| 1 |
46 |
Agner |
/**************************** assem6.cpp ********************************
|
| 2 |
|
|
* Author: Agner Fog
|
| 3 |
|
|
* Date created: 2017-08-07
|
| 4 |
|
|
* Last modified: 2021-02-23
|
| 5 |
|
|
* Version: 1.11
|
| 6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
| 7 |
|
|
* Module: assem.cpp
|
| 8 |
|
|
* Description:
|
| 9 |
|
|
* Module for assembling ForwardCom .as files.
|
| 10 |
|
|
* This module contains:
|
| 11 |
|
|
* - pass4(): Resolve internal cross references, optimize forward references
|
| 12 |
|
|
* - pass5(): Make binary file
|
| 13 |
|
|
* Copyright 2017-2021 GNU General Public License http://www.gnu.org/licenses
|
| 14 |
|
|
******************************************************************************/
|
| 15 |
|
|
#include "stdafx.h"
|
| 16 |
|
|
|
| 17 |
|
|
|
| 18 |
|
|
// Resolve symbol addresses and internal cross references, optimize forward references
|
| 19 |
|
|
void CAssembler::pass4() {
|
| 20 |
|
|
uint32_t addr = 0; // address relative to current section begin
|
| 21 |
|
|
//uint32_t instructId; // instruction id
|
| 22 |
|
|
uint32_t i; // loop counter
|
| 23 |
|
|
uint32_t symi; // symbol index
|
| 24 |
|
|
uint32_t numUncertain; // number of instructions with unresolved size in current section
|
| 25 |
|
|
uint32_t totUncertain; // number of instructions with unresolved size in all sections
|
| 26 |
|
|
uint32_t changes = 1; // number of size changes during each optimization pass
|
| 27 |
|
|
uint32_t optiPass = 0; // count optimization passes
|
| 28 |
|
|
uint32_t nSections = sectionHeaders.numEntries(); // number of sections
|
| 29 |
|
|
uint32_t const maxOptiPass = 10; // maximum number of optimization passes
|
| 30 |
|
|
|
| 31 |
|
|
// multiple optimization passes until size is certain or no changes
|
| 32 |
|
|
for (optiPass = 1; optiPass <= maxOptiPass; optiPass++) {
|
| 33 |
|
|
code_size = cmd.codeSizeOption; // initialize options in case they have been changed during pass 3 or 4
|
| 34 |
|
|
data_size = cmd.dataSizeOption;
|
| 35 |
|
|
|
| 36 |
|
|
if (changes == 0 && (totUncertain == 0 || optiPass > 2)) break;
|
| 37 |
|
|
changes = 0; // count instructions with changed size
|
| 38 |
|
|
section = 0;
|
| 39 |
|
|
numUncertain = totUncertain = 0;
|
| 40 |
|
|
for (i = 1; i < nSections; i++) {
|
| 41 |
|
|
sectionHeaders[i].sh_link = 0; // reset count of uncertain instruction sizes
|
| 42 |
|
|
sectionHeaders[i].sh_size = 0;
|
| 43 |
|
|
}
|
| 44 |
|
|
// loop through code objects
|
| 45 |
|
|
for (i = 0; i < codeBuffer.numEntries(); i++) {
|
| 46 |
|
|
//instructId = codeBuffer[i].instr1;
|
| 47 |
|
|
if (codeBuffer[i].section == 0 || codeBuffer[i].section >= nSections)
|
| 48 |
|
|
continue;
|
| 49 |
|
|
if (codeBuffer[i].section != section) {
|
| 50 |
|
|
if (section) {
|
| 51 |
|
|
// save results of previous section
|
| 52 |
|
|
sectionHeaders[section].sh_size = addr;
|
| 53 |
|
|
sectionHeaders[section].sh_link = numUncertain; // sh_link is temporarily used for indicating number of instructions with uncertain size
|
| 54 |
|
|
totUncertain += numUncertain;
|
| 55 |
|
|
}
|
| 56 |
|
|
// restore status for current section
|
| 57 |
|
|
section = codeBuffer[i].section;
|
| 58 |
|
|
addr = (uint32_t)sectionHeaders[section].sh_size;
|
| 59 |
|
|
numUncertain = sectionHeaders[section].sh_link;
|
| 60 |
|
|
}
|
| 61 |
|
|
codeBuffer[i].address = addr;
|
| 62 |
|
|
if (codeBuffer[i].label) {
|
| 63 |
|
|
// there is a label here. put the address into the symbol record
|
| 64 |
|
|
symi = findSymbol(codeBuffer[i].label);
|
| 65 |
|
|
if (symi > 0 && symi < symbols.numEntries()) {
|
| 66 |
|
|
// the upper half of st_value is temporarily used for indicating if address is not yet precise
