJump = fitBits;
|
| 913 |
|
|
//code.sizeUnknown += uncertain;
|
| 914 |
|
|
}
|
| 915 |
|
|
code.sizeUnknown += uncertain;
|
| 916 |
|
|
}
|
| 917 |
|
|
}
|
| 918 |
|
|
}
|
| 919 |
|
|
return uncertain;
|
| 920 |
|
|
}
|
| 921 |
|
|
|
| 922 |
|
|
|
| 923 |
|
|
// find format details in formatList from entry in instructionlist
|
| 924 |
|
|
uint32_t findFormat(SInstruction const & listentry, uint32_t imm) {
|
| 925 |
|
|
// listentry: record in instructionlist or instructionlistId
|
| 926 |
|
|
// imm: immediate operand, if any
|
| 927 |
|
|
|
| 928 |
|
|
// make model instruction for lookupFormat
|
| 929 |
|
|
STemplate instrModel;
|
| 930 |
|
|
instrModel.a.il = listentry.format >> 8;
|
| 931 |
|
|
instrModel.a.mode = (listentry.format >> 4) & 7;
|
| 932 |
|
|
instrModel.a.ot = (listentry.format >> 5) & 4;
|
| 933 |
|
|
if ((listentry.format & ~ 0x12F) == 0x200) { // format 0x200, 0x220, 0x300, 0x320
|
| 934 |
|
|
instrModel.a.mode2 = listentry.format & 7;
|
| 935 |
|
|
}
|
| 936 |
|
|
else if ((listentry.format & 0xFF0) == 0x270 && listentry.op1 < 8) {
|
| 937 |
|
|
instrModel.a.mode2 = listentry.op1 & 7;
|
| 938 |
|
|
}
|
| 939 |
|
|
else instrModel.a.mode2 = 0;
|
| 940 |
|
|
instrModel.a.op1 = listentry.op1;
|
| 941 |
|
|
instrModel.b[0] = imm & 0xFF;
|
| 942 |
|
|
// look op details for this format (from emulator2.cpp)
|
| 943 |
|
|
return lookupFormat(instrModel.q);
|
| 944 |
|
|
}
|
| 945 |
|
|
|
| 946 |
|
|
// find the smallest representation that the floating point operand fits into
|
| 947 |
|
|
int fitFloat(double x) {
|
| 948 |
|
|
if (x == 0.) return IFIT_I8 | FFIT_16 | FFIT_32 | FFIT_64;
|
| 949 |
|
|
union {
|
| 950 |
|
|
double d;
|
| 951 |
|
|
struct {
|
| 952 |
|
|
uint64_t mantissa: 52;
|
| 953 |
|
|
uint64_t exponent: 11;
|
| 954 |
|
|
uint64_t sign: 1;
|
| 955 |
|
|
} f;
|
| 956 |
|
|
} u;
|
| 957 |
|
|
u.d = x;
|
| 958 |
|
|
int fit = FFIT_64;
|
| 959 |
|
|
// check if mantissa fits
|
| 960 |
|
|
if ((u.f.mantissa & (((uint64_t)1 << 42) - 1)) == 0) fit |= FFIT_16;
|
| 961 |
|
|
if ((u.f.mantissa & (((uint64_t)1 << 29) - 1)) == 0) fit |= FFIT_32;
|
| 962 |
|
|
// check if exponent fits, except for infinity or nan
|
| 963 |
|
|
if (u.f.exponent != 0x7FF) {
|
| 964 |
|
|
int ex = int(u.f.exponent - 0x3FF);
|
| 965 |
|
|
if (ex < -14 || ex > 15) fit &= ~FFIT_16;
|
| 966 |
|
|
if (ex < -126 || ex > 127) fit &= ~FFIT_32;
|
| 967 |
|
|
}
|
| 968 |
|
|
// check if x fits into a small integer
|
| 969 |
|
|
if (fit & FFIT_16) {
|
| 970 |
|
|
int i = int(x);
|
| 971 |
|
|
if (i == x && i >= -128 && i < 128) {
|
| 972 |
|
|
fit |= IFIT_I8;
|
| 973 |
|
|
}
|
| 974 |
|
|
}
|
| 975 |
|
|
return fit;
|
| 976 |
|
|
}
|
| 977 |
|
|
|
| 978 |
|
|
// find an instruction variant that fits the code
|
| 979 |
|
|
int CAssembler::fitCode(SCode & code) {
|
| 980 |
|
|
// return value:
|
| 981 |
|
|
// 0: does not fit
|
| 982 |
|
|
// 1: fits
|
| 983 |
|
|
uint32_t bestInstr = 0; // best fitting instruction variant, index into instructionlistId
|
| 984 |
|
|
uint32_t bestSize = 99; // size of best fitting instruction variant
|
| 985 |
|
|
SCode codeTemp; // fitted code
|
| 986 |
|
|
SCode codeBest; // best fitted code
|
| 987 |
|
|
uint32_t instrIndex = 0, ii; // index into instructionlistId
|
| 988 |
|
|
uint32_t formatIx = 0; // index into formatList
|
| 989 |
|
|
uint32_t isize; // il bits
|
| 990 |
|
|
codeBest.category = 0;
|
| 991 |
|
|
|
| 992 |
|
|
// find instruction by id
|
| 993 |
|
|
SInstruction3 sinstr; // make dummy record with instruction id as parameter to findAll
|
| 994 |
|
|
if (code.instruction == II_ALIGN) {
|
| 995 |
|
|
return 1; // alignment directive
|
| 996 |
|
|
}
|
| 997 |
|
|
sinstr.id = code.instruction;
|
| 998 |
|
|
int32_t nInstr = instructionlistId.findAll(&instrIndex, sinstr);
|
| 999 |
|
|
|
| 1000 |
|
|
if (code.etype & (XPR_IMMEDIATE | XPR_OFFSET | XPR_LIMIT | XPR_JUMPOS)) {
|
| 1001 |
|
|
// there is an immediate constant, offset, or limit.
|
| 1002 |
|
|
// generate specific error message if large constant cannot fit
|
| 1003 |
|
|
if ((code.etype & XPR_OFFSET) && !(code.etype & XPR_IMMEDIATE) && !(code.fitAddr & IFIT_I32)) {
|
| 1004 |
|
|
errors.reportLine(ERR_OFFSET_TOO_LARGE);
|
| 1005 |
|
|
}
|
| 1006 |
|
|
//else if ((code.etype & XPR_LIMIT) && !(code.fitBits & (IFIT_U16 | IFIT_U32))) errors.reportLine(ERR_LIMIT_TOO_LARGE);
|
| 1007 |
|
|
else if ((code.etype & XPR_IMMEDIATE) && !(code.etype & XPR_INT2)) {
|
| 1008 |
|
|
if (!(code.fitNum & (IFIT_I16 | IFIT_I16SHIFT | IFIT_I32 | IFIT_I32SHIFT | FFIT_16 | FFIT_32)) && (code.etype & XPR_OPTIONS) && code.optionbits) {
|
| 1009 |
|
|
errors.reportLine(ERR_IMMEDIATE_TOO_LARGE);
|
| 1010 |
|
|
}
|
| 1011 |
|
|
}
|
| 1012 |
|
|
}
|
| 1013 |
|
|
if (lineError) return 0;
|
| 1014 |
|
|
|
| 1015 |
|
|
// loop through all instruction definitions with same id
|
| 1016 |
|
|
for (ii = instrIndex; ii < instrIndex + nInstr; ii++) {
|
| 1017 |
|
|
// category
|
| 1018 |
|
|
code.instr1 = ii;
|
| 1019 |
|
|
code.category = instructionlistId[ii].category;
|
| 1020 |
|
|
// get variant bits from instruction list
|
| 1021 |
|
|
variant = instructionlistId[ii].variant; // instruction-specific variants
|
| 1022 |
|
|
|
| 1023 |
|
|
switch (instructionlistId[ii].category) {
|
| 1024 |
|
|
case 1: // single format. find entry in formatList
|
| 1025 |
|
|
formatIx = findFormat(instructionlistId[ii], code.value.w);
|
| 1026 |
|
|
code.formatp = formatList + formatIx;
|
| 1027 |
|
|
if (instructionFits(code, codeTemp, ii)) {
|
| 1028 |
|
|
// check if smaller than previously found.
|
| 1029 |
|
|
isize = codeTemp.size;
|
| 1030 |
|
|
if (isize < bestSize) {
|
| 1031 |
|
|
bestSize = isize;
|
| 1032 |
|
|
bestInstr = ii;
|
| 1033 |
|
|
codeBest = codeTemp;
|
| 1034 |
|
|
}
|
| 1035 |
|
|
}
|
| 1036 |
|
|
break;
|
| 1037 |
|
|
|
| 1038 |
|
|
case 3: // multi-format instructions. search all formats for the best one
|
| 1039 |
|
|
for (formatIx = 0; formatIx < formatList3.numEntries(); formatIx++) {
|
| 1040 |
|
|
code.formatp = &formatList3[formatIx];
|
| 1041 |
|
|
|
| 1042 |
|
|
if (((uint64_t)1 << code.formatp->formatIndex) & instructionlistId[ii].format) {
|
| 1043 |
|
|
if (instructionFits(code, codeTemp, ii)) {
|
| 1044 |
|
|
// check if smaller than previously found. category 3 = multiformat preferred
|
| 1045 |
|
|
isize = codeTemp.size;
|
| 1046 |
|
|
if (isize < bestSize || (isize == bestSize && codeBest.category != 3)) {
|
| 1047 |
|
|
bestSize = isize;
|
| 1048 |
|
|
bestInstr = ii;
|
| 1049 |
|
|
codeBest = codeTemp;
|
| 1050 |
|
|
}
|
| 1051 |
|
|
}
|
| 1052 |
|
|
}
|
| 1053 |
|
|
}
|
| 1054 |
|
|
break;
|
| 1055 |
|
|
|
| 1056 |
|
|
case 4: // jump instructions. search all formats for the best one
|
| 1057 |
|
|
for (formatIx = 0; formatIx < formatList4.numEntries(); formatIx++) {
|
| 1058 |
|
|
code.formatp = &formatList4[formatIx];
|
| 1059 |
|
|
if (((uint64_t)1 << code.formatp->formatIndex) & instructionlistId[ii].format) {
|
| 1060 |
|
|
if (jumpInstructionFits(code, codeTemp, ii)) {
|
| 1061 |
|
|
// check if smaller than previously found. category 3 = multiformat preferred
|
| 1062 |
|
|
isize = codeTemp.size;
|
| 1063 |
|
|
if (isize < bestSize) {
|
| 1064 |
|
|
bestSize = isize;
|
| 1065 |
|
|
bestInstr = ii;
|
| 1066 |
|
|
codeBest = codeTemp;
|
| 1067 |
|
|
}
|
| 1068 |
|
|
}
|
| 1069 |
|
|
}
|
| 1070 |
|
|
}
|
| 1071 |
|
|
break;
|
| 1072 |
|
|
|
| 1073 |
|
|
default:
|
| 1074 |
|
|
return 0; // error in list
|
| 1075 |
|
|
}
|
| 1076 |
|
|
}
|
| 1077 |
|
|
|
| 1078 |
|
|
if (bestSize > 4) {
|
| 1079 |
|
|
errors.reportLine(checkCodeE(code)); // find reason why no format fits, and report error
|
| 1080 |
|
|
return 0;
|
| 1081 |
|
|
}
|
| 1082 |
|
|
|
| 1083 |
|
|
code = codeBest; // get the best fitting code
|
| 1084 |
|
|
variant = instructionlistId[bestInstr].variant; // instruction-specific variants
|
| 1085 |
|
|
|
| 1086 |
|
|
checkCode2(code); // check if operands are correct
|
| 1087 |
|
|
|
| 1088 |
|
|
if (lineError) return 0;
|
| 1089 |
|
|
return 1;
|
| 1090 |
|
|
}
|
| 1091 |
|
|
|
| 1092 |
|
|
|
| 1093 |
|
|
// check if instruction fits into specified format
|
| 1094 |
|
|
bool CAssembler::instructionFits(SCode const & code, SCode & codeTemp, uint32_t ii) {
|
| 1095 |
|
|
// code: structure defining all operands and options
|
| 1096 |
|
|
// codeTemp: fitted code
|
| 1097 |
|
|
// ii: index into instructionlistId
|
| 1098 |
|
|
// formatIndex: index into formatList
|
| 1099 |
|
|
|
| 1100 |
|
|
uint32_t shiftCount; // shift count for shifted constant
|
| 1101 |
|
|
// copy code structure and add details
|
| 1102 |
|
|
codeTemp = code;
|
| 1103 |
|
|
codeTemp.category = code.formatp->category;
|
| 1104 |
|
|
codeTemp.size = (code.formatp->format2 >> 8) & 3;
|
| 1105 |
|
|
if (codeTemp.size == 0) codeTemp.size = 1;
|
| 1106 |
|
|
codeTemp.instr1 = ii;
|
| 1107 |
|
|
|
| 1108 |
|
|
if (instructionlistId[ii].opimmediate == OPI_IMPLICIT && !(code.etype & XPR_IMMEDIATE)) {
|
| 1109 |
|
|
// There is no immediate operand. instructionlistId[ii] has an implicit immediate operand.
