1 |
44 |
Agner |
/**************************** assem4.cpp ********************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* Date created: 2017-04-17
|
4 |
|
|
* Last modified: 2021-07-14
|
5 |
|
|
* Version: 1.11
|
6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
7 |
|
|
* Module: assem.cpp
|
8 |
|
|
* Description:
|
9 |
|
|
* Module for assembling ForwardCom .as files.
|
10 |
|
|
* This module contains:
|
11 |
|
|
* pass3(): Interpretation of code lines.
|
12 |
|
|
* Copyright 2017-2021 GNU General Public License http://www.gnu.org/licenses
|
13 |
|
|
******************************************************************************/
|
14 |
|
|
#include "stdafx.h"
|
15 |
|
|
|
16 |
|
|
|
17 |
|
|
// Interpret lines. Generate code and data
|
18 |
|
|
void CAssembler::pass3() {
|
19 |
|
|
uint16_t last_line_type = 0; // type of preceding line
|
20 |
|
|
makeFormatLists(); // make formatList3 and formatList4
|
21 |
|
|
code_size = cmd.codeSizeOption; // initialize options
|
22 |
|
|
data_size = cmd.dataSizeOption;
|
23 |
|
|
section = 0;
|
24 |
|
|
iLoop = iIf = iSwitch = 0; // index of current high level statements
|
25 |
|
|
|
26 |
|
|
// lines loop
|
27 |
|
|
for (linei = 1; linei < lines.numEntries()-1; linei++) {
|
28 |
|
|
tokenB = lines[linei].firstToken; // first token in line
|
29 |
|
|
tokenN = lines[linei].numTokens; // number of tokens in line
|
30 |
|
|
if (tokenN == 0 || lines[linei].type == LINE_ERROR || lines[linei].type == LINE_METADEF) continue;
|
31 |
|
|
lineError = false;
|
32 |
|
|
|
33 |
|
|
switch (lines[linei].type) {
|
34 |
|
|
case LINE_DATADEF:
|
35 |
|
|
if (last_line_type == LINE_CODEDEF && (lines[linei].sectionType & SHF_EXEC)) {
|
36 |
|
|
/* currently, the assembler cannot mix code and data because they are put in different buffers.
|
37 |
|
|
The only way to hard-code instructions is to put them into a separate section. */
|
38 |
|
|
errors.reportLine(ERR_MIX_DATA_AND_CODE); // data definition in code section
|
39 |
|
|
}
|
40 |
|
|
break;
|
41 |
|
|
case LINE_CODEDEF:
|
42 |
|
|
interpretCodeLine();
|
43 |
|
|
if (last_line_type == LINE_DATADEF && !(lines[linei].sectionType & SHF_EXEC)) {
|
44 |
|
|
errors.reportLine(ERR_MIX_DATA_AND_CODE); // code definition in data section
|
45 |
|
|
}
|
46 |
|
|
break;
|
47 |
|
|
case LINE_METADEF: case LINE_ERROR:
|
48 |
|
|
continue;
|
49 |
|
|
case LINE_FUNCTION:
|
50 |
|
|
interpretFunctionDirective();
|
51 |
|
|
break;
|
52 |
|
|
case LINE_SECTION:
|
53 |
|
|
interpretSectionDirective();
|
54 |
|
|
break;
|
55 |
|
|
case LINE_ENDDIR:
|
56 |
|
|
interpretEndDirective();
|
57 |
|
|
break;
|
58 |
|
|
case LINE_OPTIONS:
|
59 |
|
|
interpretOptionsLine();
|
60 |
|
|
break;
|
61 |
|
|
}
|
62 |
|
|
|
63 |
|
|
last_line_type = lines[linei].type;
|
64 |
|
|
}
|
65 |
|
|
while (hllBlocks.numEntries()) {
|
66 |
|
|
// unfinished block
|
67 |
|
|
SBlock block = hllBlocks.pop();
|
68 |
|
|
errors.report(tokens[block.startBracket].pos, tokens[block.startBracket].stringLength, ERR_BRACKET_BEGIN);
|
69 |
|
|
}
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
// extract subsets of formatList (in disasm1.cpp) for multiformat instructions and jump instructions
|
73 |
|
|
void CAssembler::makeFormatLists() {
|
74 |
|
|
uint32_t i;
|
75 |
|
|
for (i = 0; i < formatListSize; i++) {
|
76 |
|
|
if (formatList[i].category == 3) formatList3.push(formatList[i]);
|
77 |
|
|
if (formatList[i].category == 4) formatList4.push(formatList[i]);
|
78 |
|
|
}
|
79 |
|
|
}
|
80 |
|
|
|
81 |
|
|
// Interpret a line defining code. This covers both assembly style and high level style code
|
82 |
|
|
void CAssembler::interpretCodeLine() {
|
83 |
|
|
uint32_t tok; // token index
|
84 |
|
|
dataType = 0; // data type for current instruction
|
85 |
|
|
uint32_t nReg = 0; // number of register source operands
|
86 |
|
|
uint32_t state = 0; /* state during interpretation of line. example:
|
87 |
|
|
L1: int32 r1 = compare(r2, 5), option = 2 // assembly style
|
88 |
|
|
L1: int32 r1 = r2 < 5 // same in high level style
|
89 |
|
|
0: begin
|
90 |
|
|
1: after label
|
91 |
|
|
2: after label:
|
92 |
|
|
3: after type
|
93 |
|
|
4: after destination
|
94 |
|
|
5: after destination = (expecting expression or instruction)
|
95 |
|
|
6: after expression or instruction()
|
96 |
|
|
7: after instruction
|
97 |
|
|
8: after instruction(
|
98 |
|
|
9: after operand
|
99 |
|
|
10: after instruction(),
|
100 |
|
|
11: after jump instruction
|
101 |
|
|
*/
|
102 |
|
|
SExpression expr; // evaluated expression
|
103 |
|
|
SCode code; // current instruction code
|
104 |
|
|
zeroAllMembers(code); // reset code structure
|
105 |
|
|
|
106 |
|
|
if (section == 0) {
|
107 |
|
|
errors.reportLine(ERR_CODE_WO_SECTION);
|
108 |
|
|
}
|
109 |
|
|
|
110 |
|
|
// high level instructions with nothing before can be caught already here
|
111 |
|
|
if (tokens[tokenB].type == TOK_HLL) {
|
112 |
|
|
interpretHighLevelStatement(); // if, else, switch, for, do, while (){} statements
|
113 |
|
|
return;
|
114 |
|
|
}
|
115 |
|
|
if (tokens[tokenB].type == TOK_OPR && tokens[tokenB].id == '}') {
|
116 |
|
|
interpretEndBracket(); // end of {} block
|
117 |
|
|
return;
|
118 |
|
|
}
|
119 |
|
|
|
120 |
|
|
// interpret line by state machine looping through tokens
|
121 |
|
|
for (tok = tokenB; tok < tokenB + tokenN; tok++) {
|
122 |
|
|
SToken token = tokens[tok];
|
123 |
|
|
if (token.type == TOK_XPR && expressions[token.value.w].etype & XPR_REG) {
|
124 |
|
|
// this is an alias for a register. Translate to register
|
125 |
|
|
token.type = TOK_REG;
|
126 |
|
|
token.id = expressions[token.value.w].reg1;
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
if (lineError) break;
|
130 |
|
|
code.section = section;
|
131 |
|
|
|
132 |
|
|
if (state == 5) { // after '='
|
133 |
|
|
if (token.type == TOK_INS) { // instruction
|
134 |
|
|
if (code.instruction) errors.report(token); // instruction after += etc.
|
135 |
|
|
code.instruction = token.id;
|
136 |
|
|
state = 7;
|
137 |
|
|
}
|
138 |
|
|
else { // expression after equal sign
|
139 |
|
|
// interpret expression representing operands and operator
|
140 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
141 |
|
|
if (lineError) return;
|
142 |
|
|
if (code.instruction) {
|
143 |
|
|
// += operator etc. already encountered. combine the operands
|
144 |
|
|
uint32_t op = code.instruction; code.instruction = 0;
|
145 |
|
|
code.reg1 = code.dest; // first source operand is same as destination
|
146 |
|
|
code.etype |= XPR_REG1; code.tokens = 0;
|
147 |
|
|
expr = op2(op, code, expr); // operation '+' for '+=', etc.
|
148 |
|
|
code.instruction = 0; code.reg1 = 0;
|
149 |
|
|
}
|
150 |
|
|
if (code.etype & XPR_ERROR) {
|
151 |
|
|
errors.reportLine(code.value.w); // report error
|
152 |
|
|
}
|
153 |
|
|
// ordinary '=' goes here
|
154 |
|
|
if (lineError) return;
|
155 |
|
|
insertAll(code, expr);
|
156 |
|
|
tok += expr.tokens - 1;
|
157 |
|
|
state = 6;
|
158 |
|
|
}
|
159 |
|
|
}
|
160 |
|
|
else if (state == 11) {
|
161 |
|
|
// interpret jump target
|
162 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
163 |
|
|
state = 6;
|
164 |
|
|
if (expr.etype & XPR_REG) {
|
165 |
|
|
code = code | expr;
|
166 |
|
|
tok += expr.tokens - 1;
|
167 |
|
|
}
|
168 |
|
|
else if (expr.etype & (XPR_INT | XPR_SYM1)) {
|
169 |
|
|
code.sym5 = expr.sym3 ? expr.sym3 : expr.sym1;
|
170 |
|
|
code.offset_jump = expr.value.w;
|
171 |
|
|
if (expr.value.w & 3) errors.report(token.pos, token.stringLength, ERR_JUMP_TARGET_MISALIGN);
|
172 |
|
|
tok += expr.tokens - 1;
|
173 |
|
|
code.etype |= XPR_JUMPOS | (expr.etype & ~XPR_IMMEDIATE);
|
174 |
|
|
}
|
175 |
|
|
else {
|
176 |
|
|
errors.report(token.pos, token.stringLength, ERR_EXPECT_JUMP_TARGET);
|
177 |
|
|
break;
|
178 |
|
|
}
|
179 |
|
|
}
|
180 |
|
|
else if (state == 8 && token.type != TOK_OPT && token.type != TOK_REG) {
|
181 |
|
|
// expression in parameter list
|
182 |
|
|
if (token.type == TOK_OPR && token.id == ')') {
|
183 |
|
|
state = 6; break; // end of parameter list
|
184 |
|
|
}
|
185 |
|
|
// interpret any expression, except register or option
|
186 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
187 |
|
|
tok += expr.tokens - 1;
|
188 |
|
|
if (code.etype & expr.etype & XPR_INT) {
|
189 |
|
|
// multiple immediate integer constants
|
190 |
|
|
if (code.etype & XPR_INT2) {
|
191 |
|
|
// three integer operands
|
192 |
|
|
if (code.etype & XPR_OPTIONS) errors.report(token.pos, token.stringLength, ERR_TOO_MANY_OPERANDS);
|
193 |
|
|
code.optionbits = uint8_t(expr.value.w);
|
194 |
|
|
code.etype |= XPR_OPTIONS;
|
195 |
|
|
expr.value.u = 0;
|
196 |
|
|
}
|
197 |
|
|
else {
|
198 |
|
|
// two integer operands
|
199 |
|
|
if (code.value.u >> 32 != 0) errors.report(token.pos, token.stringLength, ERR_TOO_MANY_OPERANDS);
|
200 |
|
|
code.value.u = code.value.w | expr.value.u << 32;
|
201 |
|
|
code.etype |= XPR_INT2;
|
202 |
|
|
expr.value.u = 0;
|
203 |
|
|
}
|
204 |
|
|
}
|
205 |
|
|
else if (expr.etype & XPR_MEM) {
|
206 |
|
|
if (expr.etype & XPR_OFFSET) code.offset_mem += expr.offset_mem;
|
207 |
|
|
//else code.offset += expr.value.i;
|
208 |
|
|
if (expr.etype & XPR_IMMEDIATE) { // both memory and immediate operands
|
209 |
|
|
code.value.i = expr.value.i;
|
210 |
|
|
}
|
211 |
|
|
}
|
212 |
|
|
else if (expr.etype & XPR_IMMEDIATE) {
|
213 |
|
|
code.value.i = expr.value.i;
|
214 |
|
|
}
|
215 |
|
|
expr.value.i = 0;
|
216 |
|
|
code = code | expr;
|
217 |
|
|
state = 9;
|
218 |
|
|
}
|
219 |
|
|
else {
|
220 |
|
|
switch (token.type) {
|
221 |
|
|
case TOK_LAB: case TOK_SYM:
|
222 |
|
|
if (state == 0) {
|
223 |
|
|
//code.label = token.value.w;
|
224 |
|
|
code.label = token.id;
|
225 |
|
|
if (code.label) {
|
226 |
|
|
int32_t symi = findSymbol(code.label);
|
227 |
|
|
if (symi > 0) symbols[symi].st_section = section;
|
228 |
|
|
}
|
229 |
|
|
state = 1;
|
230 |
|
|
}
|
231 |
|
|
else goto ST_ERROR;
|
232 |
|
|
break;
|
233 |
|
|
case TOK_OPR:
|
234 |
|
|
if (token.id == ':' && state == 1) {
|
235 |
|
|
state = 2;
|
236 |
|
|
}
|
237 |
|
|
else if (token.id == '+' && state == 3) {
|
238 |
|
|
code.dtype |= TYP_PLUS;
|
239 |
|
|
}
|
240 |
|
|
else if (token.priority == 15 && state == 4) {
|
241 |
|
|
// assignment operator
|
242 |
|
|
state = 5;
|
243 |
|
|
if (token.id & EQ) { // combined operator and assignment: += -= *= etc.
|
244 |
|
|
code.reg1 = code.dest;
|
245 |
|
|
code.etype |= XPR_REG | XPR_REG1;
|
246 |
|
|
code.instruction = token.id & ~EQ; // temporarily store operator in .instruction
|
247 |
|
|
}
|
248 |
|
|
else if (token.id != '=') errors.report(token);
|
249 |
|
|
}
|
250 |
|
|
else if (token.id == '=' && state == 11) {
|
251 |
|
|
state = 12;
|
252 |
|
|
}
|
253 |
|
|
else if (token.id == ',' && state == 6) {
|
254 |
|
|
state = 10;
|
255 |
|
|
}
|
256 |
|
|
else if (token.id == ',' && state == 9) {
|
257 |
|
|
state = 8;
|
258 |
|
|
}
|
259 |
|
|
else if (token.id == '(' && state == 7) {
|
260 |
|
|
state = 8;
|
261 |
|
|
}
|
262 |
|
|
else if (token.id == ')' && (state == 8 || state == 9)) {
|
263 |
|
|
state = 6;
|
264 |
|
|
}
|
265 |
|
|
else if (token.id == '[' && (state == 0 || state == 2 || state == 3)) {
|
266 |
|
|
// interpret memory destination
|
267 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
268 |
|
|
tok += expr.tokens - 1;
|
269 |
|
|
insertMem(code, expr);
|
270 |
|
|
code.dest = 2;
|
271 |
|
|
state = 4;
|
272 |
|
|
}
|
273 |
|
|
else if (token.id == '[' && state == 7 && code.instruction == II_ADDRESS) {
|
274 |
|
|
// address []. expect memory operand
|
275 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 0);
|
276 |
|
|
tok += expr.tokens - 1;
|
277 |
|
|
insertMem(code, expr);
|
278 |
|
|
state = 6;
|
279 |
|
|
}
|
280 |
|
|
else if ((token.id == '+' + D2 || token.id == '-' + D2) && (state == 3 || state == 4)) {
|
281 |
|
|
// ++ and -- operators
|
282 |
|
|
code.instruction = (token.id == '+' + D2) ? II_ADD : II_SUB;
|
283 |
|
|
// operand is 1, integer or float
|
284 |
|
|
if (dataType & TYP_FLOAT) {
|
285 |
|
|
code.value.d = 1.0;
|
286 |
|
|
code.etype |= XPR_FLT;
|
287 |
|
|
}
|
288 |
|
|
else {
|
289 |
|
|
code.value.i = 1;
|
290 |
|
|
code.etype |= XPR_INT;
|
291 |
|
|
}
|
292 |
|
|
if (state == 3) { // prefix operator. expect register
|
293 |
|
|
tok++;
|
294 |
|
|
if (token.type != TOK_REG) errors.report(token);
|
295 |
|
|
code.dest = token.id;
|
296 |
|
|
}
|
297 |
|
|
code.reg1 = code.dest;
|
298 |
|
|
code.etype |= XPR_REG1;
|
299 |
|
|
state = 6;
|
300 |
|
|
}
|
301 |
|
|
else if (token.id == ';') {} // ignore terminating ';'
|
302 |
|
|
else goto ST_ERROR;
|
303 |
|
|
break;
|
304 |
|
|
case TOK_TYP:
|
305 |
|
|
if (state == 0 || state == 2) {
|
306 |
|
|
dataType = code.dtype = token.id;
|
307 |
|
|
state = 3;
|
308 |
|
|
}
|
309 |
|
|
else goto ST_ERROR;
|
310 |
|
|
break;
|
311 |
|
|
case TOK_REG:
|
312 |
|
|
if (state == 0 || state == 2 || state == 3) {
|
313 |
|
|
code.dest = uint8_t(token.id);
|
314 |
|
|
state = 4;
|
315 |
|
|
}
|
316 |
|
|
else if (state == 8) {
|
317 |
|
|
if (nReg < 3) {
|
318 |
|
|
(&code.reg1)[nReg] = (uint8_t)token.id; // insert register in expression
|
319 |
|
|
code.etype |= XPR_REG1 << nReg++;
|
320 |
|
|
if ((code.etype & (XPR_INT | XPR_FLT | XPR_MEM)) && code.dest != 2) errors.report(token.pos, token.stringLength, ERR_OPERANDS_WRONG_ORDER);
|
321 |
|
|
}
|
322 |
|
|
else errors.report(token.pos, token.stringLength, ERR_TOO_MANY_OPERANDS);
|
323 |
|
|
state = 9;
|
324 |
|
|
}
|
325 |
|
|
else goto ST_ERROR;
|
326 |
|
|
break;
|
327 |
|
|
case TOK_XPR:
|
328 |
|
|
if (token.value.u >= expressions.numEntries()) goto ST_ERROR; // expression not found
|
329 |
|
|
if (expressions[token.value.w].etype & XPR_MEM) { // this is an alias for a memory operand
|
330 |
|
|
insertMem(code, expressions[token.value.w]);
|
331 |
|
|
code.dest = 2;
|
332 |
|
|
state = 4;
|
333 |
|
|
}
|
334 |
|
|
else goto ST_ERROR;
|
335 |
|
|
break;
|
336 |
|
|
case TOK_INS:
|
337 |
|
|
if (state == 0 || state == 2 || state == 3) {
|
338 |
|
|
// interpret instruction name
|
339 |
|
|
code.instruction = token.id;
|
340 |
|
|
state = 7; // expect parenthesis and parameters
|
341 |
|
|
if (code.instruction & II_JUMP_INSTR) {
|
342 |
|
|
// Jump or call instruction. The next may be a jump target, a register or a memory operand
|
343 |
|
|
state = 11; // expect jump target
|
344 |
|
|
// Check if there is a memory operand
|
345 |
|
|
for (uint32_t tok2 = tok+1; tok2 < tokenB + tokenN; tok2++) {
|
346 |
|
|
if (tokens[tok2].type == TOK_OPR && tokens[tok2].id == '[') {
|
347 |
|
|
// a jump instruction with memory operand is treated as a normal instruction
|
348 |
|
|
state = 7; break;
|
349 |
|
|
}
|
350 |
|
|
}
|
351 |
|
|
}
|
352 |
|
|
}
|
353 |
|
|
else if ((state == 6 || state == 10) && (token.id & II_JUMP_INSTR)) {
|
354 |
|
|
// second half of jump instruction
|
355 |
|
|
code.instruction |= token.id; // combine two partial instruction names
|
356 |
|
|
state = 11; // expect jump target
|
357 |
|
|
}
|
358 |
|
|
else goto ST_ERROR;
|
359 |
|
|
break;
|
360 |
|
|
case TOK_OPT: // option keyword
|
361 |
|
|
expr = expression(tok, tokenB + tokenN - tok, 4); // this will read option = value
|
362 |
|
|
tok += expr.tokens - 1;
|
363 |
|
|
code.etype |= expr.etype;
|
364 |
|
|
if (expr.etype & XPR_LIMIT) {
|
365 |
|
|
code.value.i = expr.value.i;
|
366 |
|
|
if (expr.value.u >= 0x100000000U) { // limit too high
|
367 |
|
|
errors.report(tokens[tok - 1].pos, tokens[tok - 1].stringLength, ERR_LIMIT_TOO_HIGH);
|
368 |
|
|
}
|
369 |
|
|
}
|
370 |
|
|
if (expr.etype & (XPR_LENGTH | XPR_BROADC)) code.length = expr.length;
|
371 |
|
|
if (expr.etype & XPR_MASK) code.mask = expr.mask;
|
372 |
|
|
if (expr.etype & XPR_FALLBACK) code.fallback = expr.fallback;
|
373 |
|
|
if (expr.etype & XPR_OPTIONS) code.optionbits = expr.optionbits;
|
374 |
|
|
if (state == 8) state = 9;
|
375 |
|
|
else if (state == 6 || state == 10) state = 6;
|
376 |
|
|
else goto ST_ERROR;
|
377 |
|
|
break;
|
378 |
|
|
case TOK_ATT:
|
379 |
|
|
if (token.id == ATT_ALIGN && state == 0 && tokenN >= 2) {
|
380 |
|
|
// align n directive
|
381 |
|
|
code.instruction = II_ALIGN;
|
382 |
|
|
expr = expression(tok + 1, tokenB + tokenN - tok - 1, 0);
|
383 |
|
|
tok = tokenB + tokenN;
|
384 |
|
|
code.value.u = expr.value.u;
|
385 |
|
|
code.sizeUnknown = 0x80;
|
386 |
|
|
if ((code.value.u & (code.value.u - 1)) || code.value.u > MAX_ALIGN
|
387 |
|
|
|| (expr.etype & XPR_IMMEDIATE) != XPR_INT || (expr.etype & (XPR_REG|XPR_OPTION|XPR_MEM))) {
|
388 |
|
|
errors.reportLine(ERR_ALIGNMENT);
|
389 |
|
|
}
|
390 |
|
|
}
|
391 |
|
|
else goto ST_ERROR;
|
392 |
|
|
break;
|
393 |
|
|
case TOK_HLL: // high level directive: if, else, while, for, etc.