|
| 67 |
|
|
symbols[symi].st_value = addr | (uint64_t)numUncertain << 32;
|
| 68 |
|
|
symbols[symi].st_unitsize = 1; // set an arbitrary size to indicate that a value has been assigned
|
| 69 |
|
|
}
|
| 70 |
|
|
}
|
| 71 |
|
|
if (codeBuffer[i].sizeUnknown) {
|
| 72 |
|
|
// update the size of this instruction
|
| 73 |
|
|
uint8_t lastSize = codeBuffer[i].size;
|
| 74 |
|
|
if (codeBuffer[i].instr1) { // update normal instruction
|
| 75 |
|
|
if (optiPass >= maxOptiPass - 1) {
|
| 76 |
|
|
// rare case. optimization has slow convergence. choose larger instruction size if uncertain
|
| 77 |
|
|
if (codeBuffer[i].fitAddr) codeBuffer[i].fitAddr |= IFIT_LARGE;
|
| 78 |
|
|
if (codeBuffer[i].fitJump) codeBuffer[i].fitJump |= IFIT_LARGE;
|
| 79 |
|
|
}
|
| 80 |
|
|
sectionHeaders[section].sh_link = numUncertain;
|
| 81 |
|
|
fitConstant(codeBuffer[i]); // recalculate necessary size of immediate constant
|
| 82 |
|
|
fitAddress(codeBuffer[i]); // recalculate necessary size of address
|
| 83 |
|
|
fitCode(codeBuffer[i]); // fit instruction to new size
|
| 84 |
|
|
if (codeBuffer[i].size != lastSize) changes++; // count changes if size changed
|
| 85 |
|
|
}
|
| 86 |
|
|
else { // not an instruction
|
| 87 |
|
|
if (codeBuffer[i].instruction == II_ALIGN) {
|
| 88 |
|
|
// align directive. round up address to nearest multiple of alignment value
|
| 89 |
|
|
uint32_t ali = bitScanReverse(codeBuffer[i].value.u);
|
| 90 |
|
|
uint32_t newAddress = (addr + ali - 1) & uint32_t(-(int32_t)ali);
|
| 91 |
|
|
codeBuffer[i].size = (newAddress - addr) >> 2; // size of alignment fillers
|
| 92 |
|
|
if (codeBuffer[i].size != lastSize) changes++; // count changes if size changed
|
| 93 |
|
|
if (numUncertain) numUncertain += (ali >> 2) - 1 - codeBuffer[i].size; // maximum additional size if size of previous instructions change
|
| 94 |
|
|
if (section && sectionHeaders[section].sh_align < ali) {
|
| 95 |
|
|
sectionHeaders[section].sh_align = ali; // adjust alignment of this section
|
| 96 |
|
|
}
|
| 97 |
|
|
}
|
| 98 |
|
|
else if (codeBuffer[i].instruction == II_OPTIONS) {
|
| 99 |
|
|
// options directive. change option
|
| 100 |
|
|
// This code object was created by CAssembler::interpretOptionsLine()
|
| 101 |
|
|
switch (codeBuffer[i].fitNum) {
|
| 102 |
|
|
case 1:
|
| 103 |
|
|
code_size = codeBuffer[i].value.u;
|
| 104 |
|
|
break;
|
| 105 |
|
|
case 2:
|
| 106 |
|
|
data_size = codeBuffer[i].value.u;
|
| 107 |
|
|
break;
|
| 108 |
|
|
}
|
| 109 |
|
|
}
|
| 110 |
|
|
}
|
| 111 |
|
|
}
|
| 112 |
|
|
addr += codeBuffer[i].size * 4; // update address
|
| 113 |
|
|
numUncertain += codeBuffer[i].sizeUnknown & 0x7F; // update uncertainty
|
| 114 |
|
|
}
|
| 115 |
|
|
// update last section
|
| 116 |
|
|
if (section) {
|
| 117 |
|
|
// save results of previous section
|
| 118 |
|
|
sectionHeaders[section].sh_size = addr;
|
| 119 |
|
|
sectionHeaders[section].sh_link = numUncertain;
|
| 120 |
|
|
totUncertain += numUncertain;
|
| 121 |
|
|
}
|
| 122 |
|
|
}
|
| 123 |
|
|
// remove temporary uncertainty information from symbol records
|
| 124 |
|
|
for (symi = 1; symi < symbols.numEntries(); symi++) {
|
| 125 |
|
|
if (symbols[symi].st_type == STT_OBJECT || symbols[symi].st_type == STT_FUNC) {
|
| 126 |
|
|
symbols[symi].st_value &= 0xFFFFFFFFU;
|
| 127 |
|
|
}
|
| 128 |
|
|
}
|
| 129 |
|
|
|
| 130 |
|
|
// make public symbol definitions
|
| 131 |
|
|
for (linei = 1; linei < lines.numEntries(); linei++) {
|
| 132 |
|
|
if (lines[linei].type == LINE_PUBLICDEF) {
|
| 133 |
|
|
interpretPublicDirective();
|
| 134 |
|
|
}
|
| 135 |
|
|
}
|
| 136 |
|
|
}
|
| 137 |
|
|
|
| 138 |
|
|
|
| 139 |
|
|