|
| 1110 |
|
|
// Insert implicit operand and see if it fits
|
| 1111 |
|
|
codeTemp.value.u = instructionlistId[ii].implicit_imm;
|
| 1112 |
|
|
codeTemp.etype |= XPR_INT;
|
| 1113 |
|
|
codeTemp.fitNum = 0xFFFFFFFF;
|
| 1114 |
|
|
}
|
| 1115 |
|
|
|
| 1116 |
|
|
// check vector use
|
| 1117 |
|
|
bool useVectors = (code.dtype & TYP_FLOAT)
|
| 1118 |
|
|
|| (code.dest & 0xE0) == REG_V
|
| 1119 |
|
|
|| (code.reg1 & 0xE0) == REG_V
|
| 1120 |
|
|
|| (code.reg2 & 0xE0) == REG_V;
|
| 1121 |
|
|
|
| 1122 |
|
|
if (useVectors) {
|
| 1123 |
|
|
if (!(code.formatp->vect)) return false; // vectors not supported
|
| 1124 |
|
|
}
|
| 1125 |
|
|
else if (code.formatp->vect & ~0x10) return false; // vectors provided but not used
|
| 1126 |
|
|
|
| 1127 |
|
|
// requested operand type
|
| 1128 |
|
|
uint32_t requestOT = code.dtype & 7;
|
| 1129 |
|
|
if (uint8_t(code.dtype) == uint8_t(TYP_FLOAT16)) {
|
| 1130 |
|
|
requestOT = TYP_INT16 & 7; // replace pseudo-type TYP_FLOAT16 with TYP_INT16
|
| 1131 |
|
|
codeTemp.dtype = TYP_INT16;
|
| 1132 |
|
|
}
|
| 1133 |
|
|
|
| 1134 |
|
|
// operand type provided by this format
|
| 1135 |
|
|
uint32_t formatOT = code.formatp->ot;
|
| 1136 |
|
|
if (formatOT == 0x32) formatOT = 0x12 + (instructionlistId[ii].op1 & 1); // int32 for even op1, int64 for odd op1
|
| 1137 |
|
|
if (formatOT == 0x35) formatOT = 0x15 + (instructionlistId[ii].op1 & 1); // float for even op1, double for odd op1
|
| 1138 |
|
|
if (formatOT == 0) formatOT = requestOT; // operand type determined by OT field
|
| 1139 |
|
|
formatOT &= 7;
|
| 1140 |
|
|
uint32_t scale2 = formatOT;
|
| 1141 |
|
|
if (scale2 > 4) scale2 -= 3; // operand size = 1 << scale2
|
| 1142 |
|
|
|
| 1143 |
|
|
if (variant & (VARIANT_D0 | VARIANT_D2)) { // no operand type
|
| 1144 |
|
|
if (code.dtype == 0 && code.instruction != II_NOP) codeTemp.dtype = formatOT ? formatOT : 3;
|
| 1145 |
|
|
}
|
| 1146 |
|
|
else {
|
| 1147 |
|
|
// check requested operand type
|
| 1148 |
|
|
if (formatOT <= 3 && requestOT < formatOT && (code.dtype & TYP_PLUS)) {
|
| 1149 |
|
|
requestOT = formatOT; // request allows bigger type
|
| 1150 |
|
|
// codeTemp.dtype = formatOT; // prevents merging with subsequent jump with smaller type than formatOT
|
| 1151 |
|
|
}
|
| 1152 |
|
|
if (requestOT != formatOT && code.dtype) return false; // requested format type not supported
|
| 1153 |
|
|
|
| 1154 |
|
|
// check if operand type supported by instruction
|
| 1155 |
|
|
uint32_t optypessupport = useVectors ? (instructionlistId[ii].optypesscalar | instructionlistId[ii].optypesvector) : instructionlistId[ii].optypesgp;
|
| 1156 |
|
|
optypessupport |= optypessupport >> 8; // include types with optional support
|
| 1157 |
|
|
if (!(optypessupport & (1 << requestOT))) return false;
|
| 1158 |
|
|
}
|
| 1159 |
|
|
|
| 1160 |
|
|
// check if there are enough register operands in this format
|
| 1161 |
|
|
uint8_t opAvail = code.formatp->opAvail;
|
| 1162 |
|
|
uint8_t numReg = ((opAvail >> 4) & 1) + ((opAvail >> 5) & 1) + ((opAvail >> 6) & 1) + ((opAvail >> 7) & 1); // number of registers available
|
| 1163 |
|
|
uint8_t numReq = instructionlistId[ii].sourceoperands; // number of registers required for this instruction
|
| 1164 |
|
|
codeTemp.numOp = numReq;
|
| 1165 |
|
|
if ((codeTemp.etype & XPR_IMMEDIATE) && numReq) numReq--;
|
| 1166 |
|
|
if ((codeTemp.etype & XPR_MEM) && numReq) numReq--;
|
| 1167 |
|
|
if ((codeTemp.etype & (XPR_MASK | XPR_FALLBACK)) && ((code.fallback & 0x1F) != (code.reg1 & 0x1F) || (code.reg1 & 0x1F) == 0x1F)) {
|
| 1168 |
|
|
numReq += 2; // fallback different from reg1, implies reg1 != destination
|
| 1169 |
|
|
}
|
| 1170 |
|
|
else if ((code.etype & XPR_REG1) && code.dest && code.reg1 != code.dest && !(variant & VARIANT_D3)) {
|
| 1171 |
|
|
numReq++; // reg1 != destination
|
| 1172 |
|
|
}
|
| 1173 |
|
|
if (numReq > numReg) return false; // not enough registers in this format
|
| 1174 |
|
|
|
| 1175 |
|
|
// check if mask available
|
| 1176 |
|
|
if ((code.etype & XPR_MASK) && !(code.formatp->tmplate == 0xA || code.formatp->tmplate == 0xE)) return false;
|
| 1177 |
|
|
|
| 1178 |
|
|
// check option bits
|
| 1179 |
|
|
if ((code.etype & XPR_OPTIONS) && code.optionbits != 0
|
| 1180 |
|
|
&& (code.formatp->tmplate != 0xE || !(code.formatp->imm2 & 2))
|
| 1181 |
|
|
&& (variant & VARIANT_On) && instructionlistId[ii].opimmediate != OPI_INT1688) return false; // only template E has option bits
|
| 1182 |
|
|
|
| 1183 |
|
|
// check memory operand
|
| 1184 |
|
|
if (code.etype & XPR_MEM) {
|
| 1185 |
|
|
if (code.formatp->mem == 0) return false; // memory operand requested but not supported
|
| 1186 |
|
|
if (code.etype & XPR_SYM1) { // has data symbol
|
| 1187 |
|
|
if (code.etype & XPR_SYM2) { // has difference between two symbols
|
| 1188 |
|
|
codeTemp.sizeUnknown = 1;
|
| 1189 |
|
|
}
|
| 1190 |
|
|
//if (!(code.fitNumX & IFIT_I32)) return false; // assume symbol address requires 32 bits. local symbol difference resolved later when sizeUnknown = 1
|
| 1191 |
|
|
}
|
| 1192 |
|
|
// check index and scale factor
|
| 1193 |
|
|
if (code.etype & XPR_INDEX) {
|
| 1194 |
|
|
if (!(code.formatp->mem & 4)) return false; // index not supported
|
| 1195 |
|
|
if ((code.formatp->scale & 4) && code.scale != -1) return false; // scale factor must be -1
|
| 1196 |
|
|
if ((code.formatp->scale & 2) && code.scale != 1 << scale2) return false; // scale factor must match operand type
|
| 1197 |
|
|
if (!(code.formatp->scale & 6) && code.scale != 1) return false; // scale factor must be 1
|
| 1198 |
|
|
}
|
| 1199 |
|
|
else { // no index requested
|
| 1200 |
|
|
if (code.formatp->mem & 4) {
|
| 1201 |
|
|
codeTemp.index = 0x1F; // RT = 0x1F means no index
|
| 1202 |
|
|
codeTemp.scale = 1 << scale2;
|
| 1203 |
|
|
}
|
| 1204 |
|
|
}
|
| 1205 |
|
|
|
| 1206 |
|
|
// check address offset size
|
| 1207 |
|
|
if (code.etype & (XPR_OFFSET | XPR_SYM1)) {
|
| 1208 |
|
|
if (!(code.formatp->mem & 0x10)) return false; // format does not support memory offset
|
| 1209 |
|
|
switch (code.formatp->addrSize) {
|
| 1210 |
|
|
case 1:
|
| 1211 |
|
|
if (code.sym1 && !(code.fitAddr & IFIT_I8)) return false;
|
| 1212 |
|
|
if ((code.base & 0x1F) >= 0x1C && (code.base & 0x1F) != 0x1F) return false; // ip, datap, threadp must have 16 bit offset
|
| 1213 |
|
|
// no relocation. scale factor depends on operand size
|
| 1214 |
|
|
if (code.offset_mem & ((1 << scale2) - 1)) return false; // offset is not a multiple of the scale factor
|
| 1215 |
|
|
if ((code.offset_mem >> scale2) < -0x80 || (code.offset_mem >> scale2) > 0x7F) return false;
|
| 1216 |
|
|
break;
|
| 1217 |
|
|
case 2:
|
| 1218 |
|
|
if (!(code.fitAddr & IFIT_I16)) return false;
|
| 1219 |
|
|
break;
|
| 1220 |
|
|
case 4:
|
| 1221 |
|
|
if (!(code.fitAddr & IFIT_I32)) return false;
|
| 1222 |
|
|
break;
|
| 1223 |
|
|
default:
|
| 1224 |
|
|
return false;
|
| 1225 |
|
|
}
|
| 1226 |
|
|
}
|
| 1227 |
|
|
else if ((code.formatp->addrSize) < 2 && (code.base & 0x1F) >= 0x1C && (code.base & 0x1F) != 0x1F) return false;
|
| 1228 |
|
|
|
| 1229 |
|
|
// fail if limit required and not supported, or supported and not required
|
| 1230 |
|
|
if (code.etype & XPR_LIMIT) {
|
| 1231 |
|
|
if (!(code.formatp->mem & 0x20)) return false; // limit not supported by format
|
| 1232 |
|
|
switch (code.formatp->addrSize) {
|
| 1233 |
|
|
case 1: if (code.value.u >= 0x100) return false;
|
| 1234 |
|
|
break;
|
| 1235 |
|
|
case 2: if (code.value.u >= 0x10000) return false;
|
| 1236 |
|
|
break;
|
| 1237 |
|
|
case 4: if (uint64_t(code.value.u) >= 0x100000000U) return false;
|
| 1238 |
|
|
break;
|
| 1239 |
|
|
}
|
| 1240 |
|
|
}
|
| 1241 |
|
|
else {
|
| 1242 |
|
|
if (code.formatp->mem & 0x20) return false; // limit provided but not requested
|
| 1243 |
|
|
}
|
| 1244 |
|
|
|
| 1245 |
|
|
// check length/broadcast/scalar
|
| 1246 |
|
|
if (code.etype & XPR_SCALAR) { // scalar operand requested
|
| 1247 |
|
|
if ((code.formatp->vect & 6) != 0) {
|
| 1248 |
|
|
codeTemp.length = 31; // disable length or broadcast option