|
394 |
|
|
interpretHighLevelStatement();
|
395 |
|
|
return;
|
396 |
|
|
default:;
|
397 |
|
|
ST_ERROR:
|
398 |
|
|
errors.report(token);
|
399 |
|
|
break;
|
400 |
|
|
}
|
401 |
|
|
}
|
402 |
|
|
}
|
403 |
|
|
if (lineError) return;
|
404 |
|
|
// check if state machine ends with a finished instruction
|
405 |
|
|
if (state != 0 && state != 2 && state != 6 && state != 7) {
|
406 |
|
|
errors.report(tokens[tok-1].pos, tokens[tok-1].stringLength, ERR_UNFINISHED_INSTRUCTION);
|
407 |
|
|
return;
|
408 |
|
|
}
|
409 |
|
|
|
410 |
|
|
// move and store instruction has no operator yet
|
411 |
|
|
if (code.instruction == 0 && code.etype) {
|
412 |
|
|
if (code.dest == 2) code.instruction = II_STORE; // store to memory
|
413 |
|
|
else {
|
414 |
|
|
code.instruction = II_MOVE; // move constant to register
|
415 |
|
|
if (cmd.optiLevel && (code.etype & XPR_INT) && code.value.i >= 0 && !code.sym3 && (code.dtype & TYP_INT) && (code.dest & REG_R)) {
|
416 |
|
|
code.dtype |= TYP_PLUS; // optimize to larger type for positive constant because it is zero-extended anyway
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
}
|
420 |
|
|
|
421 |
|
|
if (code.instruction) { // a code record with no instruction represents a label only
|
422 |
|
|
// code record contains instruction
|
423 |
|
|
if (code.etype & XPR_JUMPOS) mergeJump(code);
|
424 |
|
|
|
425 |
|
|
checkCode1(code);
|
426 |
|
|
if (lineError) return;
|
427 |
|
|
|
428 |
|
|
// find an instruction variant that fits
|
429 |
|
|
fitCode(code);
|
430 |
|
|
if (lineError) return;
|
431 |
|
|
}
|
432 |
|
|
|
433 |
|
|
// save code structure
|
434 |
|
|
codeBuffer.push(code);
|
435 |
|
|
}
|
436 |
|
|
|
437 |
|
|
|
438 |
|
|
// Check how many bits are needed to contain immediate constant of an instruction.
|
439 |
|
|
// The result is returned as bit-flags in code.fitNumX.
|
440 |
|
|
// The return value is nonzero if the size cannot be resolved yet.
|
441 |
|
|
int CAssembler::fitConstant(SCode & code) {
|
442 |
|
|
int64_t value = 0; // the constant or address to fit
|
443 |
|
|
int64_t valueScaled; // value divided by scale factor
|
444 |
|
|
double dvalue = 0; // floating point value if needed
|
445 |
|
|
bool floatType = false; // a floating point type is needed
|
446 |
|
|
bool floatConst = false; // a floating point constant is provided
|
447 |
|
|
uint32_t fitNum = 0; // return value
|
448 |
|
|
uint32_t sym3 = 0, sym4 = 0; // symbols
|
449 |
|
|
int32_t isym3 = 0, isym4 = 0; // symbol index
|
450 |
|
|
int32_t uncertainty; // maximum deviance if the value is uncertain
|
451 |
|
|
int uncertain = 0; // return value
|
452 |
|
|
int symscale; // scaling of difference between symbols
|
453 |
|
|
|
454 |
|
|
if (code.instruction == II_ALIGN) return 0; // not an instruction
|
455 |
|
|
if (!(code.etype & (XPR_IMMEDIATE | XPR_SYM1))) return 0; // has no immediate
|
456 |
|
|
|
457 |
|
|
value = value0 = code.value.i; // immediate constant
|
458 |
|
|
floatType = uint8_t(code.dtype) >= uint8_t(TYP_FLOAT16); // floating point needed
|
459 |
|
|
floatConst = (code.etype & XPR_FLT) != 0; // floating point provided
|
460 |
|
|
if (floatType) {
|
461 |
|
|
if (floatConst) dvalue = code.value.d;
|
462 |
|
|
else {
|
463 |
|
|
// Note: We are converting the immediate constant to floating point here in order to find
|
464 |
|
|
// the optimal representation. We have not identified the instruction yet so we don't know
|
465 |
|
|
// if it actually needs a floating point constant or an integer. We have saved the original
|
466 |
|
|
// integer value in value0 so that we can undo the conversion in case an instruction with
|
467 |
|
|
// floating point type needs an integer operand.
|
468 |
|
|
dvalue = (double)value; // value as float
|
469 |
|
|
if (code.etype & XPR_INT) {
|
470 |
|
|
// convert integer constant to float
|
471 |
|
|
code.value.d = dvalue;
|
472 |
|
|
code.etype = (code.etype & ~XPR_IMMEDIATE) | XPR_FLT;
|
473 |
|
|
floatConst = true;
|
474 |
|
|
}
|
475 |
|
|
}
|
476 |
|
|
if ((code.etype & XPR_FLT) && uint8_t(code.dtype) == uint8_t(TYP_FLOAT32)) {
|
477 |
|
|
union { // check for overflow in single precision float
|
478 |
|
|
float f;
|
479 |
|
|
uint32_t i;
|
480 |
|
|
} u;
|
481 |
|
|
u.f = float(code.value.d);
|
482 |
|
|
if (isinf_f(u.i) && u.f > code.value.d) errors.reportLine(ERR_CONSTANT_TOO_LARGE);
|
483 |
|
|
}
|
484 |
|
|
if ((code.etype & XPR_FLT) && uint8_t(code.dtype) == uint8_t(TYP_FLOAT16)) {
|
485 |
|
|
// check for overflow in half precision float
|
486 |
|
|
if (isinf_h(double2half(code.value.d) && !isinf_d(code.value.i))) errors.reportLine(ERR_CONSTANT_TOO_LARGE);
|
487 |
|
|
}
|
488 |
|
|
}
|
489 |
|
|
|
490 |
|
|
// check for symbols
|
491 |
|
|
if (code.sym3) {
|
492 |
|
|
sym3 = code.sym3; sym4 = code.sym4;
|
493 |
|
|
symscale = code.symscale3;
|
494 |
|
|
isym3 = findSymbol(sym3);
|
495 |
|
|
if (isym3 < 1) {
|
496 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
497 |
|
|
}
|
498 |
|
|
}
|
499 |
|
|
|
500 |
|
|
if (code.sym3 && !code.sym4 && int32_t(symbols[isym3].st_section) == SECTION_LOCAL_VAR && symbols[isym3].st_type == STT_CONSTANT) {
|
501 |
|
|
// convert local symbol to constant
|
502 |
|
|
value = symbols[isym3].st_value;
|
503 |
|
|
code.value.i = value;
|
504 |
|
|
code.sym3 = 0;
|
505 |
|
|
if (cmd.optiLevel && value >= 0 && (code.dtype & TYP_INT) && (code.dest & REG_R)) {
|
506 |
|
|
code.dtype |= TYP_PLUS; // optimize to larger type for positive constant because it is zero-extended anyway
|
507 |
|
|
}
|
508 |
|
|
}
|
509 |
|
|
else if (sym3) {
|
510 |
|
|
// there is a symbol
|
511 |
|
|
if (symbols[isym3].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
512 |
|
|
uint32_t sym3section = symbols[isym3].st_section; // symbol section
|
513 |
|
|
// determine necessary relocation size if relocation needed
|
514 |
|
|
uint64_t relSize; // maximum size of relocated address
|
515 |
|
|
if (symbols[isym3].st_type == STT_CONSTANT) {
|
516 |
|
|
relSize = 0x10000000; // there is no command line option for the size of absolute symbols. assume 32 bit
|
517 |
|
|
code.etype |= XPR_INT;
|
518 |
|
|
}
|
519 |
|
|
else if (sym3section && symbols[isym3].st_type != STT_CONSTANT) { // local symbol with known section
|
520 |
|
|
relSize = (sectionHeaders[sym3section].sh_flags & (SHF_EXEC | SHF_IP)) ? code_size : data_size;
|
521 |
|
|
}
|
522 |
|
|
else { // external symbol with unknown section. look at symbol attributes
|
523 |
|
|
relSize = (symbols[isym3].st_other & (STV_EXEC | STV_IP)) ? code_size : data_size;
|
524 |
|
|
if (!(code.etype & (XPR_MEM | XPR_SYM2))) {
|
525 |
|
|
errors.reportLine(ERR_CONFLICT_TYPE); // must be memory operand
|
526 |
|
|
}
|
527 |
|
|
}
|
528 |
|
|
if (sym4) {
|
529 |
|
|
// value is (sym3 - sym4) / scale factor
|
530 |
|
|
isym4 = findSymbol(sym4);
|
531 |
|
|
if (isym4 <= 0) {
|
532 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
533 |
|
|
}
|
534 |
|
|
code.etype |= XPR_INT; // symbol difference gives an integer
|
535 |
|
|
if (symbols[isym3].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
536 |
|
|
if (symbols[isym3].st_section != symbols[isym4].st_section || symbols[isym3].st_bind != STB_LOCAL || symbols[isym4].st_bind != STB_LOCAL) {
|
537 |
|
|
// different sections or not local. relocation needed
|
538 |
|
|
fitNum = IFIT_RELOC;
|
539 |
|
|
if (code.symscale1 > 1) relSize /= code.symscale1; // value is scaled
|
540 |
|
|
if (relSize <= 1 << 7) fitNum |= IFIT_I8;
|
541 |
|
|
if (relSize <= 1 << 15) fitNum |= IFIT_I16;
|
542 |
|
|
if (relSize <= (uint64_t)1 << 31) fitNum |= IFIT_I32;
|
543 |
|
|
code.fitNum = fitNum;
|
544 |
|
|
code.sizeUnknown = uncertain;
|
545 |
|
|
return uncertain;
|
546 |
|
|
}
|
547 |
|
|
// difference between two local symbols
|
548 |
|
|
if (pass < 4) {
|
549 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32; // symbol values are not available yet
|
550 |
|
|
code.sizeUnknown = 1;
|
551 |
|
|
return 1;
|
552 |
|
|
}
|
553 |
|
|
value += int32_t(uint32_t(symbols[isym3].st_value) - uint32_t(symbols[isym4].st_value));
|
554 |
|
|
if (symscale < 1) symscale = 1;
|
555 |
|
|
valueScaled = value / symscale + code.offset_mem;
|
556 |
|
|
if (valueScaled >= -(1 << 7) && valueScaled < (1 << 7)) fitNum |= IFIT_I8;
|
557 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitNum |= IFIT_I16;
|
558 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitNum |= IFIT_I32;
|
559 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value
|
560 |
|
|
uncertainty = (symbols[isym3].st_value >> 32) - (symbols[isym4].st_value >> 32);
|
561 |
|
|
valueScaled = value / symscale + code.offset_mem + uncertainty;
|
562 |
|
|
if (symscale > 1) valueScaled /= symscale; // value is scaled
|
563 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitNum & IFIT_I8)) uncertain |= 1;
|
564 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitNum & IFIT_I16)) uncertain |= 1;
|
565 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitNum & IFIT_I32)) uncertain |= 1;
|
566 |
|
|
|
567 |
|
|
if (uncertain && (code.fitNum & IFIT_LARGE)) {
|
568 |
|
|
// choose the larger version if optimization process has convergence problems
|
569 |
|
|
fitNum = (fitNum & (fitNum - 1)) | IFIT_I32; // remove the lowest set bit
|
570 |
|
|
uncertain &= ~1;
|
571 |
|
|
}
|
572 |
|
|
code.fitNum = fitNum;
|
573 |
|
|
code.sizeUnknown = uncertain;
|
574 |
|
|
return uncertain;
|
575 |
|
|
}
|
576 |
|
|
// one symbol. must be constant
|
577 |
|
|
if (sym3section != 0 && symbols[isym3].st_type != STT_CONSTANT && !(code.etype & XPR_MEM)) {
|
578 |
|
|
errors.reportLine(ERR_MEM_WO_BRACKET);
|
579 |
|
|
return 1;
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
if (sym3section && symbols[isym3].st_type != STT_CONSTANT && (sectionHeaders[sym3section].sh_flags & SHF_IP)) {
|
583 |
|
|
// relative to instruction pointer
|
584 |
|
|
if (sym3section != code.section || symbols[isym3].st_bind != STB_LOCAL) {
|
585 |
|
|
// symbol is in different section or not local. relocation needed
|
586 |
|
|
fitNum = IFIT_RELOC;
|
587 |
|
|
if (relSize <= 1 << 7) fitNum |= IFIT_I8; // necessary relocation size
|
588 |
|
|
if (relSize <= 1 << 15) fitNum |= IFIT_I16;
|
589 |
|
|
if (relSize <= (uint64_t)1 << 31) fitNum |= IFIT_I32;
|
590 |
|
|
code.fitNum = fitNum;
|
591 |
|
|
code.sizeUnknown = uncertain;
|
592 |
|
|
return uncertain;
|
593 |
|
|
}
|
594 |
|
|
if (pass < 4) {
|
595 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32; // symbol values are not available yet
|
596 |
|
|
code.sizeUnknown = 1;
|
597 |
|
|
return 1;
|
598 |
|
|
}
|
599 |
|
|
// self-relative address to local symbol
|
600 |
|
|
value = int32_t((uint32_t)symbols[isym3].st_value - (code.address + code.size * 4));
|
601 |
|
|
valueScaled = value + code.offset_mem;
|
602 |
|
|
if (valueScaled >= -(1 << 7) && valueScaled < (1 << 7)) fitNum |= IFIT_I8;
|
603 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitNum |= IFIT_I16;
|
604 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitNum |= IFIT_I32;
|
605 |
|
|
code.fitNum = fitNum;
|
606 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value and sh_link
|
607 |
|
|
uncertainty = int32_t((symbols[isym3].st_value >> 32) - sectionHeaders[code.section].sh_link);
|
608 |
|
|
valueScaled += uncertainty;
|
609 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitNum & IFIT_I8)) uncertain |= 1;
|
610 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitNum & IFIT_I16)) uncertain |= 1;
|
611 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitNum & IFIT_I32)) uncertain |= 1;
|
612 |
|
|
if (uncertain && (code.fitNum & IFIT_LARGE)) {
|
613 |
|
|
// choose the larger version if optimization process has convergence problems
|
614 |
|
|
fitNum = (fitNum & (fitNum - 1)) | IFIT_I32; // remove the lowest set bit
|
615 |
|
|
uncertain &= ~1;
|
616 |
|
|
}
|
617 |
|
|
code.fitNum = fitNum;
|
618 |
|
|
code.sizeUnknown = uncertain;
|
619 |
|
|
return uncertain;
|
620 |
|
|
}
|
621 |
|
|
|
622 |
|
|
// symbol is relative to data pointer or external constant. relocation needed