// interpret public name: options {, name: options}
|
| 140 |
|
|
void CAssembler::interpretPublicDirective() {
|
| 141 |
|
|
int state = 0; // 0: start
|
| 142 |
|
|
// 1: after 'public' or ','
|
| 143 |
|
|
// 2: after name
|
| 144 |
|
|
// 3: after ':'
|
| 145 |
|
|
// 4: after attribute
|
| 146 |
|
|
|
| 147 |
|
|
uint32_t symi = 0; // symbol index
|
| 148 |
|
|
uint32_t symn; // symbol name index
|
| 149 |
|
|
uint32_t tok; // token index
|
| 150 |
|
|
uint32_t symtok = 0; // symbol token
|
| 151 |
|
|
SToken token; // current token
|
| 152 |
|
|
|
| 153 |
|
|
tokenB = lines[linei].firstToken; // first token in line
|
| 154 |
|
|
tokenN = lines[linei].numTokens; // number of tokens in line
|
| 155 |
|
|
// loop through tokens on this line
|
| 156 |
|
|
for (tok = tokenB; tok < tokenB + tokenN; tok++) {
|
| 157 |
|
|
token = tokens[tok];
|
| 158 |
|
|
switch (state) {
|
| 159 |
|
|
case 0: // start
|
| 160 |
|
|
if (token.id == DIR_PUBLIC) state = 1; else return;
|
| 161 |
|
|
break;
|
| 162 |
|
|
case 1: // expect symbol name
|
| 163 |
|
|
if (token.type == TOK_SYM) {
|
| 164 |
|
|
symtok = tok;
|
| 165 |
|
|
symn = token.id;
|
| 166 |
|
|
symi = findSymbol(symn);
|
| 167 |
|
|
if ((int32_t)symi < 1) {
|
| 168 |
|
|
errors.report(token.pos, token.stringLength, ERR_SYMBOL_UNDEFINED); return;
|
| 169 |
|
|
}
|
| 170 |
|
|
state = 2;
|
| 171 |
|
|
}
|
| 172 |
|
|
else if (token.type == TOK_NAM) {
|
| 173 |
|
|
// name found. find symbol
|
| 174 |
|
|
symi = findSymbol((char*)buf() + tokens[tok].pos, tokens[tok].stringLength);
|
| 175 |
|
|
if ((int32_t)symi < 1) {
|
| 176 |
|
|
errors.report(token.pos, token.stringLength, ERR_SYMBOL_UNDEFINED); return;
|
| 177 |
|
|
}
|
| 178 |
|
|
symtok = tok;
|
| 179 |
|
|
symn = symbols[symi].st_name;
|
| 180 |
|
|
state = 2;
|
| 181 |
|
|
}
|
| 182 |
|
|
else errors.report(token);
|
| 183 |
|
|
break;
|
| 184 |
|
|
case 2: // after name. expect ':' or ','
|
| 185 |
|
|
if (token.type == TOK_OPR && token.id == ':') state = 3;
|
| 186 |
|
|
else if (token.type == TOK_OPR && token.id == ',') {
|
| 187 |
|
|
EXPORT_SYMBOL:
|
| 188 |
|
|
// check if external
|
| 189 |
|
|
if (symbols[symi].st_section == 0) {
|
| 190 |
|
|
errors.report(tokens[symtok].pos, tokens[symtok].stringLength, ERR_CANNOT_EXPORT);
|
| 191 |
|
|
state = 1;
|
| 192 |
|
|
continue;
|
| 193 |
|
|
}
|
| 194 |
|
|
// check symbol type
|
| 195 |
|
|
switch (symbols[symi].st_type) {
|
| 196 |
|
|
case STT_NOTYPE: // type missing. set type
|
| 197 |
|
|
symbols[symi].st_type = (symbols[symi].st_other & STV_EXEC) ? STT_FUNC : STT_OBJECT;
|
| 198 |
|
|
break;
|
| 199 |
|
|
case STT_OBJECT:
|
| 200 |
|
|
case STT_FUNC:
|
| 201 |
|
|
break; // ok
|
| 202 |
|
|
case STT_CONSTANT:
|
| 203 |
|
|
if (sectionHeaders.numEntries() == 0) {
|
| 204 |
|
|
// file must have at least one section because constant needs a section idex
|
| 205 |
|
|
err.submit(ERR_ELF_NO_SECTIONS);
|
| 206 |
|
|
}
|
| 207 |
|
|
break; // ok
|
| 208 |
|
|
case STT_VARIABLE: // meta-variable has been assigned multiple values
|
| 209 |
|
|
errors.report(tokens[symtok].pos, tokens[symtok].stringLength, ERR_SYMBOL_REDEFINED);
|
| 210 |
|
|
state = 1;
|
| 211 |
|
|
continue;
|
| 212 |
|
|
case STT_EXPRESSION: // cannot export expression
|
| 213 |
|
|
errors.report(tokens[symtok].pos, tokens[symtok].stringLength, ERR_EXPORT_EXPRESSION);
|
| 214 |
|
|
state = 1;
|
| 215 |
|
|
continue;
|
| 216 |
|
|
default:
|
| 217 |
|
|
errors.report(tokens[symtok].pos, tokens[symtok].stringLength, ERR_CANNOT_EXPORT);
|
| 218 |
|
|
state = 1;
|
| 219 |
|
|
continue;
|
| 220 |
|
|
}
|
| 221 |
|
|
// make symbol global or weak
|
| 222 |
|
|
if (symbols[symi].st_bind != STB_WEAK) symbols[symi].st_bind = STB_GLOBAL;