|
| 1249 |
|
|
}
|
| 1250 |
|
|
}
|
| 1251 |
|
|
else if (code.etype & XPR_LENGTH) { // vector length specified
|
| 1252 |
|
|
if ((code.formatp->vect & 2) == 0) return false; // vector length not in this format
|
| 1253 |
|
|
}
|
| 1254 |
|
|
else if (code.etype & XPR_BROADC) { // vector broadcast specified
|
| 1255 |
|
|
if ((code.formatp->vect & 4) == 0) return false; // vector broadcasst not in this format
|
| 1256 |
|
|
}
|
| 1257 |
|
|
}
|
| 1258 |
|
|
else if (code.formatp->mem) return false; // memory operand supported by not requested
|
| 1259 |
|
|
|
| 1260 |
|
|
// check immediate operand
|
| 1261 |
|
|
//bool isFloat = (code.dtype & TYP_FLOAT32 & 0xF0) != 0; // specified type is float or double or float128
|
| 1262 |
|
|
bool hasImmediate = (code.etype & XPR_IMMEDIATE) != 0; // && !(code.etype & (XPR_OFFSET | XPR_LIMIT)));
|
| 1263 |
|
|
|
| 1264 |
|
|
/*if ((variant & VARIANT_M1) && code.formatp->mem && code.formatp->tmplate == 0xE) {
|
| 1265 |
|
|
// variant M1: immediate operand is in IM3. No further check needed
|
| 1266 |
|
|
// to do: fail if relocation on immediate
|
| 1267 |
|
|
return hasImmediate; // succeed if there is an immediate
|
| 1268 |
|
|
} */
|
| 1269 |
|
|
|
| 1270 |
|
|
if (hasImmediate) {
|
| 1271 |
|
|
if (code.formatp->immSize == 0 && instructionlistId[ii].sourceoperands < 4) return false; // immediate not supported
|
| 1272 |
|
|
|
| 1273 |
|
|
// to do: check if relocation
|
| 1274 |
|
|
|
| 1275 |
|
|
// check if size fits. special cases in instruction list
|
| 1276 |
|
|
switch (instructionlistId[ii].opimmediate) {
|
| 1277 |
|
|
case OPI_IMPLICIT: // implicit value of immediate operand. Accept explicit value only if same
|
| 1278 |
|
|
if (codeTemp.value.u != instructionlistId[ii].implicit_imm) return false;
|
| 1279 |
|
|
break;
|
| 1280 |
|
|
|
| 1281 |
|
|
case OPI_INT8SH: // im2 << im1
|
| 1282 |
|
|
if (code.fitNum & (IFIT_I8 | IFIT_I8SHIFT)) { // fits im2 << im1
|
| 1283 |
|
|
shiftCount = bitScanForward(codeTemp.value.u);
|
| 1284 |
|
|
codeTemp.value.u = (codeTemp.value.u >> shiftCount << 8) | shiftCount;
|
| 1285 |
|
|
codeTemp.fitNum |= IFIT_I16; // make it accepted below
|
| 1286 |
|
|
break;
|
| 1287 |
|
|
}
|
| 1288 |
|
|
return false;
|
| 1289 |
|
|
case OPI_INT16SH16: // im12 << 16
|
| 1290 |
|
|
if (code.fitNum & (IFIT_I16 | IFIT_I16SH16)) { // fits im2 << 16
|
| 1291 |
|
|
codeTemp.value.u = codeTemp.value.u >> 16;
|
| 1292 |
|
|
codeTemp.fitNum |= IFIT_I16; // make it accepted below
|
| 1293 |
|
|
break;
|
| 1294 |
|
|
}
|
| 1295 |
|
|
return false;
|
| 1296 |
|
|
case OPI_INT32SH32: // im2 << 32
|
| 1297 |
|
|
if (code.fitNum & (IFIT_I32 | IFIT_I32SH32)) { // fits im2 << 32
|
| 1298 |
|
|
codeTemp.value.u = codeTemp.value.u >> 32;
|
| 1299 |
|
|
codeTemp.fitNum |= IFIT_I32; // make it accepted below
|
| 1300 |
|
|
break;
|
| 1301 |
|
|
}
|
| 1302 |
|
|
return false;
|
| 1303 |
|
|
case OPI_UINT8: // 8 bit unsigned integer
|
| 1304 |
|
|
if (value0 < 0x100 && value0 > -(int64_t)0x80U) return true;
|
| 1305 |
|
|
return false;
|
| 1306 |
|
|
case OPI_UINT16: // 16 bit unsigned integer
|
| 1307 |
|
|
if (value0 < 0x10000 && value0 > -(int64_t)0x8000U) return true;
|
| 1308 |
|
|
return false;
|
| 1309 |
|
|
case OPI_UINT32: // 32 bit unsigned integer
|
| 1310 |
|
|
//if (code.fitNum & IFIT_U32) return true; // this does not work if a float type is specified
|
| 1311 |
|
|
if (value0 < 0x100000000 && value0 > -(int64_t)0x80000000U) return true;
|
| 1312 |
|
|
return false;
|
| 1313 |
|
|
case OPI_INT886: // three integers
|
| 1314 |
|
|
codeTemp.value.u = (codeTemp.value.w & 0xFF) | (codeTemp.value.u >> 24);
|
| 1315 |
|
|
return true;
|
| 1316 |
|
|
case OPI_INT1688: // three integers: 16 + 8 + 8 bits
|
| 1317 |
|
|
codeTemp.value.u = (codeTemp.value.w & 0xFFFF) | (codeTemp.value.u >> 16 & 0xFF0000) | codeTemp.optionbits << 24;
|
| 1318 |
|
|
return true;
|
| 1319 |
|
|
case OPI_OT: // constant of same type as operand type
|
| 1320 |
|
|
if ((uint8_t(code.dtype) & ~TYP_UNS) <= uint8_t(TYP_INT32) && code.formatp->immSize >= 4) return true;
|
| 1321 |
|
|
}
|
| 1322 |
|
|
// check if size fits. general cases
|
| 1323 |
|
|
switch (code.formatp->immSize) {
|
| 1324 |
|
|
case 1:
|
| 1325 |
|
|
if (codeTemp.fitNum & IFIT_I8) break; // fits
|
| 1326 |
|
|
if ((variant & VARIANT_U0) && (codeTemp.fitNum & IFIT_U8)) break; // unsigned fits
|
| 1327 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT8 & 0x1F) && (codeTemp.fitNum & IFIT_U8)) break; // 8 bit size fits unsigned with no sign extension
|
| 1328 |
|
|
return false;
|
| 1329 |
|
|
case 2:
|
| 1330 |
|
|
if (codeTemp.fitNum & (IFIT_I16 | FFIT_16)) break; // fits
|
| 1331 |
|
|
if ((variant & VARIANT_U0) && (codeTemp.fitNum & IFIT_U16)) break; // unsigned fits
|
| 1332 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT16 & 0x1F) && code.formatp->tmplate != 0xC && (codeTemp.fitNum & IFIT_U16)) break; // 16 bit size fits unsigned with no sign extension
|
| 1333 |
|
|
if ((code.formatp->imm2 & 4) && !(variant & VARIANT_On) && (codeTemp.fitNum & IFIT_I16SHIFT)) {
|
| 1334 |
|
|
// fits with im2 << im3
|
| 1335 |
|
|
shiftCount = bitScanForward(codeTemp.value.u);
|
| 1336 |
|
|
codeTemp.value.u >>= shiftCount;
|
| 1337 |
|
|
codeTemp.optionbits = shiftCount;
|
| 1338 |
|
|
break;
|
| 1339 |
|
|
}
|
| 1340 |
|
|
if (variant & VARIANT_H0) break; // half precision fits
|
| 1341 |
|
|
return false;
|
| 1342 |
|
|
case 4:
|
| 1343 |
|
|
if ((code.dtype & 0xFF) == (TYP_FLOAT32 & 0xFF)) break; // float32 must be rounded to fit
|
| 1344 |
|
|
if (codeTemp.fitNum & (IFIT_I32 | FFIT_32)) break; // fits
|
| 1345 |
|
|
if ((codeTemp.fitNum & IFIT_U32) && (code.dtype & 0xFF) == (TYP_INT32 & 0xFF)) break; // fits
|
| 1346 |
|
|
if ((variant & VARIANT_U0) && (codeTemp.fitNum & IFIT_U32)) break; // unsigned fits
|
| 1347 |
|
|
if (variant & VARIANT_H0) break; // half precision fits
|
| 1348 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT32 & 0x1F) && (codeTemp.fitNum & IFIT_U32)) break; // 32 bit size fits unsigned with no sign extension
|
| 1349 |
|
|
if ((code.formatp->imm2 & 8) && (codeTemp.fitNum & IFIT_I32SHIFT)) {
|
| 1350 |
|
|
// fits with im4 << im2
|
| 1351 |
|
|
shiftCount = bitScanForward(codeTemp.value.u);
|
| 1352 |
|
|
codeTemp.value.u = ((codeTemp.value.u >> shiftCount) & 0xFFFFFFFF) | ((uint64_t)shiftCount << 32); // store shift count in upper half
|
| 1353 |
|
|
break;
|
| 1354 |
|
|
}
|
| 1355 |
|
|
return false;
|
| 1356 |
|
|
case 8:
|
| 1357 |
|
|
break;
|
| 1358 |
|
|
default:; // other values should not occur in table
|
| 1359 |
|
|
}
|
| 1360 |
|
|
}
|
| 1361 |
|
|
else if ((code.formatp->immSize != 0) && !(code.etype & (XPR_OFFSET | XPR_LIMIT))
|
| 1362 |
|
|
&& instructionlistId[ii].sourceoperands && code.category != 1) {
|
| 1363 |
|
|
return false; // immediate operand provided but not required
|
| 1364 |
|
|
}
|
| 1365 |
|
|
return true;
|
| 1366 |
|
|
}
|
| 1367 |
|
|
|
| 1368 |
|
|
// check if instruction fits into specified format
|
| 1369 |
|
|
bool CAssembler::jumpInstructionFits(SCode const & code, SCode & codeTemp, uint32_t ii) {
|
| 1370 |
|
|
// code: structure defining all operands and options
|
| 1371 |
|
|
// codeTemp: fitted code
|
| 1372 |
|
|
// ii: index into instructionlistId
|
| 1373 |
|
|
// formatIndex: index into formatList4
|
| 1374 |
|
|
|
| 1375 |
|
|
//uint8_t offsetSize = 0; // number of bytes to use in relative address
|
| 1376 |
|
|
//uint8_t immediateSize = 0; // number of bytes to use in immediate operand
|
| 1377 |
|
|
bool offsetRelocated = false; // relative offset needs relocation
|
| 1378 |
|
|
//bool immediateRelocated = false; // immediate operand needs relocation
|
| 1379 |
|
|
|
| 1380 |
|
|
codeTemp = code;
|
| 1381 |
|
|
codeTemp.category = code.formatp->category;
|
| 1382 |
|
|
codeTemp.size = (code.formatp->format2 >> 8) & 3;
|
| 1383 |
|
|
codeTemp.instr1 = ii;
|
| 1384 |
|
|
|
| 1385 |
|
|
// check vector use
|
| 1386 |
|
|
bool useVectors = (code.dtype & TYP_FLOAT) || (code.dest & 0xE0) == REG_V || (code.reg1 & 0xE0) == REG_V;