|
623 |
|
|
fitNum = IFIT_RELOC;
|
624 |
|
|
if (relSize <= 1 << 7) fitNum |= IFIT_I8;
|
625 |
|
|
if (relSize <= 1 << 15) fitNum |= IFIT_I16;
|
626 |
|
|
if (relSize <= (uint64_t)1 << 31) fitNum |= IFIT_I32;
|
627 |
|
|
code.fitNum = fitNum;
|
628 |
|
|
code.sizeUnknown = uncertain;
|
629 |
|
|
return uncertain;
|
630 |
|
|
}
|
631 |
|
|
// no symbol. only a constant
|
632 |
|
|
if (floatType) {
|
633 |
|
|
// floating point constant
|
634 |
|
|
code.fitNum = fitFloat(dvalue);
|
635 |
|
|
if (uint8_t(code.dtype) < uint8_t(TYP_FLOAT64)) code.fitNum |= FFIT_32;
|
636 |
|
|
code.sizeUnknown = 0;
|
637 |
|
|
return 0;
|
638 |
|
|
}
|
639 |
|
|
// integer constant
|
640 |
|
|
uint32_t low; // index of lowest set bit
|
641 |
|
|
uint32_t high; // index of highest set bit
|
642 |
|
|
fitNum = 0;
|
643 |
|
|
int nbits;
|
644 |
|
|
if (value == int64_t(0x8000000000000000)) { // prevent overflow of -value
|
645 |
|
|
fitNum = 0;
|
646 |
|
|
}
|
647 |
|
|
else if (value >= 0) {
|
648 |
|
|
low = bitScanForward((uint64_t)value); // lowest set bit
|
649 |
|
|
high = bitScanReverse((uint64_t)value); // highest set bit
|
650 |
|
|
//if (value < 8) fitNum |= IFIT_I4;
|
651 |
|
|
//if (value == 8) fitNum |= IFIT_J4;
|
652 |
|
|
//if (value < 0x10) fitNum |= IFIT_U4;
|
653 |
|
|
if (value < 0x80) fitNum |= IFIT_I8 | IFIT_I8SHIFT;
|
654 |
|
|
if (value == 0x80) fitNum |= IFIT_J8;
|
655 |
|
|
if (value <= 0xFF) fitNum |= IFIT_U8;
|
656 |
|
|
if (value < 0x8000) fitNum |= IFIT_I16 | IFIT_I16SH16;
|
657 |
|
|
if (value == 0x8000) fitNum |= IFIT_J16;
|
658 |
|
|
if (value <= 0xFFFF) fitNum |= IFIT_U16;
|
659 |
|
|
if (high < 31) fitNum |= IFIT_I32;
|
660 |
|
|
if (high < 32) fitNum |= IFIT_U32;
|
661 |
|
|
if (value == 0x80000000U) fitNum |= IFIT_J32;
|
662 |
|
|
nbits = high - low + 1;
|
663 |
|
|
if (nbits < 8) fitNum |= IFIT_I8SHIFT;
|
664 |
|
|
if (nbits < 16) {
|
665 |
|
|
fitNum |= IFIT_I16SHIFT;
|
666 |
|
|
if (low >= 16 && high < 31) fitNum |= IFIT_I16SH16;
|
667 |
|
|
}
|
668 |
|
|
if (nbits < 32) fitNum |= IFIT_I32SHIFT;
|
669 |
|
|
if (low >= 32) fitNum |= IFIT_I32SH32;
|
670 |
|
|
}
|
671 |
|
|
else { // x < 0
|
672 |
|
|
value = -value;
|
673 |
|
|
low = bitScanForward(value); // lowest set bit
|
674 |
|
|
high = bitScanReverse(value); // highest set bit
|
675 |
|
|
//if (value <= 8) fitNum |= IFIT_I4;
|
676 |
|
|
if (value <= 0x80) fitNum |= IFIT_I8 | IFIT_I8SHIFT;
|
677 |
|
|
if (value <= 0x8000) fitNum |= IFIT_I16 |IFIT_I16SH16 ;
|
678 |
|
|
if (value <= 0x80000000U) fitNum |= IFIT_I32;
|
679 |
|
|
nbits = high - low + 1;
|
680 |
|
|
if (nbits < 8) fitNum |= IFIT_I8SHIFT;
|
681 |
|
|
if (nbits < 16) {
|
682 |
|
|
fitNum |= IFIT_I16SHIFT;
|
683 |
|
|
if (low >= 16 && high <= 31) fitNum |= IFIT_I16SH16;
|
684 |
|
|
}
|
685 |
|
|
if (nbits < 32) fitNum |= IFIT_I32SHIFT;
|
686 |
|
|
if (low >= 32) fitNum |= IFIT_I32SH32;
|
687 |
|
|
}
|
688 |
|
|
code.fitNum = fitNum;
|
689 |
|
|
code.sizeUnknown = 0;
|
690 |
|
|
return 0;
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
|
694 |
|
|
// Check how many bits are needed to a relative address or jump offset of an instruction.
|
695 |
|
|
// This result is returned as bit-flags in codefitAddr, code.fitJump, and code.fitNum
|
696 |
|
|
// The return value is nonzero if the size cannot be resolved yet.
|
697 |
|
|
int CAssembler::fitAddress(SCode & code) {
|
698 |
|
|
int64_t value = 0; // the constant or address to fit
|
699 |
|
|
int64_t valueScaled; // value divided by scale factor
|
700 |
|
|
uint32_t fitBits = 0; // bit flags indicating fit
|
701 |
|
|
int32_t isym1 = 0, isym2 = 0; // symbol index
|
702 |
|
|
int32_t uncertainty; // maximum deviance if the value is uncertain
|
703 |
|
|
int uncertain = 0; // return value
|
704 |
|
|
|
705 |
|
|
if (code.instruction == II_ALIGN) return 0; // not an instruction
|
706 |
|
|
if (!(code.etype & (XPR_OFFSET | XPR_JUMPOS | XPR_MEM))) return 0; // has no address
|
707 |
|
|
|
708 |
|
|
// check address of memory operand
|
709 |
|
|
if (code.sym1) {
|
710 |
|
|
// there is a memory operand symbol
|
711 |
|
|
code.etype |= XPR_OFFSET;
|
712 |
|
|
|
713 |
|
|
value = code.offset_mem; // memory offset
|
714 |
|
|
isym1 = findSymbol(code.sym1);
|
715 |
|
|
if (isym1 <= 0) {
|
716 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
717 |
|
|
}
|
718 |
|
|
if (symbols[isym1].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
719 |
|
|
uint32_t sym1section = symbols[isym1].st_section; // symbol section
|
720 |
|
|
if (sym1section < sectionHeaders.numEntries()) {
|
721 |
|
|
// determine necessary relocation size if relocation needed
|
722 |
|
|
uint64_t relSize; // maximum size of relocated address
|
723 |
|
|
if (symbols[isym1].st_type == STT_CONSTANT) {
|
724 |
|
|
// assume that constant offset is limited by dataSizeOption
|
725 |
|
|
relSize = data_size; // relocation size for code and constant data
|
726 |
|
|
}
|
727 |
|
|
else if (sym1section
|
728 |
|
|
&& !(sectionHeaders[sym1section].sh_flags & (SHF_WRITE | SHF_DATAP | SHF_THREADP))) {
|
729 |
|
|
relSize = code_size; // relocation size for code and constant data
|
730 |
|
|
}
|
731 |
|
|
else if (sym1section) { // local symbol with known section
|
732 |
|
|
relSize = (sectionHeaders[sym1section].sh_flags & (SHF_EXEC | SHF_IP)) ? code_size : data_size;
|
733 |
|
|
}
|
734 |
|
|
else { // external symbol with unknown section. look at symbol attributes
|
735 |
|
|
relSize = (symbols[isym1].st_other & (STV_EXEC | STV_IP)) ? code_size : data_size;
|
736 |
|
|
}
|
737 |
|
|
if (code.sym2) {
|
738 |
|
|
// value is (sym1 - sym2) / scale factor
|
739 |
|
|
isym2 = findSymbol(code.sym2);
|
740 |
|
|
if (isym2 <= 0) {
|
741 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
742 |
|
|
}
|
743 |
|
|
if (symbols[isym1].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
744 |
|
|
if (symbols[isym1].st_section != symbols[isym2].st_section || symbols[isym1].st_bind != STB_LOCAL || symbols[isym2].st_bind != STB_LOCAL) {
|
745 |
|
|
// different sections or not local. relocation needed
|
746 |
|
|
fitBits = IFIT_RELOC;
|
747 |
|
|
if (code.symscale1 > 1) relSize /= code.symscale1; // value is scaled
|
748 |
|
|
if (relSize <= 1 << 7) fitBits |= IFIT_I8;
|
749 |
|
|
if (relSize <= 1 << 15) fitBits |= IFIT_I16;
|
750 |
|
|
//if (relSize <= 1 << 23) fitBits |= IFIT_I24;
|
751 |
|
|
if (relSize <= (uint64_t)1 << 31) fitBits |= IFIT_I32;
|
752 |
|
|
code.fitAddr = fitBits;
|
753 |
|
|
code.sizeUnknown += uncertain;
|
754 |
|
|
//return uncertain;
|
755 |
|
|
}
|
756 |
|
|
// difference between two local symbols
|
757 |
|
|
else if (pass < 4) {
|
758 |
|
|
code.fitAddr = IFIT_I8 | IFIT_I16 | IFIT_I32; // symbol values are not available yet
|
759 |
|
|
code.sizeUnknown += 1;
|
760 |
|
|
uncertain += 1;
|
761 |
|
|
//return 1;
|
762 |
|
|
}
|
763 |
|
|
else {
|
764 |
|
|
value += int32_t(uint32_t(symbols[isym1].st_value) - uint32_t(symbols[isym2].st_value));
|
765 |
|
|
int scale = code.symscale1;
|
766 |
|
|
if (scale < 1) scale = 1;
|
767 |
|
|
valueScaled = value / scale + code.offset_mem;
|
768 |
|
|
if (valueScaled >= -(1 << 7) && valueScaled < (1 << 7)) fitBits |= IFIT_I8;
|
769 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitBits |= IFIT_I16;
|
770 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitBits |= IFIT_I32;
|
771 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value
|
772 |
|
|
uncertainty = (symbols[isym1].st_value >> 32) - (symbols[isym2].st_value >> 32);
|
773 |
|
|
valueScaled = value / scale + code.offset_mem + uncertainty;
|
774 |
|
|
if (code.symscale1 > 1) valueScaled /= code.symscale1; // value is scaled
|
775 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitBits & IFIT_I8)) uncertain |= 1;
|
776 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitBits & IFIT_I16)) uncertain |= 1;
|
777 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitBits & IFIT_I32)) uncertain |= 1;
|
778 |
|
|
if (uncertain && (code.fitAddr & IFIT_LARGE)) {
|
779 |
|
|
// choose the larger version if optimization process has convergence problems
|
780 |
|
|
fitBits = (fitBits & (fitBits - 1)) | IFIT_I32; // remove the lowest set bit
|
781 |
|
|
uncertain &= ~1;
|
782 |
|
|
}
|
783 |
|
|
code.fitAddr = fitBits;
|
784 |
|
|
code.sizeUnknown += uncertain;
|
785 |
|
|
//return uncertain;
|
786 |
|
|
}
|
787 |
|
|
}
|
788 |
|
|
// one symbol
|
789 |
|
|
else if (sectionHeaders[sym1section].sh_flags & SHF_IP) {
|
790 |
|
|
// relative to instruction pointer
|
791 |
|
|
if (sym1section != code.section || symbols[isym1].st_bind != STB_LOCAL) {
|
792 |
|
|
// symbol is in different section or not local. relocation needed
|
793 |
|
|
fitBits = IFIT_RELOC;
|
794 |
|
|
if (code.etype & XPR_JUMPOS) relSize >>= 2; // value is scaled by 4
|
795 |
|
|
if (relSize <= 1 << 7) fitBits |= IFIT_I8; // necessary relocation size
|
796 |
|
|
if (relSize <= 1 << 15) fitBits |= IFIT_I16;
|
797 |
|
|
if (relSize <= 1 << 23) fitBits |= IFIT_I24;
|
798 |
|
|
if (relSize <= (uint64_t)1 << 31) fitBits |= IFIT_I32;
|
799 |
|
|
code.fitAddr = fitBits;
|
800 |
|
|
code.sizeUnknown += uncertain;
|
801 |
|
|
//return uncertain;
|
802 |
|
|
}
|
803 |
|
|
else if (pass < 4) {
|
804 |
|
|
// code.fitBits = IFIT_I16 | IFIT_I32; // symbol values are not available yet
|
805 |
|
|
code.fitAddr = IFIT_I16 | IFIT_I24 | IFIT_I32; // symbol values are not available yet
|
806 |
|
|
code.sizeUnknown += 1;
|
807 |
|
|
uncertain |= 1;
|
808 |
|
|
//return 1;
|
809 |
|
|
}
|
810 |
|
|
else { // self-relative address to local symbol
|
811 |
|
|
value = int32_t((uint32_t)symbols[isym1].st_value - (code.address + code.size * 4));
|
812 |
|
|
valueScaled = value;
|
813 |
|
|
valueScaled += code.offset_mem;
|
814 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitBits |= IFIT_I16;
|
815 |
|
|
if (valueScaled >= -(1 << 23) && valueScaled < (1 << 23)) fitBits |= IFIT_I24;
|
816 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitBits |= IFIT_I32;
|
817 |
|
|
code.fitAddr = fitBits;
|
818 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value and sh_link
|
819 |
|
|
uncertainty = int32_t((symbols[isym1].st_value >> 32) - sectionHeaders[code.section].sh_link);
|
820 |
|
|
valueScaled += uncertainty;
|
821 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitBits & IFIT_I8)) uncertain |= 1;
|
822 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitBits & IFIT_I16)) uncertain |= 1;
|
823 |
|
|
if ((valueScaled < -(1 << 23) || valueScaled >= (1 << 23)) && (fitBits & IFIT_I24)) uncertain |= 1;
|
824 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitBits & IFIT_I32)) uncertain |= 1;
|
825 |
|
|
if (uncertain && (code.fitAddr & IFIT_LARGE)) {
|
826 |
|
|
// choose the larger version if optimization process has convergence problems
|
827 |
|
|
fitBits = (fitBits & (fitBits - 1)) | IFIT_I32; // remove the lowest set bit
|
828 |
|
|
uncertain &= ~1;
|
829 |
|
|
}
|
830 |
|
|
code.fitAddr = fitBits;
|
831 |
|
|
code.sizeUnknown += uncertain;
|
832 |
|
|
//return uncertain;
|
833 |
|
|
}
|
834 |
|
|
}
|
835 |
|
|
else {
|
836 |
|
|
// symbol is relative to data pointer. relocation needed
|
837 |
|
|
fitBits = IFIT_RELOC;
|
838 |
|
|
if (relSize <= 1 << 7) fitBits |= IFIT_I8;
|
839 |
|
|
if (relSize <= 1 << 15) fitBits |= IFIT_I16;
|
840 |
|
|
if (relSize <= (uint64_t)1 << 31) fitBits |= IFIT_I32;
|
841 |
|
|
code.fitAddr = fitBits;
|
842 |
|
|
code.sizeUnknown += uncertain;
|
843 |
|
|
}
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
else {
|
847 |
|
|
// no symbol. only a signed integer constant
|
848 |
|
|
value = code.offset_mem;
|
849 |
|
|
fitBits = 0;
|
850 |
|
|
if (value >= -(int64_t)0x80 && value < 0x80) fitBits |= IFIT_I8;
|
851 |
|
|
if (value >= -(int64_t)0x8000 && value < 0x8000) fitBits |= IFIT_I16;
|
852 |
|
|
if (value >= -(int64_t)0x80000000 && value < 0x80000000) fitBits |= IFIT_I32;
|
853 |
|
|
code.fitAddr = fitBits;
|
854 |
|
|
}
|
855 |
|
|
|
856 |
|
|
// check jump offset symbol
|
857 |
|
|
if (code.sym5) {