|
| 223 |
|
|
state = 1;
|
| 224 |
|
|
}
|
| 225 |
|
|
else {
|
| 226 |
|
|
errors.report(token); return;
|
| 227 |
|
|
}
|
| 228 |
|
|
break;
|
| 229 |
|
|
case 3: // after ':'. expect attribute
|
| 230 |
|
|
SET_ATTRIBUTE:
|
| 231 |
|
|
if (token.id == ATT_WEAK) {
|
| 232 |
|
|
symbols[symi].st_bind = STB_WEAK;
|
| 233 |
|
|
}
|
| 234 |
|
|
else if (token.id == ATT_CONSTANT && symbols[symi].st_type != STT_OBJECT && symbols[symi].st_type != STT_FUNC) {
|
| 235 |
|
|
symbols[symi].st_type = STT_CONSTANT;
|
| 236 |
|
|
}
|
| 237 |
|
|
else if (token.id == DIR_FUNCTION) {
|
| 238 |
|
|
symbols[symi].st_type = STT_FUNC;
|
| 239 |
|
|
}
|
| 240 |
|
|
else if (token.id == REG_IP) {
|
| 241 |
|
|
symbols[symi].st_other = (symbols[symi].st_other & ~ (SHF_DATAP | SHF_THREADP)) | STV_IP;
|
| 242 |
|
|
}
|
| 243 |
|
|
else if (token.id == REG_DATAP) {
|
| 244 |
|
|
symbols[symi].st_other = (symbols[symi].st_other & ~ (STV_IP | SHF_THREADP)) | SHF_DATAP;
|
| 245 |
|
|
}
|
| 246 |
|
|
else if (token.id == REG_THREADP) {
|
| 247 |
|
|
symbols[symi].st_other = (symbols[symi].st_other & ~ (STV_IP | SHF_DATAP)) | SHF_THREADP;
|
| 248 |
|
|
}
|
| 249 |
|
|
else if (token.id == ATT_REGUSE) {
|
| 250 |
|
|
if (tokens[tok + 1].id == '=' && tokens[tok + 2].type == TOK_NUM) {
|
| 251 |
|
|
tok += 2;
|
| 252 |
|
|
symbols[symi].st_reguse1 = expression(tok, 1, 0).value.w;
|
| 253 |
|
|
symbols[symi].st_other |= STV_REGUSE;
|
| 254 |
|
|
if (tokens[tok + 1].id == ',' && tokens[tok + 2].type == TOK_NUM) {
|
| 255 |
|
|
tok += 2;
|
| 256 |
|
|
symbols[symi].st_reguse2 = expression(tok, 1, 0).value.w;
|
| 257 |
|
|
}
|
| 258 |
|
|
}
|
| 259 |
|
|
}
|
| 260 |
|
|
else errors.report(token);
|
| 261 |
|
|
state = 4;
|
| 262 |
|
|
break;
|
| 263 |
|
|
case 4: // after attribute. expect ',' or more attributes
|
| 264 |
|
|
if (token.type == TOK_OPR && token.id == ',') {
|
| 265 |
|
|
uint32_t typ2 = tokens[tok+1].type;
|
| 266 |
|
|
if (typ2 == TOK_ATT || typ2 == TOK_DIR || typ2 == TOK_REG) break;
|
| 267 |
|
|
else goto EXPORT_SYMBOL;
|
| 268 |
|
|
}
|
| 269 |
|
|
if (token.type == TOK_ATT || token.type == TOK_DIR || token.type == TOK_REG)
|
| 270 |
|
|
goto SET_ATTRIBUTE;
|
| 271 |
|
|
errors.report(token);
|
| 272 |
|
|
return;
|
| 273 |
|
|
}
|
| 274 |
|
|
}
|
| 275 |
|
|
if (state > 1) goto EXPORT_SYMBOL; // unfinished symbol
|
| 276 |
|
|
}
|
| 277 |
|
|
|
| 278 |
|
|
|
| 279 |
|
|
// Make binary file
|
| 280 |
|
|
void CAssembler::pass5() {
|
| 281 |
|
|
|
| 282 |
|
|
// make a databuffer for each section
|
| 283 |
|
|
uint32_t nSections = sectionHeaders.numEntries();
|
| 284 |
|
|
dataBuffers.setSize(nSections);
|
| 285 |
|
|
section = 0;
|
| 286 |
|
|
|
| 287 |
|
|
// make binary code from code records
|
| 288 |
|
|
makeBinaryCode();
|
| 289 |
|
|
|
| 290 |
|
|
// make binary data for data sections
|
| 291 |
|
|
makeBinaryData();
|
| 292 |
|
|
|
| 293 |
|
|
// make sections
|
| 294 |
|
|
copySections();
|
| 295 |
|
|
|
| 296 |
|
|
// copy symbols
|
| 297 |
|
|
copySymbols();
|
| 298 |
|
|
|
| 299 |
|
|
// copy relocations
|
| 300 |
|
|
makeBinaryRelocations();
|
| 301 |
|
|
|
| 302 |
|
|
// make output list file
|
| 303 |
|
|
if (cmd.outputListFile) makeListFile();
|
| 304 |
|
|
|
| 305 |
|
|
// remove local and external symbols if there is no relocation reference to them,
|
| 306 |
|
|
// and adjust relocation records with new symbol indexes, after making list file.
|
| 307 |
|
|
// Preserve local symbols if debugOptions > 0
|
| 308 |
|
|
outFile.removePrivateSymbols(cmd.debugOptions);
|
| 309 |
|
|
|
| 310 |
|
|
// write assembly output file
|
| 311 |
|
|
outFile.join(0); // make ELF file from sections, etc.