|
| 1387 |
|
|
if (useVectors) {
|
| 1388 |
|
|
if (!(code.formatp->vect)) return false; // vectors not supported
|
| 1389 |
|
|
}
|
| 1390 |
|
|
|
| 1391 |
|
|
// operand type provided by this format
|
| 1392 |
|
|
uint32_t formatOT = code.formatp->ot;
|
| 1393 |
|
|
if (formatOT == 0) formatOT = code.dtype; // operand type determined by OT field
|
| 1394 |
|
|
formatOT &= 7;
|
| 1395 |
|
|
|
| 1396 |
|
|
// check requested operand type
|
| 1397 |
|
|
uint32_t requestOT = code.dtype & 7;
|
| 1398 |
|
|
if (formatOT <= 3 && requestOT < formatOT && (code.dtype & TYP_PLUS)) {
|
| 1399 |
|
|
requestOT = formatOT; // request allows bigger type
|
| 1400 |
|
|
codeTemp.dtype = formatOT;
|
| 1401 |
|
|
}
|
| 1402 |
|
|
if (requestOT != formatOT && code.dtype) return false; // requested format type not supported
|
| 1403 |
|
|
|
| 1404 |
|
|
// check if operand type supported by instruction
|
| 1405 |
|
|
uint32_t optypessupport = useVectors ? (instructionlistId[ii].optypesscalar | instructionlistId[ii].optypesvector) : instructionlistId[ii].optypesgp;
|
| 1406 |
|
|
optypessupport |= optypessupport >> 8; // include types with optional support
|
| 1407 |
|
|
if (!(optypessupport & (1 << requestOT))) return false;
|
| 1408 |
|
|
|
| 1409 |
|
|
// check if there are enough register operands in this format
|
| 1410 |
|
|
uint8_t opAvail = code.formatp->opAvail;
|
| 1411 |
|
|
uint8_t numReg = ((opAvail >> 4) & 1) + ((opAvail >> 5) & 1) + ((opAvail >> 7) & 1); // number of registers available
|
| 1412 |
|
|
uint8_t numReq = instructionlistId[ii].sourceoperands; // number of registers required for this instruction
|
| 1413 |
|
|
if ((code.etype & XPR_REG1) && code.dest && code.reg1 != code.dest && numReq > 2) {
|
| 1414 |
|
|
numReq++; // reg1 != destination, except if no reg2
|
| 1415 |
|
|
}
|
| 1416 |
|
|
if (code.formatp->jumpSize) numReq--;
|
| 1417 |
|
|
if ((code.etype & (XPR_IMMEDIATE | XPR_MEM)) && numReq) numReq--;
|
| 1418 |
|
|
if ((code.etype & XPR_INT2) && numReq) numReq--;
|
| 1419 |
|
|
if (numReq > numReg) return false; // not enough registers in this format
|
| 1420 |
|
|
|
| 1421 |
|
|
// check if correct number of registers specified
|
| 1422 |
|
|
uint8_t nReg = 0;
|
| 1423 |
|
|
for (int j = 0; j < 3; j++) nReg += (code.etype & (XPR_REG1 << j)) != 0;
|
| 1424 |
|
|
if (code.dest && code.dest != code.reg1) nReg++;
|
| 1425 |
|
|
if (nReg != numReq) return false;
|
| 1426 |
|
|
|
| 1427 |
|
|
// check if mask available
|
| 1428 |
|
|
if ((code.etype & XPR_MASK) && !(fInstr->tmplate == 0xA || fInstr->tmplate == 0xE)) return false;
|
| 1429 |
|
|
|
| 1430 |
|
|
// self-relative jump offset
|
| 1431 |
|
|
if (code.etype & XPR_JUMPOS) {
|
| 1432 |
|
|
if (!(code.formatp->jumpSize)) return false;
|
| 1433 |
|
|
switch (code.formatp->jumpSize) {
|
| 1434 |
|
|
case 0: // no offset
|
| 1435 |
|
|
if (code.offset_jump || offsetRelocated) return false;
|
| 1436 |
|
|
break;
|
| 1437 |
|
|
case 1: // 1 byte
|
| 1438 |
|
|
if (!(code.fitJump & IFIT_I8)) return false;
|
| 1439 |
|
|
break;
|
| 1440 |
|
|
case 2: // 2 bytes
|
| 1441 |
|
|
if (!(code.fitJump & IFIT_I16)) return false;
|
| 1442 |
|
|
break;
|
| 1443 |
|
|
case 3: // 3 bytes
|
| 1444 |
|
|
if (!(code.fitJump & IFIT_I24)) return false;
|
| 1445 |
|
|
break;
|
| 1446 |
|
|
case 4: // 4 bytes
|
| 1447 |
|
|
if (!(code.fitJump & IFIT_I32)) return false;
|
| 1448 |
|
|
break;
|
| 1449 |
|
|
}
|
| 1450 |
|
|
}
|
| 1451 |
|
|
else { // no self-relative jump offset
|
| 1452 |
|
|
if (code.formatp->jumpSize) return false;
|
| 1453 |
|
|
}
|
| 1454 |
|
|
|
| 1455 |
|
|
if (instructionlistId[ii].opimmediate == OPI_IMPLICIT && !(code.etype & XPR_IMMEDIATE)) {
|
| 1456 |
|
|
// There is no immediate operand. instructionlistId[ii] has an implicit immediate operand.
|
| 1457 |
|
|
// Insert implicit operand and see if it fits
|
| 1458 |
|
|
codeTemp.value.u = instructionlistId[ii].implicit_imm;
|
| 1459 |
|
|
codeTemp.etype |= XPR_INT;
|
| 1460 |
|
|
codeTemp.fitNum = 0xFFFFFFFF;
|
| 1461 |
|
|
}
|
| 1462 |
|
|
|
| 1463 |
|
|
// immediate operand
|
| 1464 |
|
|
if (codeTemp.etype & XPR_IMMEDIATE) {
|
| 1465 |
|
|
if (code.dtype & TYP_FLOAT) {
|
| 1466 |
|
|
if (variant & VARIANT_I2) {
|
| 1467 |
|
|
// immediate should be integer
|
| 1468 |
|
|
codeTemp.etype = (code.etype & ~XPR_FLT) | XPR_INT;
|
| 1469 |
|
|
codeTemp.value.i = (int64_t)code.value.d;
|
| 1470 |
|
|
switch (code.formatp->immSize) {
|
| 1471 |
|
|
case 0: // no immediate
|
| 1472 |
|
|
return false;
|
| 1473 |
|
|
case 1: // 1 byte
|
| 1474 |
|
|
if (codeTemp.value.i < -0x80 || codeTemp.value.i > 0x7F) return false;
|
| 1475 |
|
|
break;
|
| 1476 |
|
|
case 2: // 2 bytes
|
| 1477 |
|
|
if (codeTemp.value.i < -0x8000 || codeTemp.value.i > 0x7FFF) return false;
|
| 1478 |
|
|
break;
|
| 1479 |
|
|
case 4: // 4 bytes
|
| 1480 |
|
|
if (-codeTemp.value.i > 0x80000000u || codeTemp.value.i > 0x7FFFFFFF) return false;
|
| 1481 |
|
|
break;
|
| 1482 |
|
|
}
|
| 1483 |
|
|
}
|
| 1484 |
|
|
else {
|
| 1485 |
|
|
// immediate is floating point or small integer converted to floating point
|
| 1486 |
|
|
int fit = code.fitNum;
|
| 1487 |
|
|
if ((code.dtype & 0xFF) <= (TYP_FLOAT32 & 0xFF)) fit |= FFIT_32;
|
| 1488 |
|
|
switch (code.formatp->immSize) {
|
| 1489 |
|
|
case 0: // no immediate
|
| 1490 |
|
|
return false;
|
| 1491 |
|
|
case 1: // 1 byte
|
| 1492 |
|
|
if (!(fit & IFIT_I8)) return false;
|
| 1493 |
|
|
break;
|
| 1494 |
|
|
case 2: // 2 bytes
|
| 1495 |
|
|
if (!(fit & FFIT_16)) return false;
|
| 1496 |
|
|
break;
|
| 1497 |
|
|
case 4: // 4 bytes
|
| 1498 |
|
|
if (!(fit & FFIT_32)) return false;
|
| 1499 |
|
|
break;
|
| 1500 |
|
|
case 8: // 8 bytes., currently not supported
|
| 1501 |
|
|
;
|
| 1502 |
|
|
}
|
| 1503 |
|
|
}
|
| 1504 |
|
|
}
|
| 1505 |
|
|
else {
|
| 1506 |
|
|
// immediate integer operand
|
| 1507 |
|
|
switch (code.formatp->immSize) {
|
| 1508 |
|
|
case 0: // no immediate
|
| 1509 |
|
|
return false;
|
| 1510 |
|
|
case 1:
|
| 1511 |
|
|
if (codeTemp.fitNum & IFIT_I8) break; // fits
|
| 1512 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT8 & 0x1F) && (codeTemp.fitNum & IFIT_U8)) break; // 8 bit size fits unsigned with no sign extension
|
| 1513 |
|
|
return false;
|
| 1514 |
|
|
case 2: // 2 bytes
|
| 1515 |
|
|
if (instructionlistId[ii].opimmediate == OPI_INT1632) { // 16+32 bits
|
| 1516 |
|
|
if ((codeTemp.value.u >> 32) <= 0xFFFF) break;
|
| 1517 |
|
|
return false;
|
| 1518 |
|
|
}
|
| 1519 |
|
|
if (codeTemp.fitNum & IFIT_I16) break; // fits
|
| 1520 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT16 & 0x1F) && (codeTemp.fitNum & IFIT_U16)) break; // 16 bit size fits unsigned with no sign extension
|
| 1521 |
|
|
return false;
|
| 1522 |
|
|
case 4: // 4 bytes
|
| 1523 |
|
|
if (instructionlistId[ii].opimmediate == OPI_2INT16) { // 16+16 bits
|
| 1524 |
|
|
if (codeTemp.value.w <= 0xFFFF && (codeTemp.value.u >> 32) <= 0xFFFF) break;
|
| 1525 |
|
|
return false;
|
| 1526 |
|
|
}
|
| 1527 |
|
|
if (codeTemp.fitNum & IFIT_I32) break; // fits
|
| 1528 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT32 & 0x1F) && (codeTemp.fitNum & IFIT_U32)) break; // 32 bit size fits unsigned with no sign extension
|
| 1529 |
|
|
return false;
|
| 1530 |
|
|
case 8: // 8 bytes
|
| 1531 |
|
|
break;
|
| 1532 |
|
|
default: // does not fit other sizes
|
| 1533 |
|
|
return false;
|
| 1534 |
|
|
}
|
| 1535 |
|
|
}
|
| 1536 |
|
|
}
|
| 1537 |
|
|
else {
|
| 1538 |
|
|
// no explicit immediate
|
| 1539 |
|
|
if (code.formatp->immSize && code.instruction != II_JUMP && code.instruction != II_CALL) return false;
|
| 1540 |
|
|
}
|
| 1541 |
|
|
|
| 1542 |
|
|
// memory operand
|
| 1543 |
|
|
if (code.etype & XPR_MEM) {
|
| 1544 |
|
|
if (code.formatp->mem == 0) return false; // memory operand requested but not supported
|
| 1545 |
|
|
uint32_t scale2 = formatOT;
|
| 1546 |
|
|
if (scale2 > 4) scale2 -= 3; // operand size = 1 << scale2
|
| 1547 |
|
|
if (code.etype & XPR_SYM1) { // has data symbol
|
| 1548 |
|
|