|
858 |
|
|
// there is a jump offset symbol
|
859 |
|
|
value = code.offset_jump; // jump offset
|
860 |
|
|
fitBits = 0;
|
861 |
|
|
|
862 |
|
|
isym1 = findSymbol(code.sym5);
|
863 |
|
|
if (isym1 <= 0) {
|
864 |
|
|
code.sizeUnknown = 2; return 2; // should not occur
|
865 |
|
|
}
|
866 |
|
|
// one symbol relative to instruction pointer
|
867 |
|
|
if (symbols[isym1].st_unitsize == 0) uncertain = 2; // symbol value is not known yet
|
868 |
|
|
uint32_t sym1section = symbols[isym1].st_section; // symbol section
|
869 |
|
|
if (sym1section < sectionHeaders.numEntries()) {
|
870 |
|
|
// determine necessary relocation size if relocation needed
|
871 |
|
|
uint64_t relSize; // maximum size of relocated address
|
872 |
|
|
relSize = code_size >> 2; // relocation size for code and constant data, scaled by 4
|
873 |
|
|
|
874 |
|
|
if (sym1section != code.section || symbols[isym1].st_bind != STB_LOCAL) {
|
875 |
|
|
// symbol is in different section or not local. relocation needed
|
876 |
|
|
fitBits = IFIT_RELOC;
|
877 |
|
|
if (relSize <= 1 << 7) fitBits |= IFIT_I8; // necessary relocation size
|
878 |
|
|
if (relSize <= 1 << 15) fitBits |= IFIT_I16;
|
879 |
|
|
if (relSize <= 1 << 23) fitBits |= IFIT_I24;
|
880 |
|
|
if (relSize <= (uint64_t)1 << 31) fitBits |= IFIT_I32;
|
881 |
|
|
code.fitJump = fitBits;
|
882 |
|
|
code.sizeUnknown += uncertain;
|
883 |
|
|
//return uncertain;
|
884 |
|
|
}
|
885 |
|
|
else if (pass < 4) {
|
886 |
|
|
code.fitJump = IFIT_I16 | IFIT_I24 | IFIT_I32; // symbol values are not available yet
|
887 |
|
|
code.sizeUnknown += 1;
|
888 |
|
|
uncertain = 1;
|
889 |
|
|
//return 1;
|
890 |
|
|
}
|
891 |
|
|
else {
|
892 |
|
|
// self-relative address to local symbol
|
893 |
|
|
value = int32_t((uint32_t)symbols[isym1].st_value - (code.address + code.size * 4));
|
894 |
|
|
valueScaled = value >> 2; // jump address is scaled
|
895 |
|
|
valueScaled += code.offset_jump;
|
896 |
|
|
if (valueScaled >= -(1 << 7) && valueScaled < (1 << 7)) fitBits |= IFIT_I8;
|
897 |
|
|
if (valueScaled >= -(1 << 15) && valueScaled < (1 << 15)) fitBits |= IFIT_I16;
|
898 |
|
|
if (valueScaled >= -(1 << 23) && valueScaled < (1 << 23)) fitBits |= IFIT_I24;
|
899 |
|
|
if (valueScaled >= -((int64_t)1 << 31) && valueScaled < ((int64_t)1 << 31)) fitBits |= IFIT_I32;
|
900 |
|
|
code.fitJump = fitBits;
|
901 |
|
|
// check if value is certain. uncertainty is stored in high part of st_value and sh_link
|
902 |
|
|
uncertainty = int32_t((symbols[isym1].st_value >> 32) - sectionHeaders[code.section].sh_link);
|
903 |
|
|
valueScaled += uncertainty;
|
904 |
|
|
if ((valueScaled < -(1 << 7) || valueScaled >= (1 << 7)) && (fitBits & IFIT_I8)) uncertain |= 1;
|
905 |
|
|
if ((valueScaled < -(1 << 15) || valueScaled >= (1 << 15)) && (fitBits & IFIT_I16)) uncertain |= 1;
|
906 |
|
|
if ((valueScaled < -(1 << 23) || valueScaled >= (1 << 23)) && (fitBits & IFIT_I24)) uncertain |= 1;
|
907 |
|
|
if ((valueScaled < -((int64_t)1 << 31) || valueScaled >= ((int64_t)1 << 31)) && (fitBits & IFIT_I32)) uncertain |= 1;
|
908 |
|
|
if (uncertain && (code.fitAddr & IFIT_LARGE)) {
|
909 |
|
|
// choose the larger version if optimization process has convergence problems
|
910 |
|
|
fitBits = (fitBits & (fitBits - 1)) | IFIT_I32; // remove the lowest set bit
|
911 |
|
|
uncertain &= ~1;
|
912 |
|
|
code.fitJump = fitBits;
|
913 |
|
|
//code.sizeUnknown += uncertain;
|
914 |
|
|
}
|
915 |
|
|
code.sizeUnknown += uncertain;
|
916 |
|
|
}
|
917 |
|
|
}
|
918 |
|
|
}
|
919 |
|
|
return uncertain;
|
920 |
|
|
}
|
921 |
|
|
|
922 |
|
|
|
923 |
|
|
// find format details in formatList from entry in instructionlist
|
924 |
|
|
uint32_t findFormat(SInstruction const & listentry, uint32_t imm) {
|
925 |
|
|
// listentry: record in instructionlist or instructionlistId
|
926 |
|
|
// imm: immediate operand, if any
|
927 |
|
|
|
928 |
|
|
// make model instruction for lookupFormat
|
929 |
|
|
STemplate instrModel;
|
930 |
|
|
instrModel.a.il = listentry.format >> 8;
|
931 |
|
|
instrModel.a.mode = (listentry.format >> 4) & 7;
|
932 |
|
|
instrModel.a.ot = (listentry.format >> 5) & 4;
|
933 |
|
|
if ((listentry.format & ~ 0x12F) == 0x200) { // format 0x200, 0x220, 0x300, 0x320
|
934 |
|
|
instrModel.a.mode2 = listentry.format & 7;
|
935 |
|
|
}
|
936 |
|
|
else if ((listentry.format & 0xFF0) == 0x270 && listentry.op1 < 8) {
|
937 |
|
|
instrModel.a.mode2 = listentry.op1 & 7;
|
938 |
|
|
}
|
939 |
|
|
else instrModel.a.mode2 = 0;
|
940 |
|
|
instrModel.a.op1 = listentry.op1;
|
941 |
|
|
instrModel.b[0] = imm & 0xFF;
|
942 |
|
|
// look op details for this format (from emulator2.cpp)
|
943 |
|
|
return lookupFormat(instrModel.q);
|
944 |
|
|
}
|
945 |
|
|
|
946 |
|
|
// find the smallest representation that the floating point operand fits into
|
947 |
|
|
int fitFloat(double x) {
|
948 |
|
|
if (x == 0.) return IFIT_I8 | FFIT_16 | FFIT_32 | FFIT_64;
|
949 |
|
|
union {
|
950 |
|
|
double d;
|
951 |
|
|
struct {
|
952 |
|
|
uint64_t mantissa: 52;
|
953 |
|
|
uint64_t exponent: 11;
|
954 |
|
|
uint64_t sign: 1;
|
955 |
|
|
} f;
|
956 |
|
|
} u;
|
957 |
|
|
u.d = x;
|
958 |
|
|
int fit = FFIT_64;
|
959 |
|
|
// check if mantissa fits
|
960 |
|
|
if ((u.f.mantissa & (((uint64_t)1 << 42) - 1)) == 0) fit |= FFIT_16;
|
961 |
|
|
if ((u.f.mantissa & (((uint64_t)1 << 29) - 1)) == 0) fit |= FFIT_32;
|
962 |
|
|
// check if exponent fits, except for infinity or nan
|
963 |
|
|
if (u.f.exponent != 0x7FF) {
|
964 |
|
|
int ex = int(u.f.exponent - 0x3FF);
|
965 |
|
|
if (ex < -14 || ex > 15) fit &= ~FFIT_16;
|
966 |
|
|
if (ex < -126 || ex > 127) fit &= ~FFIT_32;
|
967 |
|
|
}
|
968 |
|
|
// check if x fits into a small integer
|
969 |
|
|
if (fit & FFIT_16) {
|
970 |
|
|
int i = int(x);
|
971 |
|
|
if (i == x && i >= -128 && i < 128) {
|
972 |
|
|
fit |= IFIT_I8;
|
973 |
|
|
}
|
974 |
|
|
}
|
975 |
|
|
return fit;
|
976 |
|
|
}
|
977 |
|
|
|
978 |
|
|
// find an instruction variant that fits the code
|
979 |
|
|
int CAssembler::fitCode(SCode & code) {
|
980 |
|
|
// return value:
|
981 |
|
|
// 0: does not fit
|
982 |
|
|
// 1: fits
|
983 |
|
|
uint32_t bestInstr = 0; // best fitting instruction variant, index into instructionlistId
|
984 |
|
|
uint32_t bestSize = 99; // size of best fitting instruction variant
|
985 |
|
|
SCode codeTemp; // fitted code
|
986 |
|
|
SCode codeBest; // best fitted code
|
987 |
|
|
uint32_t instrIndex = 0, ii; // index into instructionlistId
|
988 |
|
|
uint32_t formatIx = 0; // index into formatList
|
989 |
|
|
uint32_t isize; // il bits
|
990 |
|
|
codeBest.category = 0;
|
991 |
|
|
|
992 |
|
|
// find instruction by id
|
993 |
|
|
SInstruction3 sinstr; // make dummy record with instruction id as parameter to findAll
|
994 |
|
|
if (code.instruction == II_ALIGN) {
|
995 |
|
|
return 1; // alignment directive
|
996 |
|
|
}
|
997 |
|
|
sinstr.id = code.instruction;
|
998 |
|
|
int32_t nInstr = instructionlistId.findAll(&instrIndex, sinstr);
|
999 |
|
|
|
1000 |
|
|
if (code.etype & (XPR_IMMEDIATE | XPR_OFFSET | XPR_LIMIT | XPR_JUMPOS)) {
|
1001 |
|
|
// there is an immediate constant, offset, or limit.
|
1002 |
|
|
// generate specific error message if large constant cannot fit
|
1003 |
|
|
if ((code.etype & XPR_OFFSET) && !(code.etype & XPR_IMMEDIATE) && !(code.fitAddr & IFIT_I32)) {
|
1004 |
|
|
errors.reportLine(ERR_OFFSET_TOO_LARGE);
|
1005 |
|
|
}
|
1006 |
|
|
//else if ((code.etype & XPR_LIMIT) && !(code.fitBits & (IFIT_U16 | IFIT_U32))) errors.reportLine(ERR_LIMIT_TOO_LARGE);
|
1007 |
|
|
else if ((code.etype & XPR_IMMEDIATE) && !(code.etype & XPR_INT2)) {
|
1008 |
|
|
if (!(code.fitNum & (IFIT_I16 | IFIT_I16SHIFT | IFIT_I32 | IFIT_I32SHIFT | FFIT_16 | FFIT_32)) && (code.etype & XPR_OPTIONS) && code.optionbits) {
|
1009 |
|
|
errors.reportLine(ERR_IMMEDIATE_TOO_LARGE);
|
1010 |
|
|
}
|
1011 |
|
|
}
|
1012 |
|
|
}
|
1013 |
|
|
if (lineError) return 0;
|
1014 |
|
|
|
1015 |
|
|
// loop through all instruction definitions with same id
|
1016 |
|
|
for (ii = instrIndex; ii < instrIndex + nInstr; ii++) {
|
1017 |
|
|
// category
|
1018 |
|
|
code.instr1 = ii;
|
1019 |
|
|
code.category = instructionlistId[ii].category;
|
1020 |
|
|
// get variant bits from instruction list
|
1021 |
|
|
variant = instructionlistId[ii].variant; // instruction-specific variants
|
1022 |
|
|
|
1023 |
|
|
switch (instructionlistId[ii].category) {
|
1024 |
|
|
case 1: // single format. find entry in formatList
|
1025 |
|
|
formatIx = findFormat(instructionlistId[ii], code.value.w);
|
1026 |
|
|
code.formatp = formatList + formatIx;
|
1027 |
|
|
if (instructionFits(code, codeTemp, ii)) {
|
1028 |
|
|
// check if smaller than previously found.
|
1029 |
|
|
isize = codeTemp.size;
|
1030 |
|
|
if (isize < bestSize) {
|
1031 |
|
|
bestSize = isize;
|
1032 |
|
|
bestInstr = ii;
|
1033 |
|
|
codeBest = codeTemp;
|
1034 |
|
|
}
|
1035 |
|
|
}
|
1036 |
|
|
break;
|
1037 |
|
|
|
1038 |
|
|
case 3: // multi-format instructions. search all formats for the best one
|
1039 |
|
|
for (formatIx = 0; formatIx < formatList3.numEntries(); formatIx++) {
|
1040 |
|
|
code.formatp = &formatList3[formatIx];
|
1041 |
|
|
|
1042 |
|
|
if (((uint64_t)1 << code.formatp->formatIndex) & instructionlistId[ii].format) {
|
1043 |
|
|
if (instructionFits(code, codeTemp, ii)) {
|
1044 |
|
|
// check if smaller than previously found. category 3 = multiformat preferred
|
1045 |
|
|
isize = codeTemp.size;
|
1046 |
|
|
if (isize < bestSize || (isize == bestSize && codeBest.category != 3)) {
|
1047 |
|
|
bestSize = isize;
|
1048 |
|
|
bestInstr = ii;
|
1049 |
|
|
codeBest = codeTemp;
|
1050 |
|
|
}
|
1051 |
|
|
}
|
1052 |
|
|
}
|
1053 |
|
|
}
|
1054 |
|
|
break;
|
1055 |
|
|
|
1056 |
|
|
case 4: // jump instructions. search all formats for the best one
|
1057 |
|
|
for (formatIx = 0; formatIx < formatList4.numEntries(); formatIx++) {
|
1058 |
|
|
code.formatp = &formatList4[formatIx];
|
1059 |
|
|
if (((uint64_t)1 << code.formatp->formatIndex) & instructionlistId[ii].format) {
|
1060 |
|
|
if (jumpInstructionFits(code, codeTemp, ii)) {
|
1061 |
|
|
// check if smaller than previously found. category 3 = multiformat preferred
|
1062 |
|
|
isize = codeTemp.size;
|
1063 |
|
|
if (isize < bestSize) {
|
1064 |
|
|
bestSize = isize;
|
1065 |
|
|
bestInstr = ii;
|
1066 |
|
|
codeBest = codeTemp;
|
1067 |
|
|
}
|
1068 |
|
|
}
|
1069 |
|
|
}
|
1070 |
|
|
}
|
1071 |
|
|
break;
|
1072 |
|
|
|
1073 |
|
|
default:
|
1074 |
|
|
return 0; // error in list
|
1075 |
|
|
}
|
1076 |
|
|
}
|
1077 |
|
|
|
1078 |
|
|
if (bestSize > 4) {
|
1079 |
|
|
errors.reportLine(checkCodeE(code)); // find reason why no format fits, and report error
|
1080 |
|
|
return 0;
|
1081 |
|
|
}
|
1082 |
|
|
|
1083 |
|
|
code = codeBest; // get the best fitting code
|
1084 |
|
|
variant = instructionlistId[bestInstr].variant; // instruction-specific variants
|
1085 |
|
|
|
1086 |
|
|
checkCode2(code); // check if operands are correct
|
1087 |
|
|
|
1088 |
|
|
if (lineError) return 0;
|
1089 |
|
|
return 1;
|
1090 |
|
|
}
|
1091 |
|
|
|
1092 |
|
|
|
1093 |
|
|
// check if instruction fits into specified format
|
1094 |
|
|
bool CAssembler::instructionFits(SCode const & code, SCode & codeTemp, uint32_t ii) {
|
1095 |
|
|
// code: structure defining all operands and options
|
1096 |
|
|
// codeTemp: fitted code
|
1097 |
|
|
// ii: index into instructionlistId
|
1098 |
|
|
// formatIndex: index into formatList
|
1099 |
|
|
|
1100 |
|
|
uint32_t shiftCount; // shift count for shifted constant
|
1101 |
|
|
// copy code structure and add details
|
1102 |
|
|
codeTemp = code;
|
1103 |
|
|
codeTemp.category = code.formatp->category;
|
1104 |
|
|
codeTemp.size = (code.formatp->format2 >> 8) & 3;
|
1105 |
|
|
if (codeTemp.size == 0) codeTemp.size = 1;
|
1106 |
|
|
codeTemp.instr1 = ii;
|
1107 |
|
|
|
1108 |
|
|
if (instructionlistId[ii].opimmediate == OPI_IMPLICIT && !(code.etype & XPR_IMMEDIATE)) {
|
1109 |
|
|
// There is no immediate operand. instructionlistId[ii] has an implicit immediate operand.