|
| 312 |
|
|
}
|
| 313 |
|
|
|
| 314 |
|
|
// copy sections to outFile
|
| 315 |
|
|
void CAssembler::copySections() {
|
| 316 |
|
|
for (uint32_t i = 1; i < sectionHeaders.numEntries(); i++) {
|
| 317 |
|
|
if (dataBuffers[i].dataSize() > sectionHeaders[i].sh_size) { // dataSize() is zero for uninitialized data sections
|
| 318 |
|
|
sectionHeaders[i].sh_size = dataBuffers[i].dataSize(); // this should never be necessary
|
| 319 |
|
|
}
|
| 320 |
|
|
sectionHeaders[i].sh_link = 0; // remove temporary information used during optimization passes
|
| 321 |
|
|
outFile.addSection(sectionHeaders[i], symbolNameBuffer, dataBuffers[i]);
|
| 322 |
|
|
}
|
| 323 |
|
|
}
|
| 324 |
|
|
|
| 325 |
|
|
// copy symbols to outFile
|
| 326 |
|
|
void CAssembler::copySymbols() {
|
| 327 |
|
|
for (uint32_t i = 0; i < symbols.numEntries(); i++) {
|
| 328 |
|
|
// exclude section symbols and local constants
|
| 329 |
|
|
if (symbols[i].st_type != STT_SECTION && symbols[i].st_type < STT_VARIABLE) {
|
| 330 |
|
|
// check if symbol is in a communal section
|
| 331 |
|
|
uint32_t sect = symbols[i].st_section;
|
| 332 |
|
|
if (sect && sect < sectionHeaders.numEntries() && sectionHeaders[sect].sh_type == SHT_COMDAT && symbols[i].st_bind == STB_GLOBAL) {
|
| 333 |
|
|
// public symbol in communal section must be weak
|
| 334 |
|
|
symbols[i].st_bind = STB_WEAK;
|
| 335 |
|
|
}
|
| 336 |
|
|
uint32_t newSymi = outFile.addSymbol(symbols[i], symbolNameBuffer);
|
| 337 |
|
|
// save new symbol index for use in relocation records
|
| 338 |
|
|
symbols[i].st_unitnum = newSymi;
|
| 339 |
|
|
}
|
| 340 |
|
|
}
|
| 341 |
|
|
}
|
| 342 |
|
|
|
| 343 |
|
|
// make binary data for code sections
|
| 344 |
|
|
void CAssembler::makeBinaryCode() {
|
| 345 |
|
|
uint32_t i; // loop counter
|
| 346 |
|
|
STemplate instr; // instruction template
|
| 347 |
|
|
uint32_t format; // format
|
| 348 |
|
|
uint32_t templ; // format template
|
| 349 |
|
|
uint32_t instructId; // instruction as index into instructionlistId
|
| 350 |
|
|
SFormat const * formatp = 0; // record in formatList
|
| 351 |
|
|
uint32_t nSections = sectionHeaders.numEntries();
|
| 352 |
|
|
|
| 353 |
|
|
// loop through code objects
|
| 354 |
|
|
for (i = 0; i < codeBuffer.numEntries(); i++) {
|
| 355 |
|
|
instructId = codeBuffer[i].instr1;
|
| 356 |
|
|
if (instructId == 0) {
|
| 357 |
|
|
// not an instruction. possibly label or directive
|
| 358 |
|
|
if (codeBuffer[i].instruction == II_ALIGN && section) {
|
| 359 |
|
|
// alignment directive. size has been calculated in pass 4
|
| 360 |
|
|
int32_t asize = codeBuffer[i].size;
|
| 361 |
|
|
instr.q = 0; // nop instruction
|
| 362 |
|
|
if (asize & 1) {
|
| 363 |
|
|
dataBuffers[section].push(&instr, 4); // single size nop
|
| 364 |
|
|
asize -= 1;
|
| 365 |
|
|
}
|
| 366 |
|
|
instr.a.il = 2; // double size nop
|
| 367 |
|
|
while (asize >= 2) {
|
| 368 |
|
|
dataBuffers[section].push(&instr, 8); // add double size nop
|
| 369 |
|
|
asize -= 2;
|
| 370 |
|
|
}
|
| 371 |
|
|
}
|
| 372 |
|
|
// else if (codeBuffer[i].instruction == II_OPTIONS) {} // II_OPTIONS can be ignored here
|
| 373 |
|
|
continue; // skip the rest
|
| 374 |
|
|
}
|
| 375 |
|
|
section = codeBuffer[i].section;
|
| 376 |
|
|
if (section == 0 || section >= nSections) continue;
|
| 377 |
|
|
|
| 378 |
|
|
instr.q = 0; // reset template
|
| 379 |
|
|
formatp = codeBuffer[i].formatp;
|
| 380 |
|
|
templ = formatp->tmplate;
|
| 381 |
|
|
format = formatp->format2;
|
| 382 |
|
|
|
| 383 |
|
|
// assign registers
|
| 384 |
|
|
uint8_t opAvail = formatp->opAvail; // registers available in this format
|
| 385 |
|
|
|
| 386 |
|
|
int nOp = instructionlistId[instructId].sourceoperands;
|
| 387 |
|
|
if (nOp > 3 && instructionlistId[instructId].opimmediate) {
|
| 388 |
|
|
opAvail |= 1; // 3 registers and an immediate currently used only in truth_tab3 instruction
|
| 389 |
|
|
}
|
| 390 |
|
|
|
| 391 |
|
|
if (templ == 0xA || templ == 0xE) nOp++; // make one more register for fallback, even if it is unused
|
| 392 |
|
|
|
| 393 |
|
|
uint8_t operands[4] = {0,0,0,0};
|
| 394 |
|
|
int a = 0; // bit index to opAvail
|
| 395 |
|
|
int j = 3; // Index into operands
|
| 396 |
|
|
// Loop through the bits in opAvail in reverse order to pick operands according to priority
|
| 397 |
|
|
while (j >= 0 && a < 8) {
|
| 398 |
|
|
if (opAvail & (1 << a)) {
|
| 399 |
|
|
operands[j--] = 1 << a;
|
| 400 |
|
|
}
|
| 401 |
|
|
a++;
|
| 402 |
|
|
}
|
| 403 |
|
|
|
| 404 |
|
|
// List register operands
|
| 405 |
|
|
uint8_t registers[4] = {0,0,0,0};
|
| 406 |
|
|
a = 3;
|
| 407 |
|
|
if (codeBuffer[i].etype & XPR_REG3) registers[a--] = codeBuffer[i].reg3;
|
| 408 |
|
|
if (codeBuffer[i].etype & XPR_REG2) registers[a--] = codeBuffer[i].reg2;
|
| 409 |
|
|
if (codeBuffer[i].etype & XPR_REG1) registers[a--] = codeBuffer[i].reg1;
|
| 410 |
|
|
// Make any remaining registers equal to fallback or first source
|
| 411 |
|
|
// to avoid false dependence on unused register in superscalar processor
|
| 412 |
|
|
while (a >= 0) {
|
| 413 |
|
|
if (codeBuffer[i].etype & (XPR_MASK | XPR_FALLBACK)) {
|
| 414 |
|
|
registers[a--] = codeBuffer[i].fallback;
|
| 415 |
|
|
}
|
| 416 |
|
|
else {
|
| 417 |
|
|
registers[a--] = codeBuffer[i].reg1;
|
| 418 |
|
|
}
|
| 419 |
|
|
}
|
| 420 |
|
|
|
| 421 |
|
|
// Loop through operands to assign registers
|
| 422 |
|
|
for (j = 3, a = 3; j >= 0; j--) {
|
| 423 |
|
|
// put next operand in the sequence reg3, reg2, reg1, fallback into rt, rs, ru, or rd
|
| 424 |
|
|
// these may be overwritten below in template B, C, and D.