if (code.etype & XPR_SYM2) { // has difference between two symbols
|
| 1549 |
|
|
codeTemp.sizeUnknown = 1;
|
| 1550 |
|
|
}
|
| 1551 |
|
|
if (!(code.fitAddr & IFIT_I32)) return false; // assume symbol address requires 32 bits. local symbol difference resolved later when sizeUnknown = 1
|
| 1552 |
|
|
}
|
| 1553 |
|
|
// check index and scale factor
|
| 1554 |
|
|
if (code.etype & XPR_INDEX) {
|
| 1555 |
|
|
if (!(code.formatp->mem & 4)) return false; // index not supported
|
| 1556 |
|
|
}
|
| 1557 |
|
|
else { // no index requested
|
| 1558 |
|
|
if (code.formatp->mem & 4) {
|
| 1559 |
|
|
codeTemp.index = 0x1F; // RT = 0x1F means no index
|
| 1560 |
|
|
codeTemp.scale = 1 << scale2;
|
| 1561 |
|
|
}
|
| 1562 |
|
|
}
|
| 1563 |
|
|
|
| 1564 |
|
|
// check address offset size
|
| 1565 |
|
|
if (code.etype & XPR_OFFSET) {
|
| 1566 |
|
|
if (!(code.formatp->mem & 0x10)) return false; // format does not support memory offset
|
| 1567 |
|
|
switch (code.formatp->addrSize) {
|
| 1568 |
|
|
case 1: // scale factor depends on operand size
|
| 1569 |
|
|
if (code.offset_mem & ((1 << scale2) - 1)) return false; // offset is not a multiple of the scale factor
|
| 1570 |
|
|
if ((code.offset_mem >> scale2) < -0x80 || (code.offset_mem >> scale2) > 0x7F) return false;
|
| 1571 |
|
|
break;
|
| 1572 |
|
|
case 2:
|
| 1573 |
|
|
if (!(code.fitAddr & IFIT_I16)) return false;
|
| 1574 |
|
|
break;
|
| 1575 |
|
|
case 4:
|
| 1576 |
|
|
if (!(code.fitAddr & IFIT_I32)) return false;
|
| 1577 |
|
|
break;
|
| 1578 |
|
|
default:
|
| 1579 |
|
|
return false;
|
| 1580 |
|
|
}
|
| 1581 |
|
|
}
|
| 1582 |
|
|
}
|
| 1583 |
|
|
else if (code.formatp->mem) return false; // memory operand supported by not requested
|
| 1584 |
|
|
|
| 1585 |
|
|
return true;
|
| 1586 |
|
|
}
|
| 1587 |
|
|
|
| 1588 |
|
|
|
| 1589 |
|
|
// Check code for correctness before fitting a format, and fix some code details
|
| 1590 |
|
|
void CAssembler::checkCode1(SCode & code) {
|
| 1591 |
|
|
|
| 1592 |
|
|
// check code for correctness
|
| 1593 |
|
|
if (code.etype & XPR_MEM) {
|
| 1594 |
|
|
// check memory operand
|
| 1595 |
|
|
bool useVectors = (code.dtype & TYP_FLOAT) != 0 || (code.dest & 0xE0) == REG_V || (code.reg1 & 0xE0) == REG_V;
|
| 1596 |
|
|
if (useVectors && code.scale == -1) {
|
| 1597 |
|
|
code.etype |= XPR_LENGTH; code.length = code.index; // index register is also length
|
| 1598 |
|
|
}
|
| 1599 |
|
|
int numOpt = ((code.etype & XPR_SCALAR) != 0) + ((code.etype & XPR_LENGTH) != 0) + ((code.etype & XPR_BROADC) != 0);
|
| 1600 |
|
|
if (numOpt > 1) {errors.reportLine(ERR_CONFLICT_OPTIONS); return;} // conflicting options
|
| 1601 |
|
|
if (numOpt && !useVectors && !(code.etype & XPR_SCALAR)) {errors.reportLine(ERR_VECTOR_OPTION); return;} // vector option on non-vector operands
|
| 1602 |
|
|
|
| 1603 |
|
|
if (code.etype & XPR_INDEX) {
|
| 1604 |
|
|
// check scale factor
|
| 1605 |
|
|
const int dataSizeTable[8] = {1, 2, 4, 8, 16, 4, 8, 16}; // data size for each operant type
|
| 1606 |
|
|
int8_t scale = code.scale;
|
| 1607 |
|
|
if (scale != 1 && scale != -1 && scale != dataSizeTable[code.dtype & 7]) errors.reportLine(ERR_SCALE_FACTOR);
|
| 1608 |
|
|
if (code.scale == -1 && code.length && code.length != code.index) {
|
| 1609 |
|
|
errors.reportLine(ERR_NEG_INDEX_LENGTH); return;
|
| 1610 |
|
|
}
|
| 1611 |
|
|
}
|
| 1612 |
|
|
if (!(code.etype & XPR_BASE)) {
|
| 1613 |
|
|
// no base pointer. check if there is a symbol with an implicit base pointer
|
| 1614 |
|
|
int32_t symi1 = 0;
|
| 1615 |
|
|
if (code.etype & XPR_SYM1) symi1 = findSymbol(code.sym1);
|
| 1616 |
|
|
if ((code.etype & XPR_SYM2) || symi1 < 1 || !(symbols[symi1].st_other & STV_SECT_ATTR)) {
|
| 1617 |
|
|
errors.reportLine(ERR_NO_BASE);
|
| 1618 |
|
|
}
|
| 1619 |
|
|
}
|
| 1620 |
|
|
}
|
| 1621 |
|
|
// check mask
|
| 1622 |
|
|
if ((code.etype & XPR_MASK) && (code.mask & 0x1F) > 6) errors.reportLine(ERR_MASK_REGISTER);
|
| 1623 |
|
|
|
| 1624 |
|
|
// check fallback
|
| 1625 |
|
|
if (code.etype & XPR_MASK) {
|
| 1626 |
|
|
if (code.fallback == 0) code.fallback = code.reg1 ? code.reg1 : 0x1F; // default fallback is reg1, or 0 if no reg1
|
| 1627 |
|
|
if ((code.fallback & 0xE0) == 0) code.fallback |= code.dest & 0xE0; // get type of dest if fallback has no type
|
| 1628 |
|
|
}
|
| 1629 |
|
|
|
| 1630 |
|
|
// details for unsigned variants
|
| 1631 |
|
|
if (code.dtype & TYP_UNS) { // an unsigned type is specified
|
| 1632 |
|
|
switch (code.instruction) {
|
| 1633 |
|
|
case II_DIV: case II_DIV_EX:
|
| 1634 |
|
|
case II_MUL_HI: case II_MUL_EX:
|
| 1635 |
|
|
case II_REM: case II_SHIFT_RIGHT_S:
|
| 1636 |
|
|
case II_MIN: case II_MAX:
|
| 1637 |
|
|
code.instruction |= 1; // change to unsigned version
|
| 1638 |
|
|
break;
|
| 1639 |
|
|
default:; // other instructions: do nothing
|
| 1640 |
|
|
}
|
| 1641 |
|
|
}
|
| 1642 |
|
|
|
| 1643 |
|
|
// handle half precision
|
| 1644 |
|
|
if (uint8_t(code.dtype) == uint8_t(TYP_FLOAT16)) {
|
| 1645 |
|
|
switch (code.instruction) {
|
| 1646 |
|
|
case II_ADD: case II_MUL: case II_DIV: case II_MUL_ADD:
|
| 1647 |
|
|
code.instruction |= II_ADD_H & 0xFF000; // change to half precision instruction
|
| 1648 |
|
|
break;
|
| 1649 |
|
|
case II_SUB:
|
| 1650 |
|
|
if ((code.etype & XPR_IMMEDIATE) && !(code.etype & (XPR_MEM | XPR_REG2))) {
|
| 1651 |
|
|
code.instruction = II_ADD_H; code.value.d = - code.value.d; // subtract constant changed to add -constant
|
| 1652 |
|
|
}
|
| 1653 |
|
|
else code.instruction = II_SUB_H;
|
| 1654 |
|
|
break;
|
| 1655 |
|
|
case II_SUB_REV:
|
| 1656 |
|
|
if (code.value.i == 0) { // -x
|
| 1657 |
|
|
code.instruction = II_TOGGLE_BIT;
|
| 1658 |
|
|
code.value.u = 15;
|
| 1659 |
|
|
}
|
| 1660 |
|
|
else errors.reportLine(ERR_WRONG_OPERANDS);
|
| 1661 |
|
|
break;
|
| 1662 |
|
|
case II_MOVE: case II_REPLACE: case II_REPLACE_EVEN: case II_REPLACE_ODD:
|
| 1663 |
|
|
if (code.etype & XPR_INT) { // convert integer to float16
|
| 1664 |
|
|
if (abs(code.value.i) > 65504) errors.reportLine(ERR_OVERFLOW);
|
| 1665 |
|
|
code.value.u = double2half(double(code.value.i));
|
| 1666 |
|
|
}
|
| 1667 |
|
|
else if (code.etype & XPR_FLT) { // convert double to float16
|
| 1668 |
|
|
if (code.value.d > 65504. || code.value.d < -65504.) errors.reportLine(ERR_OVERFLOW);
|
| 1669 |
|
|
code.value.u = double2half(code.value.d);
|
| 1670 |
|
|
code.etype = (code.etype & ~ XPR_IMMEDIATE) | XPR_INT;
|
| 1671 |
|
|
}
|
| 1672 |
|
|
if (code.instruction == II_SUB_H && (code.etype & XPR_IMMEDIATE)) {
|
| 1673 |
|
|
code.value.w ^= 0x8000;
|
| 1674 |
|
|
code.instruction &= ~1; // convert sub_h constant to add_h -constant
|
| 1675 |
|
|
}
|
| 1676 |
|
|
code.dtype = TYP_INT16;
|
| 1677 |
|
|
code.fitNum = IFIT_I16 | IFIT_I32;
|
| 1678 |
|
|
break;
|
| 1679 |
|
|
case II_STORE:
|
| 1680 |
|
|
if (code.etype & XPR_INT) code.value.u = double2half(double(code.value.i));
|
| 1681 |
|
|
else code.value.u = double2half(code.value.d);
|
| 1682 |
|
|
code.dtype = TYP_INT16;
|
| 1683 |
|
|
code.etype = (code.etype & ~ XPR_FLT) | XPR_INT;
|
| 1684 |
|
|
break;
|
| 1685 |
|
|
case II_ADD_H: case II_SUB_H: case II_MUL_H: case II_DIV_H: case II_MUL_ADD_H:
|
| 1686 |
|
|
break;
|
| 1687 |
|
|
default:
|
| 1688 |
|
|
// no other instructions support half precision
|
| 1689 |
|
|
errors.reportLine(ERR_WRONG_OPERANDS);
|
| 1690 |
|
|
}
|
| 1691 |
|
|
}
|
| 1692 |
|
|
|
| 1693 |
|
|
// special case instructions
|
| 1694 |
|
|
switch (code.instruction) {
|
| 1695 |
|
|
case II_STORE:
|
| 1696 |
|
|
if ((code.dtype & TYP_FLOAT) && (code.etype & XPR_FLT) && !(code.reg1)) {
|
| 1697 |
|
|
// store float constant
|
| 1698 |
|
|
// code.dtype = code.dtype + (TYP_INT32 - TYP_FLOAT32) | TYP_UNS;
|
| 1699 |
|
|
}
|
| 1700 |
|
|
}
|
| 1701 |
|
|
|
| 1702 |
|
|
// check size needed for immediate operand and address
|
| 1703 |
|
|
fitConstant(code);
|
| 1704 |
|
|
fitAddress(code);
|
| 1705 |
|
|
|
| 1706 |
|
|
if (code.instruction & II_JUMP_INSTR) {
|
| 1707 |
|
|
// jump instruction
|
| 1708 |
|
|
code.category = 4;
|
| 1709 |
|
|
// check register type
|