|
1110 |
|
|
// Insert implicit operand and see if it fits
|
1111 |
|
|
codeTemp.value.u = instructionlistId[ii].implicit_imm;
|
1112 |
|
|
codeTemp.etype |= XPR_INT;
|
1113 |
|
|
codeTemp.fitNum = 0xFFFFFFFF;
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
// check vector use
|
1117 |
|
|
bool useVectors = (code.dtype & TYP_FLOAT)
|
1118 |
|
|
|| (code.dest & 0xE0) == REG_V
|
1119 |
|
|
|| (code.reg1 & 0xE0) == REG_V
|
1120 |
|
|
|| (code.reg2 & 0xE0) == REG_V;
|
1121 |
|
|
|
1122 |
|
|
if (useVectors) {
|
1123 |
|
|
if (!(code.formatp->vect)) return false; // vectors not supported
|
1124 |
|
|
}
|
1125 |
|
|
else if (code.formatp->vect & ~0x10) return false; // vectors provided but not used
|
1126 |
|
|
|
1127 |
|
|
// requested operand type
|
1128 |
|
|
uint32_t requestOT = code.dtype & 7;
|
1129 |
|
|
if (uint8_t(code.dtype) == uint8_t(TYP_FLOAT16)) {
|
1130 |
|
|
requestOT = TYP_INT16 & 7; // replace pseudo-type TYP_FLOAT16 with TYP_INT16
|
1131 |
|
|
codeTemp.dtype = TYP_INT16;
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
|
|
// operand type provided by this format
|
1135 |
|
|
uint32_t formatOT = code.formatp->ot;
|
1136 |
|
|
if (formatOT == 0x32) formatOT = 0x12 + (instructionlistId[ii].op1 & 1); // int32 for even op1, int64 for odd op1
|
1137 |
|
|
if (formatOT == 0x35) formatOT = 0x15 + (instructionlistId[ii].op1 & 1); // float for even op1, double for odd op1
|
1138 |
|
|
if (formatOT == 0) formatOT = requestOT; // operand type determined by OT field
|
1139 |
|
|
formatOT &= 7;
|
1140 |
|
|
uint32_t scale2 = formatOT;
|
1141 |
|
|
if (scale2 > 4) scale2 -= 3; // operand size = 1 << scale2
|
1142 |
|
|
|
1143 |
|
|
if (variant & (VARIANT_D0 | VARIANT_D2)) { // no operand type
|
1144 |
|
|
if (code.dtype == 0 && code.instruction != II_NOP) codeTemp.dtype = formatOT ? formatOT : 3;
|
1145 |
|
|
}
|
1146 |
|
|
else {
|
1147 |
|
|
// check requested operand type
|
1148 |
|
|
if (formatOT <= 3 && requestOT < formatOT && (code.dtype & TYP_PLUS)) {
|
1149 |
|
|
requestOT = formatOT; // request allows bigger type
|
1150 |
|
|
// codeTemp.dtype = formatOT; // prevents merging with subsequent jump with smaller type than formatOT
|
1151 |
|
|
}
|
1152 |
|
|
if (requestOT != formatOT && code.dtype) return false; // requested format type not supported
|
1153 |
|
|
|
1154 |
|
|
// check if operand type supported by instruction
|
1155 |
|
|
uint32_t optypessupport = useVectors ? (instructionlistId[ii].optypesscalar | instructionlistId[ii].optypesvector) : instructionlistId[ii].optypesgp;
|
1156 |
|
|
optypessupport |= optypessupport >> 8; // include types with optional support
|
1157 |
|
|
if (!(optypessupport & (1 << requestOT))) return false;
|
1158 |
|
|
}
|
1159 |
|
|
|
1160 |
|
|
// check if there are enough register operands in this format
|
1161 |
|
|
uint8_t opAvail = code.formatp->opAvail;
|
1162 |
|
|
uint8_t numReg = ((opAvail >> 4) & 1) + ((opAvail >> 5) & 1) + ((opAvail >> 6) & 1) + ((opAvail >> 7) & 1); // number of registers available
|
1163 |
|
|
uint8_t numReq = instructionlistId[ii].sourceoperands; // number of registers required for this instruction
|
1164 |
|
|
codeTemp.numOp = numReq;
|
1165 |
|
|
if ((codeTemp.etype & XPR_IMMEDIATE) && numReq) numReq--;
|
1166 |
|
|
if ((codeTemp.etype & XPR_MEM) && numReq) numReq--;
|
1167 |
|
|
if ((codeTemp.etype & (XPR_MASK | XPR_FALLBACK)) && ((code.fallback & 0x1F) != (code.reg1 & 0x1F) || (code.reg1 & 0x1F) == 0x1F)) {
|
1168 |
|
|
numReq += 2; // fallback different from reg1, implies reg1 != destination
|
1169 |
|
|
}
|
1170 |
|
|
else if ((code.etype & XPR_REG1) && code.dest && code.reg1 != code.dest && !(variant & VARIANT_D3)) {
|
1171 |
|
|
numReq++; // reg1 != destination
|
1172 |
|
|
}
|
1173 |
|
|
if (numReq > numReg) return false; // not enough registers in this format
|
1174 |
|
|
|
1175 |
|
|
// check if mask available
|
1176 |
|
|
if ((code.etype & XPR_MASK) && !(code.formatp->tmplate == 0xA || code.formatp->tmplate == 0xE)) return false;
|
1177 |
|
|
|
1178 |
|
|
// check option bits
|
1179 |
|
|
if ((code.etype & XPR_OPTIONS) && code.optionbits != 0
|
1180 |
|
|
&& (code.formatp->tmplate != 0xE || !(code.formatp->imm2 & 2))
|
1181 |
|
|
&& (variant & VARIANT_On) && instructionlistId[ii].opimmediate != OPI_INT1688) return false; // only template E has option bits
|
1182 |
|
|
|
1183 |
|
|
// check memory operand
|
1184 |
|
|
if (code.etype & XPR_MEM) {
|
1185 |
|
|
if (code.formatp->mem == 0) return false; // memory operand requested but not supported
|
1186 |
|
|
if (code.etype & XPR_SYM1) { // has data symbol
|
1187 |
|
|
if (code.etype & XPR_SYM2) { // has difference between two symbols
|
1188 |
|
|
codeTemp.sizeUnknown = 1;
|
1189 |
|
|
}
|
1190 |
|
|
//if (!(code.fitNumX & IFIT_I32)) return false; // assume symbol address requires 32 bits. local symbol difference resolved later when sizeUnknown = 1
|
1191 |
|
|
}
|
1192 |
|
|
// check index and scale factor
|
1193 |
|
|
if (code.etype & XPR_INDEX) {
|
1194 |
|
|
if (!(code.formatp->mem & 4)) return false; // index not supported
|
1195 |
|
|
if ((code.formatp->scale & 4) && code.scale != -1) return false; // scale factor must be -1
|
1196 |
|
|
if ((code.formatp->scale & 2) && code.scale != 1 << scale2) return false; // scale factor must match operand type
|
1197 |
|
|
if (!(code.formatp->scale & 6) && code.scale != 1) return false; // scale factor must be 1
|
1198 |
|
|
}
|
1199 |
|
|
else { // no index requested
|
1200 |
|
|
if (code.formatp->mem & 4) {
|
1201 |
|
|
codeTemp.index = 0x1F; // RT = 0x1F means no index
|
1202 |
|
|
codeTemp.scale = 1 << scale2;
|
1203 |
|
|
}
|
1204 |
|
|
}
|
1205 |
|
|
|
1206 |
|
|
// check address offset size
|
1207 |
|
|
if (code.etype & (XPR_OFFSET | XPR_SYM1)) {
|
1208 |
|
|
if (!(code.formatp->mem & 0x10)) return false; // format does not support memory offset
|
1209 |
|
|
switch (code.formatp->addrSize) {
|
1210 |
|
|
case 1:
|
1211 |
|
|
if (code.sym1 && !(code.fitAddr & IFIT_I8)) return false;
|
1212 |
|
|
if ((code.base & 0x1F) >= 0x1C && (code.base & 0x1F) != 0x1F) return false; // ip, datap, threadp must have 16 bit offset
|
1213 |
|
|
// no relocation. scale factor depends on operand size
|
1214 |
|
|
if (code.offset_mem & ((1 << scale2) - 1)) return false; // offset is not a multiple of the scale factor
|
1215 |
|
|
if ((code.offset_mem >> scale2) < -0x80 || (code.offset_mem >> scale2) > 0x7F) return false;
|
1216 |
|
|
break;
|
1217 |
|
|
case 2:
|
1218 |
|
|
if (!(code.fitAddr & IFIT_I16)) return false;
|
1219 |
|
|
break;
|
1220 |
|
|
case 4:
|
1221 |
|
|
if (!(code.fitAddr & IFIT_I32)) return false;
|
1222 |
|
|
break;
|
1223 |
|
|
default:
|
1224 |
|
|
return false;
|
1225 |
|
|
}
|
1226 |
|
|
}
|
1227 |
|
|
else if ((code.formatp->addrSize) < 2 && (code.base & 0x1F) >= 0x1C && (code.base & 0x1F) != 0x1F) return false;
|
1228 |
|
|
|
1229 |
|
|
// fail if limit required and not supported, or supported and not required
|
1230 |
|
|
if (code.etype & XPR_LIMIT) {
|
1231 |
|
|
if (!(code.formatp->mem & 0x20)) return false; // limit not supported by format
|
1232 |
|
|
switch (code.formatp->addrSize) {
|
1233 |
|
|
case 1: if (code.value.u >= 0x100) return false;
|
1234 |
|
|
break;
|
1235 |
|
|
case 2: if (code.value.u >= 0x10000) return false;
|
1236 |
|
|
break;
|
1237 |
|
|
case 4: if (uint64_t(code.value.u) >= 0x100000000U) return false;
|
1238 |
|
|
break;
|
1239 |
|
|
}
|
1240 |
|
|
}
|
1241 |
|
|
else {
|
1242 |
|
|
if (code.formatp->mem & 0x20) return false; // limit provided but not requested
|
1243 |
|
|
}
|
1244 |
|
|
|
1245 |
|
|
// check length/broadcast/scalar
|
1246 |
|
|
if (code.etype & XPR_SCALAR) { // scalar operand requested
|
1247 |
|
|
if ((code.formatp->vect & 6) != 0) {
|
1248 |
|
|
codeTemp.length = 31; // disable length or broadcast option
|
1249 |
|
|
}
|
1250 |
|
|
}
|
1251 |
|
|
else if (code.etype & XPR_LENGTH) { // vector length specified
|
1252 |
|
|
if ((code.formatp->vect & 2) == 0) return false; // vector length not in this format
|
1253 |
|
|
}
|
1254 |
|
|
else if (code.etype & XPR_BROADC) { // vector broadcast specified
|
1255 |
|
|
if ((code.formatp->vect & 4) == 0) return false; // vector broadcasst not in this format
|
1256 |
|
|
}
|
1257 |
|
|
}
|
1258 |
|
|
else if (code.formatp->mem) return false; // memory operand supported by not requested
|
1259 |
|
|
|
1260 |
|
|
// check immediate operand
|
1261 |
|
|
//bool isFloat = (code.dtype & TYP_FLOAT32 & 0xF0) != 0; // specified type is float or double or float128
|
1262 |
|
|
bool hasImmediate = (code.etype & XPR_IMMEDIATE) != 0; // && !(code.etype & (XPR_OFFSET | XPR_LIMIT)));
|
1263 |
|
|
|
1264 |
|
|
/*if ((variant & VARIANT_M1) && code.formatp->mem && code.formatp->tmplate == 0xE) {
|
1265 |
|
|
// variant M1: immediate operand is in IM3. No further check needed
|
1266 |
|
|
// to do: fail if relocation on immediate
|
1267 |
|
|
return hasImmediate; // succeed if there is an immediate
|
1268 |
|
|
} */
|
1269 |
|
|
|
1270 |
|
|
if (hasImmediate) {
|
1271 |
|
|
if (code.formatp->immSize == 0 && instructionlistId[ii].sourceoperands < 4) return false; // immediate not supported
|
1272 |
|
|
|
1273 |
|
|
// to do: check if relocation
|
1274 |
|
|
|
1275 |
|
|
// check if size fits. special cases in instruction list
|
1276 |
|
|
switch (instructionlistId[ii].opimmediate) {
|
1277 |
|
|
case OPI_IMPLICIT: // implicit value of immediate operand. Accept explicit value only if same
|
1278 |
|
|
if (codeTemp.value.u != instructionlistId[ii].implicit_imm) return false;
|
1279 |
|
|
break;
|
1280 |
|
|
|
1281 |
|
|
case OPI_INT8SH: // im2 << im1
|
1282 |
|
|
if (code.fitNum & (IFIT_I8 | IFIT_I8SHIFT)) { // fits im2 << im1
|
1283 |
|
|
shiftCount = bitScanForward(codeTemp.value.u);
|
1284 |
|
|
codeTemp.value.u = (codeTemp.value.u >> shiftCount << 8) | shiftCount;
|
1285 |
|
|
codeTemp.fitNum |= IFIT_I16; // make it accepted below
|
1286 |
|
|
break;
|
1287 |
|
|
}
|
1288 |
|
|
return false;
|
1289 |
|
|
case OPI_INT16SH16: // im12 << 16
|
1290 |
|
|
if (code.fitNum & (IFIT_I16 | IFIT_I16SH16)) { // fits im2 << 16
|
1291 |
|
|
codeTemp.value.u = codeTemp.value.u >> 16;
|
1292 |
|
|
codeTemp.fitNum |= IFIT_I16; // make it accepted below
|
1293 |
|
|
break;
|
1294 |
|
|
}
|
1295 |
|
|
return false;
|
1296 |
|
|
case OPI_INT32SH32: // im2 << 32
|
1297 |
|
|
if (code.fitNum & (IFIT_I32 | IFIT_I32SH32)) { // fits im2 << 32
|
1298 |
|
|
codeTemp.value.u = codeTemp.value.u >> 32;
|
1299 |
|
|
codeTemp.fitNum |= IFIT_I32; // make it accepted below
|
1300 |
|
|
break;
|
1301 |
|
|
}
|
1302 |
|
|
return false;
|
1303 |
|
|
case OPI_UINT8: // 8 bit unsigned integer
|
1304 |
|
|
if (value0 < 0x100 && value0 > -(int64_t)0x80U) return true;
|
1305 |
|
|
return false;
|
1306 |
|
|
case OPI_UINT16: // 16 bit unsigned integer
|
1307 |
|
|
if (value0 < 0x10000 && value0 > -(int64_t)0x8000U) return true;
|
1308 |
|
|
return false;
|
1309 |
|
|
case OPI_UINT32: // 32 bit unsigned integer
|
1310 |
|
|
//if (code.fitNum & IFIT_U32) return true; // this does not work if a float type is specified
|
1311 |
|
|
if (value0 < 0x100000000 && value0 > -(int64_t)0x80000000U) return true;
|
1312 |
|
|
return false;
|
1313 |
|
|
case OPI_INT886: // three integers
|
1314 |
|
|
codeTemp.value.u = (codeTemp.value.w & 0xFF) | (codeTemp.value.u >> 24);
|
1315 |
|
|
return true;
|
1316 |
|
|
case OPI_INT1688: // three integers: 16 + 8 + 8 bits
|
1317 |
|
|
codeTemp.value.u = (codeTemp.value.w & 0xFFFF) | (codeTemp.value.u >> 16 & 0xFF0000) | codeTemp.optionbits << 24;
|
1318 |
|
|
return true;
|
1319 |
|
|
case OPI_OT: // constant of same type as operand type
|
1320 |
|
|
if ((uint8_t(code.dtype) & ~TYP_UNS) <= uint8_t(TYP_INT32) && code.formatp->immSize >= 4) return true;
|
1321 |
|
|
}
|
1322 |
|
|
// check if size fits. general cases
|
1323 |
|
|
switch (code.formatp->immSize) {
|
1324 |
|
|
case 1:
|
1325 |
|
|
if (codeTemp.fitNum & IFIT_I8) break; // fits
|
1326 |
|
|
if ((variant & VARIANT_U0) && (codeTemp.fitNum & IFIT_U8)) break; // unsigned fits
|
1327 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT8 & 0x1F) && (codeTemp.fitNum & IFIT_U8)) break; // 8 bit size fits unsigned with no sign extension
|
1328 |
|
|
return false;
|
1329 |
|
|
case 2:
|
1330 |
|
|
if (codeTemp.fitNum & (IFIT_I16 | FFIT_16)) break; // fits
|
1331 |
|
|
if ((variant & VARIANT_U0) && (codeTemp.fitNum & IFIT_U16)) break; // unsigned fits
|
1332 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT16 & 0x1F) && code.formatp->tmplate != 0xC && (codeTemp.fitNum & IFIT_U16)) break; // 16 bit size fits unsigned with no sign extension
|
1333 |
|
|
if ((code.formatp->imm2 & 4) && !(variant & VARIANT_On) && (codeTemp.fitNum & IFIT_I16SHIFT)) {
|
1334 |
|
|
// fits with im2 << im3
|
1335 |
|
|
shiftCount = bitScanForward(codeTemp.value.u);
|
1336 |
|
|
codeTemp.value.u >>= shiftCount;
|
1337 |
|
|
codeTemp.optionbits = shiftCount;
|
1338 |
|
|
break;
|
1339 |
|
|
}
|
1340 |
|
|
if (variant & VARIANT_H0) break; // half precision fits
|
1341 |
|
|
return false;
|
1342 |
|
|
case 4:
|
1343 |
|
|
if ((code.dtype & 0xFF) == (TYP_FLOAT32 & 0xFF)) break; // float32 must be rounded to fit
|
1344 |
|
|
if (codeTemp.fitNum & (IFIT_I32 | FFIT_32)) break; // fits
|
1345 |
|
|
if ((codeTemp.fitNum & IFIT_U32) && (code.dtype & 0xFF) == (TYP_INT32 & 0xFF)) break; // fits
|
1346 |
|
|
if ((variant & VARIANT_U0) && (codeTemp.fitNum & IFIT_U32)) break; // unsigned fits
|
1347 |
|
|
if (variant & VARIANT_H0) break; // half precision fits
|
1348 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT32 & 0x1F) && (codeTemp.fitNum & IFIT_U32)) break; // 32 bit size fits unsigned with no sign extension
|
1349 |
|
|
if ((code.formatp->imm2 & 8) && (codeTemp.fitNum & IFIT_I32SHIFT)) {
|
1350 |
|
|
// fits with im4 << im2
|
1351 |
|
|
shiftCount = bitScanForward(codeTemp.value.u);
|
1352 |
|
|
codeTemp.value.u = ((codeTemp.value.u >> shiftCount) & 0xFFFFFFFF) | ((uint64_t)shiftCount << 32); // store shift count in upper half
|
1353 |
|
|
break;
|
1354 |
|
|
}
|
1355 |
|
|
return false;
|
1356 |
|
|
case 8:
|
1357 |
|
|
break;
|
1358 |
|
|
default:; // other values should not occur in table
|
1359 |
|
|
}
|
1360 |
|
|
}
|
1361 |
|
|
else if ((code.formatp->immSize != 0) && !(code.etype & (XPR_OFFSET | XPR_LIMIT))
|
1362 |
|
|
&& instructionlistId[ii].sourceoperands && code.category != 1) {
|
1363 |
|
|
return false; // immediate operand provided but not required
|
1364 |
|
|
}
|
1365 |
|
|
return true;
|
1366 |
|
|
}
|
1367 |
|
|
|
1368 |
|
|
// check if instruction fits into specified format
|
1369 |
|
|
bool CAssembler::jumpInstructionFits(SCode const & code, SCode & codeTemp, uint32_t ii) {
|
1370 |
|
|
// code: structure defining all operands and options
|
1371 |
|
|
// codeTemp: fitted code
|
1372 |
|
|
// ii: index into instructionlistId
|
1373 |
|
|
// formatIndex: index into formatList4
|
1374 |
|
|
|
1375 |
|
|
//uint8_t offsetSize = 0; // number of bytes to use in relative address
|
1376 |
|
|
//uint8_t immediateSize = 0; // number of bytes to use in immediate operand
|
1377 |
|
|
bool offsetRelocated = false; // relative offset needs relocation
|
1378 |
|
|
//bool immediateRelocated = false; // immediate operand needs relocation
|
1379 |
|
|
|
1380 |
|
|
codeTemp = code;
|
1381 |
|
|
codeTemp.category = code.formatp->category;
|
1382 |
|
|
codeTemp.size = (code.formatp->format2 >> 8) & 3;
|
1383 |
|
|
codeTemp.instr1 = ii;
|
1384 |
|
|
|
1385 |
|
|
// check vector use
|
1386 |
|
|
bool useVectors = (code.dtype & TYP_FLOAT) || (code.dest & 0xE0) == REG_V || (code.reg1 & 0xE0) == REG_V;
|
1387 |
|
|
if (useVectors) {
|
1388 |
|
|
if (!(code.formatp->vect)) return false; // vectors not supported
|
1389 |
|
|
}
|
1390 |
|
|
|
1391 |
|
|
// operand type provided by this format
|
1392 |
|
|
uint32_t formatOT = code.formatp->ot;
|
1393 |
|
|
if (formatOT == 0) formatOT = code.dtype; // operand type determined by OT field
|
1394 |
|
|
formatOT &= 7;
|
1395 |
|
|
|
1396 |
|
|
// check requested operand type
|
1397 |
|
|
uint32_t requestOT = code.dtype & 7;
|
1398 |
|
|
if (formatOT <= 3 && requestOT < formatOT && (code.dtype & TYP_PLUS)) {
|
1399 |
|
|
requestOT = formatOT; // request allows bigger type
|
1400 |
|
|
codeTemp.dtype = formatOT;
|
1401 |
|
|
}
|
1402 |
|
|
if (requestOT != formatOT && code.dtype) return false; // requested format type not supported
|
1403 |
|
|
|
1404 |
|
|
// check if operand type supported by instruction
|
1405 |
|
|
uint32_t optypessupport = useVectors ? (instructionlistId[ii].optypesscalar | instructionlistId[ii].optypesvector) : instructionlistId[ii].optypesgp;
|
1406 |
|
|
optypessupport |= optypessupport >> 8; // include types with optional support
|
1407 |
|
|
if (!(optypessupport & (1 << requestOT))) return false;
|
1408 |
|
|
|
1409 |
|
|
// check if there are enough register operands in this format
|
1410 |
|
|
uint8_t opAvail = code.formatp->opAvail;
|
1411 |
|
|
uint8_t numReg = ((opAvail >> 4) & 1) + ((opAvail >> 5) & 1) + ((opAvail >> 7) & 1); // number of registers available
|
1412 |
|
|
uint8_t numReq = instructionlistId[ii].sourceoperands; // number of registers required for this instruction
|
1413 |
|
|
if ((code.etype & XPR_REG1) && code.dest && code.reg1 != code.dest && numReq > 2) {
|
1414 |
|
|
numReq++; // reg1 != destination, except if no reg2
|
1415 |
|
|
}
|
1416 |
|
|
if (code.formatp->jumpSize) numReq--;
|
1417 |
|
|
if ((code.etype & (XPR_IMMEDIATE | XPR_MEM)) && numReq) numReq--;
|
1418 |
|
|
if ((code.etype & XPR_INT2) && numReq) numReq--;
|
1419 |
|
|
if (numReq > numReg) return false; // not enough registers in this format
|
1420 |
|
|
|
1421 |
|
|
// check if correct number of registers specified
|
1422 |
|
|
uint8_t nReg = 0;
|
1423 |
|
|
for (int j = 0; j < 3; j++) nReg += (code.etype & (XPR_REG1 << j)) != 0;
|
1424 |
|
|
if (code.dest && code.dest != code.reg1) nReg++;
|
1425 |
|
|
if (nReg != numReq) return false;
|
1426 |
|
|
|
1427 |
|
|
// check if mask available
|
1428 |
|
|
if ((code.etype & XPR_MASK) && !(fInstr->tmplate == 0xA || fInstr->tmplate == 0xE)) return false;
|
1429 |
|
|
|
1430 |
|
|
// self-relative jump offset
|
1431 |
|
|
if (code.etype & XPR_JUMPOS) {
|
1432 |
|
|
if (!(code.formatp->jumpSize)) return false;
|
1433 |
|
|
switch (code.formatp->jumpSize) {
|
1434 |
|
|
case 0: // no offset
|
1435 |
|
|
if (code.offset_jump || offsetRelocated) return false;
|
1436 |
|
|
break;
|
1437 |
|
|
case 1: // 1 byte
|
1438 |
|
|
if (!(code.fitJump & IFIT_I8)) return false;
|
1439 |
|
|
break;
|
1440 |
|
|
case 2: // 2 bytes
|
1441 |
|
|
if (!(code.fitJump & IFIT_I16)) return false;
|
1442 |
|
|
break;
|
1443 |
|
|
case 3: // 3 bytes
|
1444 |
|
|
if (!(code.fitJump & IFIT_I24)) return false;
|
1445 |
|
|
break;
|
1446 |
|
|
case 4: // 4 bytes
|
1447 |
|
|
if (!(code.fitJump & IFIT_I32)) return false;
|
1448 |
|
|
break;
|
1449 |
|
|
}
|
1450 |
|
|
}
|
1451 |
|
|
else { // no self-relative jump offset
|
1452 |
|
|
if (code.formatp->jumpSize) return false;
|
1453 |
|
|
}
|
1454 |
|
|
|
1455 |
|
|
if (instructionlistId[ii].opimmediate == OPI_IMPLICIT && !(code.etype & XPR_IMMEDIATE)) {
|
1456 |
|
|
// There is no immediate operand. instructionlistId[ii] has an implicit immediate operand.