|
| 425 |
|
|
switch (operands[j]) {
|
| 426 |
|
|
case 0x10: // rt
|
| 427 |
|
|
instr.a.rt = registers[a--] & 0x1F;
|
| 428 |
|
|
break;
|
| 429 |
|
|
case 0x20: // rs
|
| 430 |
|
|
instr.a.rs = registers[a--] & 0x1F;
|
| 431 |
|
|
break;
|
| 432 |
|
|
case 0x40: // ru
|
| 433 |
|
|
instr.a.ru = registers[a--] & 0x1F;
|
| 434 |
|
|
break;
|
| 435 |
|
|
case 0x80: // rd
|
| 436 |
|
|
instr.a.rd = registers[a--] & 0x1F;
|
| 437 |
|
|
break;
|
| 438 |
|
|
default:; // memory and immediate operands or nothing
|
| 439 |
|
|
}
|
| 440 |
|
|
}
|
| 441 |
|
|
|
| 442 |
|
|
// insert other fields
|
| 443 |
|
|
instr.a.il = (format >> 8) & 3; // il = instruction length
|
| 444 |
|
|
instr.a.mode = (format >> 4) & 7; // mode
|
| 445 |
|
|
instr.a.op1 = instructionlistId[instructId].op1; // operation
|
| 446 |
|
|
if (templ != 0xD) {
|
| 447 |
|
|
if (codeBuffer[i].dest != 2 && codeBuffer[i].dest != 0) instr.a.rd = codeBuffer[i].dest & 0x1F; // destination register
|
| 448 |
|
|
if (templ != 0xC) {
|
| 449 |
|
|
instr.a.ot = codeBuffer[i].dtype & 7; // operand type
|
| 450 |
|
|
if (format & 0x80) instr.a.ot |= 4; // M bit
|
| 451 |
|
|
if (templ != 0xB) {
|
| 452 |
|
|
if (codeBuffer[i].etype & XPR_MASK) {
|
| 453 |
|
|
instr.a.mask = codeBuffer[i].mask; // mask register
|
| 454 |
|
|
}
|
| 455 |
|
|
else {
|
| 456 |
|
|
instr.a.mask = 7; // no mask
|
| 457 |
|
|
}
|
| 458 |
|
|
}
|
| 459 |
|
|
}
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
uint8_t * instr_b = instr.b; // avoid pedantic warnings from Gnu compiler
|
| 463 |
|
|
// memory operand
|
| 464 |
|
|
if (formatp->mem) {
|
| 465 |
|
|
if (formatp->mem & 2) instr.a.rs = codeBuffer[i].base & 0x1F; // base in rs
|
| 466 |
|
|
if (formatp->mem & 4) instr.a.rt = codeBuffer[i].index & 0x1F; // index in rt
|
| 467 |
|
|
uint8_t oldBase = codeBuffer[i].base; // save base pointer
|
| 468 |
|
|
|
| 469 |
|
|
// calculate offset, possibly involving symbols. make relocation if necessary
|
| 470 |
|
|
int64_t offset = calculateMemoryOffset(codeBuffer[i]);
|
| 471 |
|
|
|
| 472 |
|
|
if (codeBuffer[i].base != oldBase) {
|
| 473 |
|
|
// base pointer changed by calculateMemoryOffset
|
| 474 |
|
|
switch (codeBuffer[i].formatp->mem & 3) {
|
| 475 |
|
|
case 1: // base in RT. obsolete
|
| 476 |
|
|
instr.a.rt = codeBuffer[i].base; break;
|
| 477 |
|
|
case 2: // base in RS
|
| 478 |
|
|
instr.a.rs = codeBuffer[i].base; break;
|
| 479 |
|
|
}
|
| 480 |
|
|
}
|
| 481 |
|
|
|
| 482 |
|
|
// insert limit
|
| 483 |
|
|
if (codeBuffer[i].etype & XPR_LIMIT) offset = codeBuffer[i].value.i;
|
| 484 |
|
|
|
| 485 |
|
|
uint32_t addrPos = formatp->addrPos; // position of offset field
|
| 486 |
|
|
switch (formatp->addrSize) { // size of offset
|
| 487 |
|
|
case 0: // no offset
|
| 488 |
|
|
break;
|
| 489 |
|
|
case 1: // 8 bits offset
|
| 490 |
|
|
instr.b[addrPos] = uint8_t(offset);
|
| 491 |
|
|
break;
|
| 492 |
|
|
case 2: // 16 bits offset
|
| 493 |
|
|
*(int16_t *)(instr_b + addrPos) = int16_t(offset);
|
| 494 |
|
|
break;
|
| 495 |
|
|
case 4: // 32 bits offset
|
| 496 |
|
|
*(int32_t *)(instr_b + addrPos) = int32_t(offset);
|
| 497 |
|
|
break;
|
| 498 |
|
|
case 8: // 64 bits offset
|
| 499 |
|
|
*(int64_t *)(instr_b + addrPos) = offset;
|
| 500 |
|
|
}
|
| 501 |
|
|
// memory length or broadcast
|
| 502 |
|
|
if (formatp->vect & 6) instr.a.rt = codeBuffer[i].length;
|
| 503 |
|
|
}
|
| 504 |
|
|
|
| 505 |
|
|
// jump offset
|
| 506 |
|
|
if (formatp->jumpSize) {