| 1710 |
|
|
if (code.dtype && code.reg1) {
|
| 1711 |
|
|
if ((code.dtype & 0xFF) <= (TYP_FLOAT16 & 0xFF)) { // must use g.p. registers
|
| 1712 |
|
|
if (code.reg1 & REG_V) errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1713 |
|
|
}
|
| 1714 |
|
|
else { // must use vector registers
|
| 1715 |
|
|
if (code.reg1 & REG_R) errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1716 |
|
|
}
|
| 1717 |
|
|
}
|
| 1718 |
|
|
// check if immediate operand too big
|
| 1719 |
|
|
if (code.etype & XPR_IMMEDIATE) {
|
| 1720 |
|
|
if (code.dtype & TYP_FLOAT) {
|
| 1721 |
|
|
if ((code.dtype & 0xFF) >= (TYP_FLOAT64 & 0xFF) && !(code.fitNum & FFIT_32)) errors.reportLine(ERR_TOO_LARGE_FOR_JUMP);
|
| 1722 |
|
|
}
|
| 1723 |
|
|
else if (code.dtype & TYP_UNS) {
|
| 1724 |
|
|
if ((code.dtype & 0x1F) >= (TYP_INT64 & 0x1F) && !(code.fitNum & IFIT_U32)) errors.reportLine(ERR_TOO_LARGE_FOR_JUMP);
|
| 1725 |
|
|
}
|
| 1726 |
|
|
else if ((code.dtype & 0x1F) >= (TYP_INT64 & 0x1F) && !(code.fitNum & IFIT_I32)) errors.reportLine(ERR_TOO_LARGE_FOR_JUMP);
|
| 1727 |
|
|
}
|
| 1728 |
|
|
}
|
| 1729 |
|
|
|
| 1730 |
|
|
// optimize instruction
|
| 1731 |
|
|
if (cmd.optiLevel) optimizeCode(code);
|
| 1732 |
|
|
}
|
| 1733 |
|
|
|
| 1734 |
|
|
|
| 1735 |
|
|
// Check register types etc. after fitting a format, and finish code details
|
| 1736 |
|
|
void CAssembler::checkCode2(SCode & code) {
|
| 1737 |
|
|
if (code.instruction >= II_ALIGN) return; // not an instruction
|
| 1738 |
|
|
|
| 1739 |
|
|
// check type
|
| 1740 |
|
|
if (code.dtype == 0) {
|
| 1741 |
|
|
if ((code.etype & (XPR_INT | XPR_FLT | XPR_REG | XPR_REG1 | XPR_MEM)) && !(variant & (VARIANT_D0 | VARIANT_D2))) { // type not specified
|
| 1742 |
|
|
if (code.instruction == II_MOVE && code.category == 3 && !(code.etype & (XPR_IMMEDIATE | XPR_MEM))) {
|
| 1743 |
|
|
// register-to-register move. find appropriate operand type
|
| 1744 |
|
|
code.dtype = TYP_INT64; // g.p. register. copy whole register ??
|
| 1745 |
|
|
if (code.dest & REG_V) code.dtype = TYP_INT8; // vector register. length must be divisible by tpe
|
| 1746 |
|
|
}
|
| 1747 |
|
|
else {
|
| 1748 |
|
|
errors.reportLine(ERR_TYPE_MISSING); // type must be specified
|
| 1749 |
|
|
return;
|
| 1750 |
|
|
}
|
| 1751 |
|
|
}
|
| 1752 |
|
|
}
|
| 1753 |
|
|
|
| 1754 |
|
|
if (code.etype & XPR_MEM) {
|
| 1755 |
|
|
// check memory operand
|
| 1756 |
|
|
if (variant & VARIANT_M0) { // memory destination
|
| 1757 |
|
|
if (code.etype & XPR_BROADC) {
|
| 1758 |
|
|
errors.reportLine(ERR_DEST_BROADCAST); return;
|
| 1759 |
|
|
}
|
| 1760 |
|
|
}
|
| 1761 |
|
|
if (code.base >= REG_R + 28 && code.base <= REG_R + 30 && (code.formatp->addrSize) > 1 && pass < 4) {
|
| 1762 |
|
|
// cannot use r28 - r30 as base pointer with more than 8 bits offset
|
| 1763 |
|
|
// (we don't get an error message here for a symbol address because the base pointer has not been assigned yet)
|
| 1764 |
|
|
errors.reportLine(ERR_R28_30_BASE);
|
| 1765 |
|
|
}
|
| 1766 |
|
|
// check M1 option
|
| 1767 |
|
|
/*if (variant & VARIANT_M1) {
|
| 1768 |
|
|
if (code.formatp->tmplate == 0xE && (code.etype & XPR_MEM) && (code.etype & XPR_INT)
|
| 1769 |
|
|
&& (code.value.i > 63 || code.value.i < -63)) {
|
| 1770 |
|
|
errors.reportLine(ERR_CONSTANT_TOO_LARGE); return;
|
| 1771 |
|
|
}
|
| 1772 |
|
|
if (code.optionbits && (code.etype & XPR_MEM)) {
|
| 1773 |
|
|
errors.reportLine(ERR_BOTH_MEM_AND_OPTIONS); return;
|
| 1774 |
|
|
}
|
| 1775 |
|
|
}*/
|
| 1776 |
|
|
}
|
| 1777 |
|
|
|
| 1778 |
|
|
if (lineError) return; // skip additional errors
|
| 1779 |
|
|
|
| 1780 |
|
|
// Make list of operands from available operands. 0=none, 1=immediate, 2=memory, 5=RT, 6=RS, 7=RU, 8=RD
|
| 1781 |
|
|
uint8_t opAvail = code.formatp->opAvail; // Bit index of available operands
|
| 1782 |
|
|
int j; // loop counter
|
| 1783 |
|
|
|
| 1784 |
|
|
// check if correct number of registers
|
| 1785 |
|
|
uint32_t numReq = instructionlistId[code.instr1].sourceoperands; // number of registers required for this instruction
|
| 1786 |
|
|
if (code.category == 4 && (code.instruction & II_JUMP_INSTR) && (code.etype & XPR_JUMPOS) && numReq) numReq--;
|
| 1787 |
|
|
if ((code.etype & XPR_IMMEDIATE) && numReq) numReq--;
|
| 1788 |
|
|
if ((code.etype & XPR_INT2) && numReq) numReq--;
|
| 1789 |
|
|
if ((code.etype & XPR_MEM) && !(variant & VARIANT_M0) && numReq) numReq--;
|
| 1790 |
|
|
|
| 1791 |
|
|
uint32_t nReg = 0;
|
| 1792 |
|
|
for (j = 0; j < 3; j++) nReg += (code.etype & (XPR_REG1 << j)) != 0;
|
| 1793 |
|
|
if (nReg < numReq && !(variant & VARIANT_D3))
|
| 1794 |
|
|
errors.reportLine(ERR_TOO_FEW_OPERANDS);
|
| 1795 |
|
|
else if (nReg > numReq && instructionlistId[code.instr1].opimmediate != 25) {
|
| 1796 |
|
|
errors.reportLine(ERR_TOO_MANY_OPERANDS);
|
| 1797 |
|
|
}
|
| 1798 |
|
|
|
| 1799 |
|
|
// count number of available registers in format
|
| 1800 |
|
|
uint32_t regAvail = 0;
|
| 1801 |
|
|
opAvail >>= 4; // register operands
|
| 1802 |
|
|
while (opAvail) {
|
| 1803 |
|
|
regAvail += opAvail & 1;
|
| 1804 |
|
|
opAvail >>= 1;
|
| 1805 |
|
|
}
|
| 1806 |
|
|
|
| 1807 |
|
|
// expected register types
|
| 1808 |
|
|
uint8_t regType = REG_R;
|
| 1809 |
|
|
if ((code.formatp->vect & 1) || ((code.formatp->vect & 0x10) && (code.dtype & 4))) regType = REG_V;
|
| 1810 |
|
|
|
| 1811 |
|
|
// check each of up to three source registers
|
| 1812 |
|
|
for (j = 0; j < 3; j++) {
|
| 1813 |
|
|
if (code.etype & (XPR_REG1 << j)) { // register j used
|
| 1814 |
|
|
if (variant & VARIANT_SPECS) { // must be special register
|
| 1815 |
|
|
if (((&code.reg1)[j] & 0xE0) <= REG_V) errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1816 |
|
|
}
|
| 1817 |
|
|
else if ((variant & (VARIANT_R1 << j))
|
| 1818 |
|
|
|| ((variant & VARIANT_RL) && (j == 2 || (&code.reg1)[j+1] == 0))) {
|
| 1819 |
|
|
if (((&code.reg1)[j] & 0xE0) != REG_R) { // this operand must be general purpose register
|
| 1820 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1821 |
|
|
}
|
| 1822 |
|
|
}
|
| 1823 |
|
|
else if (((&code.reg1)[j] & 0xE0) != regType) { // wrong register type
|
| 1824 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1825 |
|
|
}
|
| 1826 |
|
|
}
|
| 1827 |
|
|
if (lineError) return; // skip additional errors
|
| 1828 |
|
|
}
|
| 1829 |
|
|
// check destination register
|
| 1830 |
|
|
if (code.dest) {
|
| 1831 |
|
|
if (variant & VARIANT_SPECD) { // must be special register
|
| 1832 |
|
|
if ((code.dest & 0xE0) <= REG_V) errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1833 |
|
|
}
|
| 1834 |
|
|
else if (variant & VARIANT_R0) {
|
| 1835 |
|
|
if ((code.dest & 0xE0) != REG_R) { // destination must be general purpose register
|
| 1836 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1837 |
|
|
}
|
| 1838 |
|
|
}
|
| 1839 |
|
|
else if ((code.dest & 0xE0) != regType && code.dest != 2) { // wrong register type
|
| 1840 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1841 |
|
|
}
|
| 1842 |
|
|
else if ((code.dest == 2) ^ ((variant & VARIANT_M0) != 0)) { // operands in wrong order
|
| 1843 |
|
|
errors.reportLine(ERR_OPERANDS_WRONG_ORDER);
|
| 1844 |
|
|
}
|
| 1845 |
|
|
|
| 1846 |
|
|
if (lineError) return; // skip additional errors
|
| 1847 |
|
|
}
|
| 1848 |
|
|
if ((variant & (VARIANT_D0 | VARIANT_D1 | VARIANT_D2)) != 0 && code.dest != 0) { // should not have destination
|
| 1849 |
|
|
errors.reportLine(ERR_NO_DESTINATION);
|
| 1850 |
|
|
}
|
| 1851 |
|
|
if ((variant & (VARIANT_D0 | VARIANT_D1)) == 0 && code.dest == 0) { // should have destination
|
| 1852 |
|
|
errors.reportLine(ERR_MISSING_DESTINATION);
|
| 1853 |
|
|
}
|
| 1854 |
|
|
|
| 1855 |
|
|
// check mask register
|
| 1856 |
|
|
if ((code.etype & XPR_FALLBACK) && !(code.etype & XPR_MASK)) { // fallback but no mask
|
| 1857 |
|
|
code.mask = 7; // no mask
|
| 1858 |
|
|
}
|
| 1859 |
|
|
if ((code.etype & (XPR_MASK | XPR_FALLBACK)) && (code.mask & 7) != 7) { // mask used
|
| 1860 |
|
|
if ((code.mask & 0xE0) != regType) { // wrong type for mask register
|