|
1457 |
|
|
// Insert implicit operand and see if it fits
|
1458 |
|
|
codeTemp.value.u = instructionlistId[ii].implicit_imm;
|
1459 |
|
|
codeTemp.etype |= XPR_INT;
|
1460 |
|
|
codeTemp.fitNum = 0xFFFFFFFF;
|
1461 |
|
|
}
|
1462 |
|
|
|
1463 |
|
|
// immediate operand
|
1464 |
|
|
if (codeTemp.etype & XPR_IMMEDIATE) {
|
1465 |
|
|
if (code.dtype & TYP_FLOAT) {
|
1466 |
|
|
if (variant & VARIANT_I2) {
|
1467 |
|
|
// immediate should be integer
|
1468 |
|
|
codeTemp.etype = (code.etype & ~XPR_FLT) | XPR_INT;
|
1469 |
|
|
codeTemp.value.i = (int64_t)code.value.d;
|
1470 |
|
|
switch (code.formatp->immSize) {
|
1471 |
|
|
case 0: // no immediate
|
1472 |
|
|
return false;
|
1473 |
|
|
case 1: // 1 byte
|
1474 |
|
|
if (codeTemp.value.i < -0x80 || codeTemp.value.i > 0x7F) return false;
|
1475 |
|
|
break;
|
1476 |
|
|
case 2: // 2 bytes
|
1477 |
|
|
if (codeTemp.value.i < -0x8000 || codeTemp.value.i > 0x7FFF) return false;
|
1478 |
|
|
break;
|
1479 |
|
|
case 4: // 4 bytes
|
1480 |
|
|
if (-codeTemp.value.i > 0x80000000u || codeTemp.value.i > 0x7FFFFFFF) return false;
|
1481 |
|
|
break;
|
1482 |
|
|
}
|
1483 |
|
|
}
|
1484 |
|
|
else {
|
1485 |
|
|
// immediate is floating point or small integer converted to floating point
|
1486 |
|
|
int fit = code.fitNum;
|
1487 |
|
|
if ((code.dtype & 0xFF) <= (TYP_FLOAT32 & 0xFF)) fit |= FFIT_32;
|
1488 |
|
|
switch (code.formatp->immSize) {
|
1489 |
|
|
case 0: // no immediate
|
1490 |
|
|
return false;
|
1491 |
|
|
case 1: // 1 byte
|
1492 |
|
|
if (!(fit & IFIT_I8)) return false;
|
1493 |
|
|
break;
|
1494 |
|
|
case 2: // 2 bytes
|
1495 |
|
|
if (!(fit & FFIT_16)) return false;
|
1496 |
|
|
break;
|
1497 |
|
|
case 4: // 4 bytes
|
1498 |
|
|
if (!(fit & FFIT_32)) return false;
|
1499 |
|
|
break;
|
1500 |
|
|
case 8: // 8 bytes., currently not supported
|
1501 |
|
|
;
|
1502 |
|
|
}
|
1503 |
|
|
}
|
1504 |
|
|
}
|
1505 |
|
|
else {
|
1506 |
|
|
// immediate integer operand
|
1507 |
|
|
switch (code.formatp->immSize) {
|
1508 |
|
|
case 0: // no immediate
|
1509 |
|
|
return false;
|
1510 |
|
|
case 1:
|
1511 |
|
|
if (codeTemp.fitNum & IFIT_I8) break; // fits
|
1512 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT8 & 0x1F) && (codeTemp.fitNum & IFIT_U8)) break; // 8 bit size fits unsigned with no sign extension
|
1513 |
|
|
return false;
|
1514 |
|
|
case 2: // 2 bytes
|
1515 |
|
|
if (instructionlistId[ii].opimmediate == OPI_INT1632) { // 16+32 bits
|
1516 |
|
|
if ((codeTemp.value.u >> 32) <= 0xFFFF) break;
|
1517 |
|
|
return false;
|
1518 |
|
|
}
|
1519 |
|
|
if (codeTemp.fitNum & IFIT_I16) break; // fits
|
1520 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT16 & 0x1F) && (codeTemp.fitNum & IFIT_U16)) break; // 16 bit size fits unsigned with no sign extension
|
1521 |
|
|
return false;
|
1522 |
|
|
case 4: // 4 bytes
|
1523 |
|
|
if (instructionlistId[ii].opimmediate == OPI_2INT16) { // 16+16 bits
|
1524 |
|
|
if (codeTemp.value.w <= 0xFFFF && (codeTemp.value.u >> 32) <= 0xFFFF) break;
|
1525 |
|
|
return false;
|
1526 |
|
|
}
|
1527 |
|
|
if (codeTemp.fitNum & IFIT_I32) break; // fits
|
1528 |
|
|
if ((codeTemp.dtype & 0x1F) == (TYP_INT32 & 0x1F) && (codeTemp.fitNum & IFIT_U32)) break; // 32 bit size fits unsigned with no sign extension
|
1529 |
|
|
return false;
|
1530 |
|
|
case 8: // 8 bytes
|
1531 |
|
|
break;
|
1532 |
|
|
default: // does not fit other sizes
|
1533 |
|
|
return false;
|
1534 |
|
|
}
|
1535 |
|
|
}
|
1536 |
|
|
}
|
1537 |
|
|
else {
|
1538 |
|
|
// no explicit immediate
|
1539 |
|
|
if (code.formatp->immSize && code.instruction != II_JUMP && code.instruction != II_CALL) return false;
|
1540 |
|
|
}
|
1541 |
|
|
|
1542 |
|
|
// memory operand
|
1543 |
|
|
if (code.etype & XPR_MEM) {
|
1544 |
|
|
if (code.formatp->mem == 0) return false; // memory operand requested but not supported
|
1545 |
|
|
uint32_t scale2 = formatOT;
|
1546 |
|
|
if (scale2 > 4) scale2 -= 3; // operand size = 1 << scale2
|
1547 |
|
|
if (code.etype & XPR_SYM1) { // has data symbol
|
1548 |
|
|
if (code.etype & XPR_SYM2) { // has difference between two symbols
|
1549 |
|
|
codeTemp.sizeUnknown = 1;
|
1550 |
|
|
}
|
1551 |
|
|
if (!(code.fitAddr & IFIT_I32)) return false; // assume symbol address requires 32 bits. local symbol difference resolved later when sizeUnknown = 1
|
1552 |
|
|
}
|
1553 |
|
|
// check index and scale factor
|
1554 |
|
|
if (code.etype & XPR_INDEX) {
|
1555 |
|
|
if (!(code.formatp->mem & 4)) return false; // index not supported
|
1556 |
|
|
}
|
1557 |
|
|
else { // no index requested
|
1558 |
|
|
if (code.formatp->mem & 4) {
|
1559 |
|
|
codeTemp.index = 0x1F; // RT = 0x1F means no index
|
1560 |
|
|
codeTemp.scale = 1 << scale2;
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
|
1564 |
|
|
// check address offset size
|
1565 |
|
|
if (code.etype & XPR_OFFSET) {
|
1566 |
|
|
if (!(code.formatp->mem & 0x10)) return false; // format does not support memory offset
|
1567 |
|
|
switch (code.formatp->addrSize) {
|
1568 |
|
|
case 1: // scale factor depends on operand size
|
1569 |
|
|
if (code.offset_mem & ((1 << scale2) - 1)) return false; // offset is not a multiple of the scale factor
|
1570 |
|
|
if ((code.offset_mem >> scale2) < -0x80 || (code.offset_mem >> scale2) > 0x7F) return false;
|
1571 |
|
|
break;
|
1572 |
|
|
case 2:
|
1573 |
|
|
if (!(code.fitAddr & IFIT_I16)) return false;
|
1574 |
|
|
break;
|
1575 |
|
|
case 4:
|
1576 |
|
|
if (!(code.fitAddr & IFIT_I32)) return false;
|
1577 |
|
|
break;
|
1578 |
|
|
default:
|
1579 |
|
|
return false;
|
1580 |
|
|
}
|
1581 |
|
|
}
|
1582 |
|
|
}
|
1583 |
|
|
else if (code.formatp->mem) return false; // memory operand supported by not requested
|
1584 |
|
|
|
1585 |
|
|
return true;
|
1586 |
|
|
}
|
1587 |
|
|
|
1588 |
|
|
|
1589 |
|
|
// Check code for correctness before fitting a format, and fix some code details
|
1590 |
|
|
void CAssembler::checkCode1(SCode & code) {
|
1591 |
|
|
|
1592 |
|
|
// check code for correctness
|
1593 |
|
|
if (code.etype & XPR_MEM) {
|
1594 |
|
|
// check memory operand
|
1595 |
|
|
bool useVectors = (code.dtype & TYP_FLOAT) != 0 || (code.dest & 0xE0) == REG_V || (code.reg1 & 0xE0) == REG_V;
|
1596 |
|
|
if (useVectors && code.scale == -1) {
|
1597 |
|
|
code.etype |= XPR_LENGTH; code.length = code.index; // index register is also length
|
1598 |
|
|
}
|
1599 |
|
|
int numOpt = ((code.etype & XPR_SCALAR) != 0) + ((code.etype & XPR_LENGTH) != 0) + ((code.etype & XPR_BROADC) != 0);
|
1600 |
|
|
if (numOpt > 1) {errors.reportLine(ERR_CONFLICT_OPTIONS); return;} // conflicting options
|
1601 |
|
|
if (numOpt && !useVectors && !(code.etype & XPR_SCALAR)) {errors.reportLine(ERR_VECTOR_OPTION); return;} // vector option on non-vector operands
|
1602 |
|
|
|
1603 |
|
|
if (code.etype & XPR_INDEX) {
|
1604 |
|
|
// check scale factor
|
1605 |
|
|
const int dataSizeTable[8] = {1, 2, 4, 8, 16, 4, 8, 16}; // data size for each operant type
|
1606 |
|
|
int8_t scale = code.scale;
|
1607 |
|
|
if (scale != 1 && scale != -1 && scale != dataSizeTable[code.dtype & 7]) errors.reportLine(ERR_SCALE_FACTOR);
|
1608 |
|
|
if (code.scale == -1 && code.length && code.length != code.index) {
|
1609 |
|
|
errors.reportLine(ERR_NEG_INDEX_LENGTH); return;
|
1610 |
|
|
}
|
1611 |
|
|
}
|
1612 |
|
|
if (!(code.etype & XPR_BASE)) {
|
1613 |
|
|
// no base pointer. check if there is a symbol with an implicit base pointer
|
1614 |
|
|
int32_t symi1 = 0;
|
1615 |
|
|
if (code.etype & XPR_SYM1) symi1 = findSymbol(code.sym1);
|
1616 |
|
|
if ((code.etype & XPR_SYM2) || symi1 < 1 || !(symbols[symi1].st_other & STV_SECT_ATTR)) {
|
1617 |
|
|
errors.reportLine(ERR_NO_BASE);
|
1618 |
|
|
}
|
1619 |
|
|
}
|
1620 |
|
|
}
|
1621 |
|
|
// check mask
|
1622 |
|
|
if ((code.etype & XPR_MASK) && (code.mask & 0x1F) > 6) errors.reportLine(ERR_MASK_REGISTER);
|
1623 |
|
|
|
1624 |
|
|
// check fallback
|
1625 |
|
|
if (code.etype & XPR_MASK) {
|
1626 |
|
|
if (code.fallback == 0) code.fallback = code.reg1 ? code.reg1 : 0x1F; // default fallback is reg1, or 0 if no reg1
|
1627 |
|
|
if ((code.fallback & 0xE0) == 0) code.fallback |= code.dest & 0xE0; // get type of dest if fallback has no type
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
// details for unsigned variants
|
1631 |
|
|
if (code.dtype & TYP_UNS) { // an unsigned type is specified
|
1632 |
|
|
switch (code.instruction) {
|
1633 |
|
|
case II_DIV: case II_DIV_EX:
|
1634 |
|
|
case II_MUL_HI: case II_MUL_EX:
|
1635 |
|
|
case II_REM: case II_SHIFT_RIGHT_S:
|
1636 |
|
|
case II_MIN: case II_MAX:
|
1637 |
|
|
code.instruction |= 1; // change to unsigned version
|
1638 |
|
|
break;
|
1639 |
|
|
default:; // other instructions: do nothing
|
1640 |
|
|
}
|
1641 |
|
|
}
|
1642 |
|
|
|
1643 |
|
|
// handle half precision
|
1644 |
|
|
if (uint8_t(code.dtype) == uint8_t(TYP_FLOAT16)) {
|
1645 |
|
|
switch (code.instruction) {
|
1646 |
|
|
case II_ADD: case II_MUL: case II_DIV: case II_MUL_ADD:
|
1647 |
|
|
code.instruction |= II_ADD_H & 0xFF000; // change to half precision instruction
|
1648 |
|
|
break;
|
1649 |
|
|
case II_SUB:
|
1650 |
|
|
if ((code.etype & XPR_IMMEDIATE) && !(code.etype & (XPR_MEM | XPR_REG2))) {
|
1651 |
|
|
code.instruction = II_ADD_H; code.value.d = - code.value.d; // subtract constant changed to add -constant
|
1652 |
|
|
}
|
1653 |
|
|
else code.instruction = II_SUB_H;
|
1654 |
|
|
break;
|
1655 |
|
|
case II_SUB_REV:
|
1656 |
|
|
if (code.value.i == 0) { // -x
|
1657 |
|
|
code.instruction = II_TOGGLE_BIT;
|
1658 |
|
|
code.value.u = 15;
|
1659 |
|
|
}
|
1660 |
|
|
else errors.reportLine(ERR_WRONG_OPERANDS);
|
1661 |
|
|
break;
|
1662 |
|
|
case II_MOVE: case II_REPLACE: case II_REPLACE_EVEN: case II_REPLACE_ODD:
|
1663 |
|
|
if (code.etype & XPR_INT) { // convert integer to float16
|
1664 |
|
|
if (abs(code.value.i) > 65504) errors.reportLine(ERR_OVERFLOW);
|
1665 |
|
|
code.value.u = double2half(double(code.value.i));
|
1666 |
|
|
}
|
1667 |
|
|
else if (code.etype & XPR_FLT) { // convert double to float16
|
1668 |
|
|
if (code.value.d > 65504. || code.value.d < -65504.) errors.reportLine(ERR_OVERFLOW);
|
1669 |
|
|
code.value.u = double2half(code.value.d);
|
1670 |
|
|
code.etype = (code.etype & ~ XPR_IMMEDIATE) | XPR_INT;
|
1671 |
|
|
}
|
1672 |
|
|
if (code.instruction == II_SUB_H && (code.etype & XPR_IMMEDIATE)) {
|
1673 |
|
|
code.value.w ^= 0x8000;
|
1674 |
|
|
code.instruction &= ~1; // convert sub_h constant to add_h -constant
|
1675 |
|
|
}
|
1676 |
|
|
code.dtype = TYP_INT16;
|
1677 |
|
|
code.fitNum = IFIT_I16 | IFIT_I32;
|
1678 |
|
|
break;
|
1679 |
|
|
case II_STORE:
|
1680 |
|
|
if (code.etype & XPR_INT) code.value.u = double2half(double(code.value.i));
|
1681 |
|
|
else code.value.u = double2half(code.value.d);
|
1682 |
|
|
code.dtype = TYP_INT16;
|
1683 |
|
|
code.etype = (code.etype & ~ XPR_FLT) | XPR_INT;
|
1684 |
|
|
break;
|
1685 |
|
|
case II_ADD_H: case II_SUB_H: case II_MUL_H: case II_DIV_H: case II_MUL_ADD_H:
|
1686 |
|
|
break;
|
1687 |
|
|
default:
|
1688 |
|
|
// no other instructions support half precision
|
1689 |
|
|
errors.reportLine(ERR_WRONG_OPERANDS);
|
1690 |
|
|
}
|
1691 |
|
|
}
|
1692 |
|
|
|
1693 |
|
|
// special case instructions
|
1694 |
|
|
switch (code.instruction) {
|
1695 |
|
|
case II_STORE:
|
1696 |
|
|
if ((code.dtype & TYP_FLOAT) && (code.etype & XPR_FLT) && !(code.reg1)) {
|
1697 |
|
|
// store float constant
|
1698 |
|
|
// code.dtype = code.dtype + (TYP_INT32 - TYP_FLOAT32) | TYP_UNS;
|
1699 |
|
|
}
|
1700 |
|
|
}
|
1701 |
|
|
|
1702 |
|
|
// check size needed for immediate operand and address
|
1703 |
|
|
fitConstant(code);
|
1704 |
|
|
fitAddress(code);
|
1705 |
|
|
|
1706 |
|
|
if (code.instruction & II_JUMP_INSTR) {
|
1707 |
|
|
// jump instruction
|
1708 |
|
|
code.category = 4;
|
1709 |
|
|
// check register type
|
1710 |
|
|
if (code.dtype && code.reg1) {
|
1711 |
|
|
if ((code.dtype & 0xFF) <= (TYP_FLOAT16 & 0xFF)) { // must use g.p. registers
|
1712 |
|
|
if (code.reg1 & REG_V) errors.reportLine(ERR_WRONG_REG_TYPE);
|
1713 |
|
|
}
|
1714 |
|
|
else { // must use vector registers
|
1715 |