|
| 507 |
|
|
|
| 508 |
|
|
// calculate offset, possibly involving symbols. make relocation if necessary
|
| 509 |
|
|
int64_t offset = calculateJumpOffset(codeBuffer[i]);
|
| 510 |
|
|
|
| 511 |
|
|
uint32_t addrSize = formatp->jumpSize; // size of offset field
|
| 512 |
|
|
uint32_t addrPos = formatp->jumpPos; // position of offset field
|
| 513 |
|
|
|
| 514 |
|
|
switch (addrSize) { // size of offset
|
| 515 |
|
|
case 0: // no offset
|
| 516 |
|
|
break;
|
| 517 |
|
|
case 1: // 8 bits offset
|
| 518 |
|
|
instr.b[addrPos] = uint8_t(offset);
|
| 519 |
|
|
break;
|
| 520 |
|
|
case 2: // 16 bits offset
|
| 521 |
|
|
*(int16_t *)(instr_b + addrPos) = int16_t(offset);
|
| 522 |
|
|
break;
|
| 523 |
|
|
case 3: // 24 bits offset
|
| 524 |
|
|
*(int16_t *)(instr_b + addrPos) = int16_t(offset); // first 16 of 24 bits
|
| 525 |
|
|
*(int8_t *)(instr_b + addrPos + 2) = int8_t(offset >> 16); // last 8 bits
|
| 526 |
|
|
break;
|
| 527 |
|
|
case 4: // 32 bits offset
|
| 528 |
|
|
*(int32_t *)(instr_b + addrPos) = int32_t(offset);
|
| 529 |
|
|
break;
|
| 530 |
|
|
case 8: // 64 bits offset
|
| 531 |
|
|
*(int64_t *)(instr_b + addrPos) = offset;
|
| 532 |
|
|
}
|
| 533 |
|
|
}
|
| 534 |
|
|
|
| 535 |
|
|
// immediate operand
|
| 536 |
|
|
if (formatp->immSize) {
|
| 537 |
|
|
int64_t value = codeBuffer[i].value.i; // value of operand
|
| 538 |
|
|
if (codeBuffer[i].sym3) {
|
| 539 |
|
|
// calculation of symbol address. add relocation if needed
|
| 540 |
|
|
value = calculateConstantOperand(codeBuffer[i], codeBuffer[i].address + codeBuffer[i].formatp->immPos, codeBuffer[i].formatp->immSize);
|
| 541 |
|
|
if (codeBuffer[i].etype & XPR_ERROR) {
|
| 542 |
|
|
linei = codeBuffer[i].line;
|
| 543 |
|
|
errors.reportLine(codeBuffer[i].value.w); // report error
|
| 544 |
|
|
}
|
| 545 |
|
|
}
|
| 546 |
|
|
|
| 547 |
|
|
uint32_t immPos = formatp->immPos; // position of immediate field
|
| 548 |
|
|
switch (formatp->immSize) { // size of immediate field
|
| 549 |
|
|
case 1: // 8 bits immediate
|
| 550 |
|
|
if ((codeBuffer[i].etype & XPR_IMMEDIATE) == XPR_FLT) {
|
| 551 |
|
|
*(int8_t *)(instr_b + immPos) = (int8_t)(int)(codeBuffer[i].value.d); // convert double to float16
|
| 552 |
|
|
}
|
| 553 |
|
|
else {
|
| 554 |
|
|
instr.b[immPos] = uint8_t(value);
|
| 555 |
|
|
}
|
| 556 |
|
|
break;
|
| 557 |
|
|
case 2: // 16 bits immediate
|
| 558 |
|
|
if (instructionlistId[instructId].opimmediate == OPI_INT1632 && format > 0x200) {
|
| 559 |
|
|
// 16-bit + 32 bit integer operands
|
| 560 |
|
|
*(int16_t *)(instr_b + immPos) = int16_t(value >> 32);
|
| 561 |
|
|
*(int32_t *)(instr_b + 4) = int32_t(value);
|
| 562 |
|
|
}
|
| 563 |
|
|
else if ((codeBuffer[i].etype & XPR_IMMEDIATE) == XPR_FLT) {
|
| 564 |
|
|
*(int16_t *)(instr_b + immPos) = double2half(codeBuffer[i].value.d); // convert double to float16
|
| 565 |
|
|
}
|
| 566 |
|
|
else {
|
| 567 |
|
|
*(int16_t *)(instr_b + immPos) = int16_t(value);
|
| 568 |
|
|
}
|
| 569 |
|
|
break;
|
| 570 |
|
|
case 4: // 32 bits immediate
|
| 571 |
|
|
if (instructionlistId[instructId].opimmediate == OPI_2INT16) {
|
| 572 |
|
|
// two 16-bit integer operands
|
| 573 |
|
|
value = (uint32_t)value << 16 | uint32_t(value >> 32);
|
| 574 |
|
|
*(int32_t *)(instr_b + immPos) = int32_t(value);
|
| 575 |
|
|
}
|
| 576 |
|
|
else if ((codeBuffer[i].etype & XPR_IMMEDIATE) == XPR_FLT) { // convert double to float
|
| 577 |
|
|
*(float *)(instr_b + immPos) = float(codeBuffer[i].value.d);