| 1861 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1862 |
|
|
}
|
| 1863 |
|
|
else if ((code.fallback & 0xE0) != regType && (code.fallback & 0x1F) != 0x1F) { // wrong type for fallback registser
|
| 1864 |
|
|
if ((variant & VARIANT_RL) && code.fallback == code.reg1) {
|
| 1865 |
|
|
// fallback has been assigned to reg1 in CAssembler::checkCode1, but reg1 is g.p. register
|
| 1866 |
|
|
code.fallback = 0x5F;
|
| 1867 |
|
|
}
|
| 1868 |
|
|
else errors.reportLine(ERR_WRONG_REG_TYPE);
|
| 1869 |
|
|
}
|
| 1870 |
|
|
if ((code.etype & XPR_FALLBACK) && (variant & VARIANT_F0)) { // cannot have fallback register
|
| 1871 |
|
|
errors.reportLine(ERR_CANNOT_HAVEFALLBACK1);
|
| 1872 |
|
|
}
|
| 1873 |
|
|
// check if fallback is the right register
|
| 1874 |
|
|
if (code.etype & XPR_FALLBACK) {
|
| 1875 |
|
|
if (code.numOp >= 3 && code.fallback != code.reg1) {
|
| 1876 |
|
|
errors.reportLine(ERR_3OP_AND_FALLBACK);
|
| 1877 |
|
|
}
|
| 1878 |
|
|
}
|
| 1879 |
|
|
}
|
| 1880 |
|
|
|
| 1881 |
|
|
// check scale factor
|
| 1882 |
|
|
const int dataSizeTable[8] = { 1, 2, 4, 8, 16, 4, 8, 16 }; // data size for each operant type
|
| 1883 |
|
|
int8_t scale = code.scale;
|
| 1884 |
|
|
if (scale == 0) scale = 1;
|
| 1885 |
|
|
if (((code.formatp->scale & 4) && scale != -1) // scale must be -1
|
| 1886 |
|
|
|| (((code.formatp->scale & 6) == 2) && scale != dataSizeTable[code.dtype & 7]) // scale must match operand type
|
| 1887 |
|
|
|| (((code.formatp->scale & 6) == 0 && scale != 1 && (code.index & 0x1F) != 0x1F))) { // scale must be 1
|
| 1888 |
|
|
errors.reportLine(ERR_SCALE_FACTOR);
|
| 1889 |
|
|
}
|
| 1890 |
|
|
// check vector length
|
| 1891 |
|
|
int numOpt = ((code.etype & XPR_SCALAR) != 0) + ((code.etype & XPR_LENGTH) != 0) + ((code.etype & XPR_BROADC) != 0);
|
| 1892 |
|
|
if (numOpt == 0 && (code.etype & XPR_MEM) && (code.formatp->vect & ~0x10) && !(code.etype & XPR_LIMIT) && !(code.formatp->vect & 0x80)) {
|
| 1893 |
|
|
errors.reportLine(ERR_LENGTH_OPTION_MISS); return; // missing length option
|
| 1894 |
|
|
}
|
| 1895 |
|
|
|
| 1896 |
|
|
// check immediate type
|
| 1897 |
|
|
if ((code.etype & XPR_FLT) && (variant & VARIANT_I2)) {
|
| 1898 |
|
|
// immediate should be integer
|
| 1899 |
|
|
code.etype = (code.etype & ~XPR_FLT) | XPR_INT;
|
| 1900 |
|
|
//code.value.i = (int64_t)code.value.d;
|
| 1901 |
|
|
code.value.i = value0;
|
| 1902 |
|
|
}
|
| 1903 |
|
|
if ((code.etype & XPR_INT) && !(code.etype & (XPR_LIMIT | XPR_INT2))) {
|
| 1904 |
|
|
// check if value fits specified operand type
|
| 1905 |
|
|
int ok = 1;
|
| 1906 |
|
|
switch (code.dtype & 0x1F) {
|
| 1907 |
|
|
case TYP_INT8 & 0x1F:
|
| 1908 |
|
|
ok = code.fitNum & (IFIT_I8 | IFIT_U8); break;
|
| 1909 |
|
|
case TYP_INT16 & 0x1F:
|
| 1910 |
|
|
ok = code.fitNum & (IFIT_I16 | IFIT_U16); break;
|
| 1911 |
|
|
case TYP_INT32 & 0x1F:
|
| 1912 |
|
|
ok = code.fitNum & (IFIT_I32 | IFIT_U32); break;
|
| 1913 |
|
|
}
|
| 1914 |
|
|
if (!ok && (instructionlistId[code.instr1].opimmediate & ~0x10) != OPI_INT32) {
|
| 1915 |
|
|
errors.reportLine(ERR_CONSTANT_TOO_LARGE);
|
| 1916 |
|
|
}
|
| 1917 |
|
|
}
|
| 1918 |
|
|
|
| 1919 |
|
|
// check options
|
| 1920 |
|
|
if ((code.etype & XPR_OPTIONS) && !(variant & VARIANT_On) && code.formatp->category != 4) {
|
| 1921 |
|
|
errors.reportLine(ERR_CANNOT_HAVE_OPTION);
|
| 1922 |
|
|
}
|
| 1923 |
|
|
|
| 1924 |
|
|
// details for unsigned variants
|
| 1925 |
|
|
if (code.dtype & TYP_UNS) { // an unsigned type is specified
|
| 1926 |
|
|
if ((variant & VARIANT_U3) && code.instruction == II_COMPARE && code.optionbits) code.optionbits |= 8; // unsigned compare
|
| 1927 |
|
|
}
|
| 1928 |
|
|
|
| 1929 |
|
|
if (section) code.section = section; // insert section
|
| 1930 |
|
|
}
|
| 1931 |
|
|
|
| 1932 |
|
|
|
| 1933 |
|
|
// find reason why no format fits, and return error number
|
| 1934 |
|
|
uint32_t CAssembler::checkCodeE(SCode & code) {
|
| 1935 |
|
|
// check fallback
|
| 1936 |
|
|
if ((code.etype & XPR_FALLBACK) && code.fallback != code.dest) {
|
| 1937 |
|
|
if (((code.etype & XPR_MEM) && (code.dest & REG_V)) || code.index) return ERR_CANNOT_HAVEFALLBACK2;
|
| 1938 |
|
|
if (instructionlistId[code.instr1].sourceoperands >= 3) return ERR_3OP_AND_FALLBACK;
|
| 1939 |
|
|
}
|
| 1940 |
|
|
// check three-operand instructions
|
| 1941 |
|
|
if (instructionlistId[code.instr1].sourceoperands >= 3 && code.reg1 != code.dest && (code.etype & XPR_MEM) && ((code.dest & REG_V) || code.index)) {
|
| 1942 |
|
|
return ERR_3OP_AND_MEM;
|
| 1943 |
|
|
}
|
| 1944 |
|
|
return ERR_NO_INSTRUCTION_FIT; // any other reason
|
| 1945 |
|
|
}
|
| 1946 |
|
|
|
| 1947 |
|
|
|
| 1948 |
|
|
// optimize instruction. replace by more efficient instruction if possible
|
| 1949 |
|
|
void CAssembler::optimizeCode(SCode & code) {
|
| 1950 |
|
|
|
| 1951 |
|
|
// is it a vector instruction?
|
| 1952 |
|
|
bool hasVector = ((code.dest | code.reg1) & REG_V) != 0;
|
| 1953 |
|
|
|
| 1954 |
|
|
// is it a floating point instruction?
|
| 1955 |
|
|
bool isFloat = (code.dtype & TYP_FLOAT) != 0;
|
| 1956 |
|
|
|
| 1957 |
|
|
if (code.instruction & II_JUMP_INSTR) {
|
| 1958 |
|
|
// jump instruction
|
| 1959 |
|
|
// optimize immediate jump offset operand
|
| 1960 |
|
|
if ((code.instruction & 0xFF) == II_SUB && (code.etype & XPR_IMMEDIATE) == XPR_INT
|
| 1961 |
|
|
&& code.value.i >= -0x7F && code.value.i <= 0x80 && cmd.optiLevel
|
| 1962 |
|
|
&& ((code.dtype & 0xFF) == (TYP_INT32 & 0xFF) || ((code.dtype & 0xFF) <= (TYP_INT32 & 0xFF) && (code.dtype & TYP_PLUS)))) {
|
| 1963 |
|
|
// subtract with conditional jump with 8-bit immediate and 8-bit address
|
| 1964 |
|
|
// should be replaced by addition of the negative constant
|
| 1965 |
|
|
int32_t isym = 0;
|
| 1966 |
|
|
if (code.etype & XPR_SYM1) isym = findSymbol(code.sym1);
|
| 1967 |
|
|
if (isym <= 0 || symbols[isym].st_section == section || code_size <= (1 << 9)) {
|
| 1968 |
|
|
// we are not sure yet, but chances are good that the address fits an 8-bit field. Replace sub by add
|
| 1969 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
| 1970 |
|
|
code.instruction ^= (II_SUB ^ II_ADD); // replace sub with add
|
| 1971 |
|
|
if ((code.instruction & 0xFFFF00) == II_JUMP_CARRY) code.instruction ^= 0x100; // carry condition is inverted
|
| 1972 |
|
|
}
|
| 1973 |
|
|
}
|
| 1974 |
|
|
if ((code.fitNum & (IFIT_J16 | IFIT_J32) && (code.etype & XPR_IMMEDIATE) == XPR_INT && (code.instruction & 0xFE) == II_ADD)) {
|
| 1975 |
|
|
// replace add with sub or vice versa
|
| 1976 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
| 1977 |
|
|
code.instruction ^= (II_SUB ^ II_ADD);
|
| 1978 |
|
|
if ((code.instruction & 0xFFFF00) == II_JUMP_CARRY) code.instruction ^= 0x100; // carry condition is inverted
|
| 1979 |
|
|
code.fitNum |= (code.fitNum & IFIT_J) >> 1; // signal that it fits
|
| 1980 |
|
|
}
|
| 1981 |
|
|
}
|
| 1982 |
|
|
else { // other instruction. optimize immediate operand
|
| 1983 |
|
|
if ((code.etype & XPR_INT) /* && !(code.etype & (XPR_OFFSET | XPR_LIMIT | XPR_SYM1))*/ ) {
|
| 1984 |
|
|
if ((code.instruction & 0xFFFFFFFE) == II_ADD && (code.fitNum & IFIT_J8) != 0) {
|
| 1985 |
|
|
// we can make the instruction smaller by changing the sign of the constant and exchange add and sub
|
| 1986 |
|
|
// (we don't have to do this for 0x8000 and 0x80000000 because the can be fitted as 1 << x)
|
| 1987 |
|
|
code.instruction ^= (II_ADD ^ II_SUB); // replace add with sub or vice versa
|
| 1988 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
| 1989 |
|
|
code.fitNum |= (code.fitNum & IFIT_J) >> 1; // signal that it fits
|
| 1990 |
|
|
}
|
| 1991 |
|
|
else if (code.instruction == II_SUB && (code.fitNum & (IFIT_I16SH16 | IFIT_I16)) && !(code.fitNum & IFIT_I8)
|
| 1992 |
|
|
&& code.value.w != 0x80000000U && code.value.w != 0xFFFF8000U && code.dest == code.reg1 && !hasVector
|
| 1993 |
|
|
&& (((uint8_t)code.dtype == (uint8_t)TYP_INT32) || (((uint8_t)code.dtype < (uint8_t)TYP_INT32) && (code.dtype & TYP_PLUS)))) {
|
| 1994 |
|
|
code.instruction = II_ADD; // replace sub with add