|
|
if (code.reg1 & REG_R) errors.reportLine(ERR_WRONG_REG_TYPE);
|
1716 |
|
|
}
|
1717 |
|
|
}
|
1718 |
|
|
// check if immediate operand too big
|
1719 |
|
|
if (code.etype & XPR_IMMEDIATE) {
|
1720 |
|
|
if (code.dtype & TYP_FLOAT) {
|
1721 |
|
|
if ((code.dtype & 0xFF) >= (TYP_FLOAT64 & 0xFF) && !(code.fitNum & FFIT_32)) errors.reportLine(ERR_TOO_LARGE_FOR_JUMP);
|
1722 |
|
|
}
|
1723 |
|
|
else if (code.dtype & TYP_UNS) {
|
1724 |
|
|
if ((code.dtype & 0x1F) >= (TYP_INT64 & 0x1F) && !(code.fitNum & IFIT_U32)) errors.reportLine(ERR_TOO_LARGE_FOR_JUMP);
|
1725 |
|
|
}
|
1726 |
|
|
else if ((code.dtype & 0x1F) >= (TYP_INT64 & 0x1F) && !(code.fitNum & IFIT_I32)) errors.reportLine(ERR_TOO_LARGE_FOR_JUMP);
|
1727 |
|
|
}
|
1728 |
|
|
}
|
1729 |
|
|
|
1730 |
|
|
// optimize instruction
|
1731 |
|
|
if (cmd.optiLevel) optimizeCode(code);
|
1732 |
|
|
}
|
1733 |
|
|
|
1734 |
|
|
|
1735 |
|
|
// Check register types etc. after fitting a format, and finish code details
|
1736 |
|
|
void CAssembler::checkCode2(SCode & code) {
|
1737 |
|
|
if (code.instruction >= II_ALIGN) return; // not an instruction
|
1738 |
|
|
|
1739 |
|
|
// check type
|
1740 |
|
|
if (code.dtype == 0) {
|
1741 |
|
|
if ((code.etype & (XPR_INT | XPR_FLT | XPR_REG | XPR_REG1 | XPR_MEM)) && !(variant & (VARIANT_D0 | VARIANT_D2))) { // type not specified
|
1742 |
|
|
if (code.instruction == II_MOVE && code.category == 3 && !(code.etype & (XPR_IMMEDIATE | XPR_MEM))) {
|
1743 |
|
|
// register-to-register move. find appropriate operand type
|
1744 |
|
|
code.dtype = TYP_INT64; // g.p. register. copy whole register ??
|
1745 |
|
|
if (code.dest & REG_V) code.dtype = TYP_INT8; // vector register. length must be divisible by tpe
|
1746 |
|
|
}
|
1747 |
|
|
else {
|
1748 |
|
|
errors.reportLine(ERR_TYPE_MISSING); // type must be specified
|
1749 |
|
|
return;
|
1750 |
|
|
}
|
1751 |
|
|
}
|
1752 |
|
|
}
|
1753 |
|
|
|
1754 |
|
|
if (code.etype & XPR_MEM) {
|
1755 |
|
|
// check memory operand
|
1756 |
|
|
if (variant & VARIANT_M0) { // memory destination
|
1757 |
|
|
if (code.etype & XPR_BROADC) {
|
1758 |
|
|
errors.reportLine(ERR_DEST_BROADCAST); return;
|
1759 |
|
|
}
|
1760 |
|
|
}
|
1761 |
|
|
if (code.base >= REG_R + 28 && code.base <= REG_R + 30 && (code.formatp->addrSize) > 1 && pass < 4) {
|
1762 |
|
|
// cannot use r28 - r30 as base pointer with more than 8 bits offset
|
1763 |
|
|
// (we don't get an error message here for a symbol address because the base pointer has not been assigned yet)
|
1764 |
|
|
errors.reportLine(ERR_R28_30_BASE);
|
1765 |
|
|
}
|
1766 |
|
|
// check M1 option
|
1767 |
|
|
/*if (variant & VARIANT_M1) {
|
1768 |
|
|
if (code.formatp->tmplate == 0xE && (code.etype & XPR_MEM) && (code.etype & XPR_INT)
|
1769 |
|
|
&& (code.value.i > 63 || code.value.i < -63)) {
|
1770 |
|
|
errors.reportLine(ERR_CONSTANT_TOO_LARGE); return;
|
1771 |
|
|
}
|
1772 |
|
|
if (code.optionbits && (code.etype & XPR_MEM)) {
|
1773 |
|
|
errors.reportLine(ERR_BOTH_MEM_AND_OPTIONS); return;
|
1774 |
|
|
}
|
1775 |
|
|
}*/
|
1776 |
|
|
}
|
1777 |
|
|
|
1778 |
|
|
if (lineError) return; // skip additional errors
|
1779 |
|
|
|
1780 |
|
|
// Make list of operands from available operands. 0=none, 1=immediate, 2=memory, 5=RT, 6=RS, 7=RU, 8=RD
|
1781 |
|
|
uint8_t opAvail = code.formatp->opAvail; // Bit index of available operands
|
1782 |
|
|
int j; // loop counter
|
1783 |
|
|
|
1784 |
|
|
// check if correct number of registers
|
1785 |
|
|
uint32_t numReq = instructionlistId[code.instr1].sourceoperands; // number of registers required for this instruction
|
1786 |
|
|
if (code.category == 4 && (code.instruction & II_JUMP_INSTR) && (code.etype & XPR_JUMPOS) && numReq) numReq--;
|
1787 |
|
|
if ((code.etype & XPR_IMMEDIATE) && numReq) numReq--;
|
1788 |
|
|
if ((code.etype & XPR_INT2) && numReq) numReq--;
|
1789 |
|
|
if ((code.etype & XPR_MEM) && !(variant & VARIANT_M0) && numReq) numReq--;
|
1790 |
|
|
|
1791 |
|
|
uint32_t nReg = 0;
|
1792 |
|
|
for (j = 0; j < 3; j++) nReg += (code.etype & (XPR_REG1 << j)) != 0;
|
1793 |
|
|
if (nReg < numReq && !(variant & VARIANT_D3))
|
1794 |
|
|
errors.reportLine(ERR_TOO_FEW_OPERANDS);
|
1795 |
|
|
else if (nReg > numReq && instructionlistId[code.instr1].opimmediate != 25) {
|
1796 |
|
|
errors.reportLine(ERR_TOO_MANY_OPERANDS);
|
1797 |
|
|
}
|
1798 |
|
|
|
1799 |
|
|
// count number of available registers in format
|
1800 |
|
|
uint32_t regAvail = 0;
|
1801 |
|
|
opAvail >>= 4; // register operands
|
1802 |
|
|
while (opAvail) {
|
1803 |
|
|
regAvail += opAvail & 1;
|
1804 |
|
|
opAvail >>= 1;
|
1805 |
|
|
}
|
1806 |
|
|
|
1807 |
|
|
// expected register types
|
1808 |
|
|
uint8_t regType = REG_R;
|
1809 |
|
|
if ((code.formatp->vect & 1) || ((code.formatp->vect & 0x10) && (code.dtype & 4))) regType = REG_V;
|
1810 |
|
|
|
1811 |
|
|
// check each of up to three source registers
|
1812 |
|
|
for (j = 0; j < 3; j++) {
|
1813 |
|
|
if (code.etype & (XPR_REG1 << j)) { // register j used
|
1814 |
|
|
if (variant & VARIANT_SPECS) { // must be special register
|
1815 |
|
|
if (((&code.reg1)[j] & 0xE0) <= REG_V) errors.reportLine(ERR_WRONG_REG_TYPE);
|
1816 |
|
|
}
|
1817 |
|
|
else if ((variant & (VARIANT_R1 << j))
|
1818 |
|
|
|| ((variant & VARIANT_RL) && (j == 2 || (&code.reg1)[j+1] == 0))) {
|
1819 |
|
|
if (((&code.reg1)[j] & 0xE0) != REG_R) { // this operand must be general purpose register
|
1820 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
1821 |
|
|
}
|
1822 |
|
|
}
|
1823 |
|
|
else if (((&code.reg1)[j] & 0xE0) != regType) { // wrong register type
|
1824 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
1825 |
|
|
}
|
1826 |
|
|
}
|
1827 |
|
|
if (lineError) return; // skip additional errors
|
1828 |
|
|
}
|
1829 |
|
|
// check destination register
|
1830 |
|
|
if (code.dest) {
|
1831 |
|
|
if (variant & VARIANT_SPECD) { // must be special register
|
1832 |
|
|
if ((code.dest & 0xE0) <= REG_V) errors.reportLine(ERR_WRONG_REG_TYPE);
|
1833 |
|
|
}
|
1834 |
|
|
else if (variant & VARIANT_R0) {
|
1835 |
|
|
if ((code.dest & 0xE0) != REG_R) { // destination must be general purpose register
|
1836 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
1837 |
|
|
}
|
1838 |
|
|
}
|
1839 |
|
|
else if ((code.dest & 0xE0) != regType && code.dest != 2) { // wrong register type
|
1840 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
1841 |
|
|
}
|
1842 |
|
|
else if ((code.dest == 2) ^ ((variant & VARIANT_M0) != 0)) { // operands in wrong order
|
1843 |
|
|
errors.reportLine(ERR_OPERANDS_WRONG_ORDER);
|
1844 |
|
|
}
|
1845 |
|
|
|
1846 |
|
|
if (lineError) return; // skip additional errors
|
1847 |
|
|
}
|
1848 |
|
|
if ((variant & (VARIANT_D0 | VARIANT_D1 | VARIANT_D2)) != 0 && code.dest != 0) { // should not have destination
|
1849 |
|
|
errors.reportLine(ERR_NO_DESTINATION);
|
1850 |
|
|
}
|
1851 |
|
|
if ((variant & (VARIANT_D0 | VARIANT_D1)) == 0 && code.dest == 0) { // should have destination
|
1852 |
|
|
errors.reportLine(ERR_MISSING_DESTINATION);
|
1853 |
|
|
}
|
1854 |
|
|
|
1855 |
|
|
// check mask register
|
1856 |
|
|
if ((code.etype & XPR_FALLBACK) && !(code.etype & XPR_MASK)) { // fallback but no mask
|
1857 |
|
|
code.mask = 7; // no mask
|
1858 |
|
|
}
|
1859 |
|
|
if ((code.etype & (XPR_MASK | XPR_FALLBACK)) && (code.mask & 7) != 7) { // mask used
|
1860 |
|
|
if ((code.mask & 0xE0) != regType) { // wrong type for mask register
|
1861 |
|
|
errors.reportLine(ERR_WRONG_REG_TYPE);
|
1862 |
|
|
}
|
1863 |
|
|
else if ((code.fallback & 0xE0) != regType && (code.fallback & 0x1F) != 0x1F) { // wrong type for fallback registser
|
1864 |
|
|
if ((variant & VARIANT_RL) && code.fallback == code.reg1) {
|
1865 |
|
|
// fallback has been assigned to reg1 in CAssembler::checkCode1, but reg1 is g.p. register
|
1866 |
|
|
code.fallback = 0x5F;
|
1867 |
|
|
}
|
1868 |
|
|
else errors.reportLine(ERR_WRONG_REG_TYPE);
|
1869 |
|
|
}
|
1870 |
|
|
if ((code.etype & XPR_FALLBACK) && (variant & VARIANT_F0)) { // cannot have fallback register
|
1871 |
|
|
errors.reportLine(ERR_CANNOT_HAVEFALLBACK1);
|
1872 |
|
|
}
|
1873 |
|
|
// check if fallback is the right register
|
1874 |
|
|
if (code.etype & XPR_FALLBACK) {
|
1875 |
|
|
if (code.numOp >= 3 && code.fallback != code.reg1) {
|
1876 |
|
|
errors.reportLine(ERR_3OP_AND_FALLBACK);
|
1877 |
|
|
}
|
1878 |
|
|
}
|
1879 |
|
|
}
|
1880 |
|
|
|
1881 |
|
|
// check scale factor
|
1882 |
|
|
const int dataSizeTable[8] = { 1, 2, 4, 8, 16, 4, 8, 16 }; // data size for each operant type
|
1883 |
|
|
int8_t scale = code.scale;
|
1884 |
|
|
if (scale == 0) scale = 1;
|
1885 |
|
|
if (((code.formatp->scale & 4) && scale != -1) // scale must be -1
|
1886 |
|
|
|| (((code.formatp->scale & 6) == 2) && scale != dataSizeTable[code.dtype & 7]) // scale must match operand type
|
1887 |
|
|
|| (((code.formatp->scale & 6) == 0 && scale != 1 && (code.index & 0x1F) != 0x1F))) { // scale must be 1
|
1888 |
|
|
errors.reportLine(ERR_SCALE_FACTOR);
|
1889 |
|
|
}
|
1890 |
|
|
// check vector length
|
1891 |
|
|
int numOpt = ((code.etype & XPR_SCALAR) != 0) + ((code.etype & XPR_LENGTH) != 0) + ((code.etype & XPR_BROADC) != 0);
|
1892 |
|
|
if (numOpt == 0 && (code.etype & XPR_MEM) && (code.formatp->vect & ~0x10) && !(code.etype & XPR_LIMIT) && !(code.formatp->vect & 0x80)) {
|
1893 |
|
|
errors.reportLine(ERR_LENGTH_OPTION_MISS); return; // missing length option
|
1894 |
|
|
}
|
1895 |
|
|
|
1896 |
|
|
// check immediate type
|
1897 |
|
|
if ((code.etype & XPR_FLT) && (variant & VARIANT_I2)) {
|
1898 |
|
|
// immediate should be integer
|
1899 |
|
|
code.etype = (code.etype & ~XPR_FLT) | XPR_INT;
|
1900 |
|
|
//code.value.i = (int64_t)code.value.d;
|
1901 |
|
|
code.value.i = value0;
|
1902 |
|
|
}
|
1903 |
|
|
if ((code.etype & XPR_INT) && !(code.etype & (XPR_LIMIT | XPR_INT2))) {
|
1904 |
|
|
// check if value fits specified operand type
|
1905 |
|
|
int ok = 1;
|
1906 |
|
|
switch (code.dtype & 0x1F) {
|
1907 |
|
|
case TYP_INT8 & 0x1F:
|
1908 |
|
|
ok = code.fitNum & (IFIT_I8 | IFIT_U8); break;
|
1909 |
|
|
case TYP_INT16 & 0x1F:
|
1910 |
|
|
ok = code.fitNum & (IFIT_I16 | IFIT_U16); break;
|
1911 |
|
|
case TYP_INT32 & 0x1F:
|
1912 |
|
|
ok = code.fitNum & (IFIT_I32 | IFIT_U32); break;
|
1913 |
|
|
}
|
1914 |
|
|
if (!ok && (instructionlistId[code.instr1].opimmediate & ~0x10) != OPI_INT32) {
|
1915 |
|
|
errors.reportLine(ERR_CONSTANT_TOO_LARGE);
|
1916 |
|
|
}
|
1917 |
|
|
}
|
1918 |
|
|
|
1919 |
|
|
// check options
|
1920 |
|
|
if ((code.etype & XPR_OPTIONS) && !(variant & VARIANT_On) && code.formatp->category != 4) {
|
1921 |
|
|
errors.reportLine(ERR_CANNOT_HAVE_OPTION);
|
1922 |
|
|
}
|
1923 |
|
|
|
1924 |
|
|
// details for unsigned variants
|
1925 |
|
|
if (code.dtype & TYP_UNS) { // an unsigned type is specified
|
1926 |
|
|
if ((variant & VARIANT_U3) && code.instruction == II_COMPARE && code.optionbits) code.optionbits |= 8; // unsigned compare
|
1927 |
|
|
}
|
1928 |
|
|
|
1929 |
|
|
if (section) code.section = section; // insert section
|
1930 |
|
|
}
|
1931 |
|
|
|
1932 |
|
|
|
1933 |
|
|
// find reason why no format fits, and return error number
|
1934 |
|
|
uint32_t CAssembler::checkCodeE(SCode & code) {
|
1935 |
|
|
// check fallback
|
1936 |
|
|
if ((code.etype & XPR_FALLBACK) && code.fallback != code.dest) {
|
1937 |
|
|
if (((code.etype & XPR_MEM) && (code.dest & REG_V)) || code.index) return ERR_CANNOT_HAVEFALLBACK2;
|
1938 |
|
|
if (instructionlistId[code.instr1].sourceoperands >= 3) return ERR_3OP_AND_FALLBACK;
|
1939 |
|
|
}
|
1940 |
|
|
// check three-operand instructions
|
1941 |
|
|
if (instructionlistId[code.instr1].sourceoperands >= 3 && code.reg1 != code.dest && (code.etype & XPR_MEM) && ((code.dest & REG_V) || code.index)) {
|
1942 |
|
|
return ERR_3OP_AND_MEM;
|
1943 |
|
|
}
|
1944 |
|
|
return ERR_NO_INSTRUCTION_FIT; // any other reason
|
1945 |
|
|
}
|
1946 |
|
|
|
1947 |
|
|
|
1948 |
|
|
// optimize instruction. replace by more efficient instruction if possible
|
1949 |
|
|
void CAssembler::optimizeCode(SCode & code) {
|
1950 |
|
|
|
1951 |
|
|
// is it a vector instruction?
|
1952 |
|
|
bool hasVector = ((code.dest | code.reg1) & REG_V) != 0;
|
1953 |
|
|
|
1954 |
|
|
// is it a floating point instruction?
|
1955 |
|
|
bool isFloat = (code.dtype & TYP_FLOAT) != 0;
|
1956 |
|
|
|
1957 |
|
|
if (code.instruction & II_JUMP_INSTR) {
|
1958 |
|
|
// jump instruction
|
1959 |
|
|
// optimize immediate jump offset operand
|
1960 |
|
|
if ((code.instruction & 0xFF) == II_SUB && (code.etype & XPR_IMMEDIATE) == XPR_INT
|
1961 |
|
|
&& code.value.i >= -0x7F && code.value.i <= 0x80 && cmd.optiLevel
|
1962 |
|
|
&& ((code.dtype & 0xFF) == (TYP_INT32 & 0xFF) || ((code.dtype & 0xFF) <= (TYP_INT32 & 0xFF) && (code.dtype & TYP_PLUS)))) {
|
1963 |
|
|
// subtract with conditional jump with 8-bit immediate and 8-bit address
|
1964 |
|
|
// should be replaced by addition of the negative constant
|
1965 |
|
|
int32_t isym = 0;
|
1966 |
|
|
if (code.etype & XPR_SYM1) isym = findSymbol(code.sym1);
|
1967 |
|
|
if (isym <= 0 || symbols[isym].st_section == section || code_size <= (1 << 9)) {
|
1968 |
|
|
// we are not sure yet, but chances are good that the address fits an 8-bit field. Replace sub by add
|
1969 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
1970 |
|
|
code.instruction ^= (II_SUB ^ II_ADD); // replace sub with add
|
1971 |
|
|
if ((code.instruction & 0xFFFF00) == II_JUMP_CARRY) code.instruction ^= 0x100; // carry condition is inverted
|
1972 |
|
|
}
|
1973 |
|
|
}
|
1974 |
|
|
if ((code.fitNum & (IFIT_J16 | IFIT_J32) && (code.etype & XPR_IMMEDIATE) == XPR_INT && (code.instruction & 0xFE) == II_ADD)) {
|
1975 |
|
|
// replace add with sub or vice versa
|
1976 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
1977 |
|
|
code.instruction ^= (II_SUB ^ II_ADD);
|
1978 |
|
|
if ((code.instruction & 0xFFFF00) == II_JUMP_CARRY) code.instruction ^= 0x100; // carry condition is inverted
|
1979 |
|
|
code.fitNum |= (code.fitNum & IFIT_J) >> 1; // signal that it fits
|
1980 |
|
|
}
|
1981 |
|
|
}
|
1982 |
|
|
else { // other instruction. optimize immediate operand
|
1983 |
|
|
if ((code.etype & XPR_INT) /* && !(code.etype & (XPR_OFFSET | XPR_LIMIT | XPR_SYM1))*/ ) {
|
1984 |
|
|
if ((code.instruction & 0xFFFFFFFE) == II_ADD && (code.fitNum & IFIT_J8) != 0) {
|
1985 |
|
|
// we can make the instruction smaller by changing the sign of the constant and exchange add and sub
|
1986 |
|
|
// (we don't have to do this for 0x8000 and 0x80000000 because the can be fitted as 1 << x)
|
1987 |
|
|
code.instruction ^= (II_ADD ^ II_SUB); // replace add with sub or vice versa
|
1988 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
1989 |
|
|
code.fitNum |= (code.fitNum & IFIT_J) >> 1; // signal that it fits
|
1990 |
|
|
}
|
1991 |
|
|
else if (code.instruction == II_SUB && (code.fitNum & (IFIT_I16SH16 | IFIT_I16)) && !(code.fitNum & IFIT_I8)
|
1992 |
|
|
&& code.value.w != 0x80000000U && code.value.w != 0xFFFF8000U && code.dest == code.reg1 && !hasVector
|
1993 |
|
|
&& (((uint8_t)code.dtype == (uint8_t)TYP_INT32) || (((uint8_t)code.dtype < (uint8_t)TYP_INT32) && (code.dtype & TYP_PLUS)))) {
|
1994 |
|
|
code.instruction = II_ADD; // replace sub with add
|
1995 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
1996 |
|
|
}
|
1997 |
|
|
else if (code.instruction == II_SUB && (code.fitNum & IFIT_I8SHIFT) && !(code.fitNum & IFIT_I8) && !isFloat
|
1998 |
|
|
&& code.dest == code.reg1
|
1999 |
|
|
&& (((uint8_t)code.dtype >= (uint8_t)TYP_INT32) || (code.dtype & TYP_PLUS))) {
|
2000 |
|
|
code.instruction = II_ADD; // replace sub with add
|
2001 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
2002 |
|
|
code.fitNum &= ~(IFIT_I16 | IFIT_I16SH16 | IFIT_I32SH32);
|
2003 |
|
|
}
|
2004 |
|
|
else if (code.instruction == II_SUB && (code.fitNum & IFIT_I32SH32) && !(code.fitNum & (IFIT_I16SHIFT | IFIT_I32))
|
2005 |
|
|
&& (((uint8_t)code.dtype == (uint8_t)TYP_INT64) || (code.dtype & TYP_PLUS)) && !isFloat) {
|
2006 |
|
|
code.instruction = II_ADD; // replace sub with add
|
2007 |
|
|
code.value.i = -code.value.i; // change sign of immediate constant
|
2008 |
|
|
}
|
2009 |
|
|
else if ((code.instruction == II_MOVE || code.instruction == II_AND)
|
2010 |
|
|
&& (code.fitNum & IFIT_U32) && !(code.fitNum & (IFIT_I32 | IFIT_I16SHIFT))
|
2011 |
|
|
&& ((uint8_t)code.dtype == (uint8_t)TYP_INT64) && !hasVector) {
|
2012 |
|
|
code.dtype = TYP_INT32; // changing type to int32 will zero extend
|
2013 |
|
|
}
|
2014 |
|
|
/*else if (code.instruction == II_MOVE
|
2015 |
|
|
&& (code.fitNum & IFIT_U16) && !(code.fitNum & IFIT_I16)
|
2016 |
|
|
&& ((uint8_t)code.dtype >= (uint8_t)TYP_INT32) && !hasVector
|
2017 |
|
|
&& !(code.etype & (XPR_REG | XPR_MEM | XPR_OPTION | XPR_SYM1))) {
|
2018 |
|
|
code.instruction = II_MOVE_U;
|
2019 |
|
|
code.dtype = TYP_INT64;
|
2020 |
|
|
} */
|
2021 |
|
|
else if (code.instruction == II_OR && (code.value.u & (code.value.u-1)) == 0 && !(code.fitNum & IFIT_I8)) {
|
2022 |
|
|
code.instruction = II_SET_BIT; // OR with a power of 2
|
2023 |
|
|
code.value.u = bitScanReverse(code.value.u);
|
2024 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32;
|
2025 |
|
|
}
|
2026 |
|
|
else if (code.instruction == II_AND && (~code.value.u & (~code.value.u-1)) == 0 && !(code.fitNum & IFIT_I8)) {
|
2027 |
|
|
code.instruction = II_CLEAR_BIT; // AND with ~(a power of 2)
|
2028 |
|
|
code.value.u = bitScanReverse(~code.value.u);
|
2029 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32;
|
2030 |
|
|
}
|
2031 |
|
|
else if (code.instruction == II_XOR && (code.value.u & (code.value.u-1)) == 0 && !(code.fitNum & IFIT_I8)) {
|
2032 |
|
|
code.instruction = II_TOGGLE_BIT; // XOR with a power of 2
|
2033 |
|
|
code.value.u = bitScanReverse(code.value.u);
|
2034 |
|
|
code.fitNum = IFIT_I8 | IFIT_I16 | IFIT_I32;
|
2035 |
|
|
}
|
2036 |
|
|
}
|
2037 |
|
|
if ((code.etype & XPR_FLT) && !(code.etype & (XPR_OFFSET | XPR_LIMIT | XPR_SYM1))) {
|
2038 |
|
|
if (code.instruction == II_SUB && (code.fitNum & FFIT_16) && (uint8_t)code.dtype >= (uint8_t)TYP_FLOAT16) {
|
2039 |
|
|
code.instruction = II_ADD; // replace sub with add
|
2040 |
|
|
code.value.d = -code.value.d; // change sign of immediate constant
|
2041 |
|
|
}
|
2042 |
|
|
}
|
2043 |
|
|
}
|
2044 |
|
|
|
2045 |
|
|
// optimize -float as toggle_bit
|
2046 |
|
|
if (code.instruction == II_SUB_REV && (code.etype & XPR_IMMEDIATE) && (code.dtype & TYP_FLOAT)
|
2047 |
|
|
&& code.value.i == 0 && (code.etype & XPR_REG1) && !(code.etype & XPR_REG2)) {
|
2048 |
|
|
// code is -v represented as 0-v. replace by flipping bit
|
2049 |
|
|
uint32_t bits = 1 << (code.dtype & 7); // number of bits in floating point type
|
2050 |
|
|
code.instruction = II_TOGGLE_BIT;
|
2051 |
|
|
code.value.u = bits - 1;
|
2052 |
|
|
code.etype = ((code.etype & ~XPR_IMMEDIATE) | XPR_INT);
|
2053 |
|
|
}
|
2054 |
|
|
|
2055 |
|
|
// optimize multiply and divide instructions
|
2056 |
|
|
if ((code.instruction == II_MUL || code.instruction == II_DIV) && (code.etype & XPR_IMMEDIATE)) {
|
2057 |
|
|
if (code.dtype & TYP_INT) { // integer multiplication
|
2058 |
|
|
// check if constant is positive and a power of 2
|
2059 |
|
|
if (code.value.i <= 0 || (code.value.u & (code.value.u - 1))) return;
|
2060 |
|
|
if (code.instruction == II_MUL) {
|
2061 |
|
|
// integer multiplication by power of 2. replace by left shift
|
2062 |
|
|
code.instruction = II_SHIFT_LEFT;
|
2063 |
|
|
code.value.u = bitScanReverse(code.value.u);
|
2064 |
|
|
}
|
2065 |
|
|
else if (code.dtype & TYP_UNS) {
|
2066 |
|
|
// unsigned division by power of 2. replace by right shift
|
2067 |
|
|
// We are not optimizing signed division because this requires multiple instructions and registers
|
2068 |
|
|
code.instruction = II_SHIFT_RIGHT_U;
|
2069 |
|
|
code.value.u = bitScanReverse(code.value.u);
|
2070 |
|
|
}
|
2071 |
|
|
}
|
2072 |
|
|
else if (code.dtype & TYP_FLOAT) {
|
2073 |
|
|
// floating point multiplication or division
|
2074 |
|
|
// check if constant is a power of 2
|
2075 |
|
|
int shiftCount = 0xFFFFFFFF; // shift count to replace multiplication by power of 2
|
2076 |
|
|
if ((code.etype & XPR_INT) && code.value.i > 0 && (code.value.u & (code.value.u-1)) == 0) {
|
2077 |
|
|
// positive integer power of 2
|
2078 |
|
|
shiftCount = bitScanReverse(code.value.u);
|
2079 |
|
|
if (code.instruction == II_DIV) shiftCount = -shiftCount;
|
2080 |
|
|
}
|
2081 |
|
|
else if ((code.etype & XPR_FLT) && code.value.d != 0.) {
|
2082 |
|
|
int32_t exponent = (code.value.u >> 52) & 0x7FF; // exponent field of double
|
2083 |
|
|
if ((code.value.u & ((uint64_t(1) << 52) - 1)) == 0 && exponent != 0 && exponent != 0x7FF) {
|
2084 |
|
|
// value is a power of 2, and not inf, nan, or subnormal
|
2085 |
|
|
shiftCount = exponent - 0x3FF;
|
2086 |
|
|
if (code.instruction == II_DIV) shiftCount = -shiftCount;
|
2087 |
|
|
}
|
2088 |
|
|
}
|
2089 |
|
|
if (shiftCount == (int)0xFFFFFFFF) return; // not a power of 2. cannot optimize
|
2090 |
|
|
if (shiftCount >= 0 || cmd.optiLevel >= 3) {
|
2091 |
|
|
// replace by mul_2pow instruction
|
2092 |
|
|
// use negative powers of 2 only in optimization level 3, because subnormals are ignored
|
2093 |
|
|
code.instruction = II_MUL_2POW;
|
2094 |
|
|
code.value.i = shiftCount;
|
2095 |
|
|
code.etype = (code.etype & ~XPR_IMMEDIATE) | XPR_INT;
|
2096 |
|
|
}
|
2097 |
|
|
else if (code.instruction == II_DIV) {
|
2098 |
|
|
// replace division by power of 2 to multiplication by the reciprocal
|
2099 |
|
|
code.instruction = II_MUL;
|
2100 |
|
|
if (code.etype & XPR_FLT) code.value.d = 1. / code.value.d;
|
2101 |
|
|
else {
|
2102 |
|
|
code.value.d = 1. / double((uint64_t)1 << (-shiftCount));
|
2103 |
|
|
code.etype = (code.etype & ~XPR_IMMEDIATE) | XPR_FLT;
|
2104 |
|
|
}
|
2105 |
|
|
}
|
2106 |
|
|
}
|
2107 |
|
|
}
|
2108 |
|
|
}
|
2109 |
|
|
|
2110 |
|
|
|
2111 |
|
|
void insertMem(SCode & code, SExpression & expr) {
|
2112 |
|
|
// insert memory operand into code structure
|
2113 |
|
|
if (code.value.i && expr.value.i) code.etype |= XPR_ERROR; // both have constants
|
2114 |
|
|
if (expr.etype & XPR_OFFSET) code.offset_mem = expr.offset_mem;
|
2115 |
|
|
else code.offset_mem = expr.value.w;
|
2116 |
|
|
code.etype |= expr.etype;
|
2117 |
|
|
code.tokens += expr.tokens;
|
2118 |
|
|
code.sym1 = expr.sym1;
|
2119 |
|
|
code.sym2 = expr.sym2;
|
2120 |
|
|
code.base = expr.base;
|
2121 |
|
|
code.index = expr.index;
|
2122 |
|
|
code.length = expr.length;
|
2123 |
|
|
code.scale = expr.scale;
|
2124 |
|
|
code.symscale1 = expr.symscale1;
|
2125 |
|
|
code.mask |= expr.mask;
|
2126 |
|
|
code.fallback |= expr.fallback;
|
2127 |
|
|
}
|
2128 |
|
|
|
2129 |
|
|
void insertAll(SCode & code, SExpression & expr) {
|
2130 |
|
|
// insert everything from expression to code structure, OR'ing all bits
|
2131 |
|
|
for (uint32_t i = 0; i < sizeof(SExpression) / sizeof(uint64_t); i++) {
|
2132 |
|
|
(&code.value.u)[i] |= (&expr.value.u)[i];
|
2133 |
|
|
}
|
2134 |
|
|
}
|