|
| 1995 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
| 1996 |
|
|
}
|
| 1997 |
|
|
else if (code.instruction == II_SUB && (code.fitNum & IFIT_I8SHIFT) && !(code.fitNum & IFIT_I8) && !isFloat
|
| 1998 |
|
|
&& code.dest == code.reg1
|
| 1999 |
|
|
&& (((uint8_t)code.dtype >= (uint8_t)TYP_INT32) || (code.dtype & TYP_PLUS))) {
|
| 2000 |
|
|
code.instruction = II_ADD; // replace sub with add
|
| 2001 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
| 2002 |
|
|
code.fitNum &= ~(IFIT_I16 | IFIT_I16SH16 | IFIT_I32SH32);
|
| 2003 |
|
|
}
|
| 2004 |
|
|
else if (code.instruction == II_SUB && (code.fitNum & IFIT_I32SH32) && !(code.fitNum & (IFIT_I16SHIFT | IFIT_I32))
|
| 2005 |
|
|
&& (((uint8_t)code.dtype == (uint8_t)TYP_INT64) || (code.dtype & TYP_PLUS)) && !isFloat) {
|
| 2006 |
|
|
code.instruction = II_ADD; // replace sub with add
|
| 2007 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
| 2008 |
|
|
}
|
| 2009 |
|
|
else if ((code.instruction == II_MOVE || code.instruction == II_AND)
|
| 2010 |
|
|
&& (code.fitNum & IFIT_U32) && !(code.fitNum & (IFIT_I32 | IFIT_I16SHIFT))
|
| 2011 |
|
|
&& ((uint8_t)code.dtype == (uint8_t)TYP_INT64) && !hasVector) {
|
| 2012 |
|
|
code.dtype = TYP_INT32; // changing type to int32 will zero extend
|
| 2013 |
|
|
}
|
| 2014 |
|
|
/*else if (code.instruction == II_MOVE
|
| 2015 |
|
|
&& (code.fitNum & IFIT_U16) && !(code.fitNum & IFIT_I16)
|
| 2016 |
|
|
&& ((uint8_t)code.dtype >= (uint8_t)TYP_INT32) && !hasVector
|
| 2017 |
|
|
&& !(code.etype & (XPR_REG | XPR_MEM | XPR_OPTION | XPR_SYM1))) {
|
| 2018 |
|
|
code.instruction = II_MOVE_U;
|
| 2019 |
|
|
code.dtype = TYP_INT64;
|
| 2020 |
|
|
} */
|
| 2021 |
|
|
else if (code.instruction == II_OR && (code.value.u & (code.value.u-1)) == 0 && !(code.fitNum & IFIT_I8)) {
|
| 2022 |
|
|
code.instruction = II_SET_BIT; // OR with a power of 2
|
| 2023 |
|
|
code.value.u = bitScanReverse(code.value.u);
|
| 2024 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32;
|
| 2025 |
|
|
}
|
| 2026 |
|
|
else if (code.instruction == II_AND && (~code.value.u & (~code.value.u-1)) == 0 && !(code.fitNum & IFIT_I8)) {
|
| 2027 |
|
|
code.instruction = II_CLEAR_BIT; // AND with ~(a power of 2)
|
| 2028 |
|
|
code.value.u = bitScanReverse(~code.value.u);
|
| 2029 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32;
|
| 2030 |
|
|
}
|
| 2031 |
|
|
else if (code.instruction == II_XOR && (code.value.u & (code.value.u-1)) == 0 && !(code.fitNum & IFIT_I8)) {
|
| 2032 |
|
|
code.instruction = II_TOGGLE_BIT; // XOR with a power of 2
|
| 2033 |
|
|
code.value.u = bitScanReverse(code.value.u);
|
| 2034 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32;
|
| 2035 |
|
|
}
|
| 2036 |
|
|
}
|
| 2037 |
|
|
if ((code.etype & XPR_FLT) && !(code.etype & (XPR_OFFSET | XPR_LIMIT | XPR_SYM1))) {
|
| 2038 |
|
|
if (code.instruction == II_SUB && (code.fitNum & FFIT_16) && (uint8_t)code.dtype >= (uint8_t)TYP_FLOAT16) {
|
| 2039 |
|
|
code.instruction = II_ADD; // replace sub with add
|
| 2040 |
|
|
code.value.d = -code.value.d; // change sign of immediate constant
|
| 2041 |
|
|
}
|
| 2042 |
|
|
}
|
| 2043 |
|
|
}
|
| 2044 |
|
|
|
| 2045 |
|
|
// optimize -float as toggle_bit
|
| 2046 |
|
|
if (code.instruction == II_SUB_REV && (code.etype & XPR_IMMEDIATE) && (code.dtype & TYP_FLOAT)
|
| 2047 |
|
|
&& code.value.i == 0 && (code.etype & XPR_REG1) && !(code.etype & XPR_REG2)) {
|
| 2048 |
|
|
// code is -v represented as 0-v. replace by flipping bit
|
| 2049 |
|
|
uint32_t bits = 1 << (code.dtype & 7); // number of bits in floating point type
|
| 2050 |
|
|
code.instruction = II_TOGGLE_BIT;
|
| 2051 |
|
|
code.value.u = bits - 1;
|
| 2052 |
|
|
code.etype = ((code.etype & ~XPR_IMMEDIATE) | XPR_INT);
|
| 2053 |
|
|
}
|
| 2054 |
|
|
|
| 2055 |
|
|
// optimize multiply and divide instructions
|
| 2056 |
|
|
if ((code.instruction == II_MUL || code.instruction == II_DIV) && (code.etype & XPR_IMMEDIATE)) {
|
| 2057 |
|
|
if (code.dtype & TYP_INT) { // integer multiplication
|
| 2058 |
|
|
// check if constant is positive and a power of 2
|
| 2059 |
|
|
if (code.value.i <= 0 || (code.value.u & (code.value.u - 1))) return;
|
| 2060 |
|
|
if (code.instruction == II_MUL) {
|
| 2061 |
|
|
// integer multiplication by power of 2. replace by left shift
|
| 2062 |
|
|
code.instruction = II_SHIFT_LEFT;
|
| 2063 |
|
|
code.value.u = bitScanReverse(code.value.u);
|
| 2064 |
|
|
}
|
| 2065 |
|
|
else if (code.dtype & TYP_UNS) {
|
| 2066 |
|
|
// unsigned division by power of 2. replace by right shift
|
| 2067 |
|
|
// We are not optimizing signed division because this requires multiple instructions and registers
|
| 2068 |
|
|
code.instruction = II_SHIFT_RIGHT_U;
|
| 2069 |
|
|
code.value.u = bitScanReverse(code.value.u);
|
| 2070 |
|
|
}
|
| 2071 |
|
|
}
|
| 2072 |
|
|
else if (code.dtype & TYP_FLOAT) {
|
| 2073 |
|
|
// floating point multiplication or division
|
| 2074 |
|
|
// check if constant is a power of 2
|
| 2075 |
|
|
int shiftCount = 0xFFFFFFFF; // shift count to replace multiplication by power of 2
|
| 2076 |
|
|
if ((code.etype & XPR_INT) && code.value.i > 0 && (code.value.u & (code.value.u-1)) == 0) {
|
| 2077 |
|
|
// positive integer power of 2
|
| 2078 |
|
|
shiftCount = bitScanReverse(code.value.u);
|
| 2079 |
|
|
if (code.instruction == II_DIV) shiftCount = -shiftCount;
|
| 2080 |
|
|
}
|
| 2081 |
|
|
else if ((code.etype & XPR_FLT) && code.value.d != 0.) {
|
| 2082 |
|
|
int32_t exponent = (code.value.u >> 52) & 0x7FF; // exponent field of double
|
| 2083 |
|
|
if ((code.value.u & ((uint64_t(1) << 52) - 1)) == 0 && exponent != 0 && exponent != 0x7FF) {
|
| 2084 |
|
|
// value is a power of 2, and not inf, nan, or subnormal
|
| 2085 |
|
|
shiftCount = exponent - 0x3FF;
|
| 2086 |
|
|
if (code.instruction == II_DIV) shiftCount = -shiftCount;
|
| 2087 |
|
|
}
|
| 2088 |
|
|
}
|
| 2089 |
|
|
if (shiftCount == (int)0xFFFFFFFF) return; // not a power of 2. cannot optimize
|
| 2090 |
|
|
if (shiftCount >= 0 || cmd.optiLevel >= 3) {
|
| 2091 |
|
|
// replace by mul_2pow instruction
|
| 2092 |
|
|
// use negative powers of 2 only in optimization level 3, because subnormals are ignored
|
| 2093 |
|
|
code.instruction = II_MUL_2POW;
|
| 2094 |
|
|
code.value.i = shiftCount;
|
| 2095 |
|
|
code.etype = (code.etype & ~XPR_IMMEDIATE) | XPR_INT;
|
| 2096 |
|
|
}
|
| 2097 |
|
|
else if (code.instruction == II_DIV) {
|
| 2098 |
|
|
// replace division by power of 2 to multiplication by the reciprocal
|
| 2099 |
|
|
code.instruction = II_MUL;
|
| 2100 |
|
|
if (code.etype & XPR_FLT) code.value.d = 1. / code.value.d;
|
| 2101 |
|
|
else {
|
| 2102 |
|
|
code.value.d = 1. / double((uint64_t)1 << (-shiftCount));
|
| 2103 |
|
|
code.etype = (code.etype & ~XPR_IMMEDIATE) | XPR_FLT;
|
| 2104 |
|
|
}
|
| 2105 |
|
|
}
|
| 2106 |
|
|
}
|
| 2107 |
|
|
}
|
| 2108 |
|
|
}
|
| 2109 |
|
|
|
| 2110 |
|
|
|
| 2111 |
|
|
void insertMem(SCode & code, SExpression & expr) {
|
| 2112 |
|
|
// insert memory operand into code structure
|
| 2113 |
|
|
if (code.value.i && expr.value.i) code.etype |= XPR_ERROR; // both have constants
|
| 2114 |
|
|
if (expr.etype & XPR_OFFSET) code.offset_mem = expr.offset_mem;
|
| 2115 |
|
|
else code.offset_mem = expr.value.w;
|
| 2116 |
|
|
code.etype |= expr.etype;
|
| 2117 |
|
|
code.tokens += expr.tokens;
|
| 2118 |
|
|
code.sym1 = expr.sym1;
|
| 2119 |
|
|
code.sym2 = expr.sym2;
|
| 2120 |
|
|
code.base = expr.base;
|
| 2121 |
|
|
code.index = expr.index;
|
| 2122 |
|
|
code.length = expr.length;
|
| 2123 |
|
|
code.scale = expr.scale;
|
| 2124 |
|
|
code.symscale1 = expr.symscale1;
|
| 2125 |
|
|
code.mask |= expr.mask;
|
| 2126 |
|
|
code.fallback |= expr.fallback;
|
| 2127 |
|
|
}
|
| 2128 |
|
|
|
| 2129 |
|
|
void insertAll(SCode & code, SExpression & expr) {
|
| 2130 |
|
|
// insert everything from expression to code structure, OR'ing all bits
|
| 2131 |
|
|
for (uint32_t i = 0; i < sizeof(SExpression) / sizeof(uint64_t); i++) {
|
| 2132 |
|
|
(&code.value.u)[i] |= (&expr.value.u)[i];
|
| 2133 |
|
|
}
|
| 2134 |
|
|
}
|