|
| 578 |
|
|
}
|
| 579 |
|
|
else {
|
| 580 |
|
|
*(int32_t *)(instr_b + immPos) = int32_t(value);
|
| 581 |
|
|
if (formatp->imm2 & 8) instr.a.im2 = uint16_t((uint64_t)value >> 32);
|
| 582 |
|
|
}
|
| 583 |
|
|
break;
|
| 584 |
|
|
case 8: // 64 bits immediate
|
| 585 |
|
|
if (instructionlistId[instructId].opimmediate == OPI_2INT32) {
|
| 586 |
|
|
// two 32-bit integers. swap them
|
| 587 |
|
|
value = value >> 32 | value << 32;
|
| 588 |
|
|
}
|
| 589 |
|
|
*(int64_t *)(instr_b + immPos) = value;
|
| 590 |
|
|
}
|
| 591 |
|
|
}
|
| 592 |
|
|
else if (opAvail & 1) { // special case: three registers and an immediate
|
| 593 |
|
|
int64_t value = calculateConstantOperand(codeBuffer[i], codeBuffer[i].address + codeBuffer[i].formatp->immPos, codeBuffer[i].formatp->immSize);
|
| 594 |
|
|
*(int16_t *)(instr_b + 4) = int16_t(value);
|
| 595 |
|
|
}
|
| 596 |
|
|
else if (formatp->tmplate == 0xC && instructionlistId[instructId].opimmediate == OPI_IMPLICIT) {
|
| 597 |
|
|
// insert implicit operand
|
| 598 |
|
|
instr.i[0] |= instructionlistId[instructId].implicit_imm;
|
| 599 |
|
|
}
|
| 600 |
|
|
if (formatp->imm2 & 0x80) { // various placements of OPJ
|
| 601 |
|
|
if (formatp->imm2 & 0x10) {
|
| 602 |
|
|
instr.b[7] = instructionlistId[instructId].op1; // OPJ in high part of IM2
|
| 603 |
|
|
}
|
| 604 |
|
|
else if (formatp->imm2 & 0x40) { // no OPJ
|
| 605 |
|
|
}
|
| 606 |
|
|
else {
|
| 607 |
|
|
instr.b[0] = instructionlistId[instructId].op1; // OPJ is in IM1
|
| 608 |
|
|
}
|
| 609 |
|
|
instr.a.op1 = format & 7; // op1 is part of format
|
| 610 |
|
|
}
|
| 611 |
|
|
if (formatp->imm2 & 0x40) {
|
| 612 |
|
|
// insert constant
|
| 613 |
|
|
if (formatp->format2 == 0x155) {
|
| 614 |
|
|
instr.i[0] = fillerInstruction; // filler instruction
|
| 615 |
|
|
}
|
| 616 |
|
|
}
|
| 617 |
|
|
// additional fields for format E
|
| 618 |
|
|
if (templ == 0xE) {
|
| 619 |
|
|
instr.a.mode2 = format & 7;
|
| 620 |
|
|
if (formatp->imm2 & 2) instr.a.im3 = codeBuffer[i].optionbits;
|
| 621 |
|
|
if (!(formatp->imm2 & 0x100))
|
| 622 |
|
|
instr.a.op2 = instructionlistId[instructId].op2;
|
| 623 |
|
|
}
|
| 624 |
|
|
|
| 625 |
|
|
if (formatp->category == 3 && instr.a.op1 == 0 && instr.a.op2 == 0) {
|
| 626 |
|
|
// simplify NOP instruction. Remove all unnecessary bits
|
| 627 |
|
|
instr.a.mask = 0;
|
| 628 |
|
|
instr.a.ot = 0;
|
| 629 |
|
|
if (instr.a.il > 1) instr.i[1] = 0;
|
| 630 |
|
|
}
|
| 631 |
|
|
|
| 632 |
|
|
// save code
|
| 633 |
|
|
uint32_t ilen = instr.a.il;
|
| 634 |
|
|
if (ilen == 0) ilen = 1;
|
| 635 |
|
|
dataBuffers[section].push(&instr, ilen * 4);
|
| 636 |
|
|
}
|
| 637 |
|
|
}
|
| 638 |
|
|
|
| 639 |
|
|
// make binary data for data sections
|
| 640 |
|
|
void CAssembler::makeBinaryData() {
|
| 641 |
|
|
// similar to pass2, but data lines only
|
| 642 |
|
|
section = 0;
|
| 643 |
|
|
|
| 644 |
|
|
// lines loop
|
| 645 |
|
|
for (linei = 1; linei < lines.numEntries(); linei++) {
|
| 646 |
|
|
tokenB = lines[linei].firstToken; // first token in line
|
| 647 |
|
|
tokenN = lines[linei].numTokens; // number of tokens in line
|
| 648 |
|
|
if (lines[linei].type == LINE_SECTION && tokens[tokenB+1].type == TOK_DIR) {
|
| 649 |
|
|
switch (tokens[tokenB+1].id) {
|
| 650 |
|
|
case DIR_SECTION: // section starts here
|
| 651 |
|
|
interpretSectionDirective();
|
| 652 |
|
|
break;
|
| 653 |
|
|
case DIR_END: // section or function end
|
| 654 |
|
|
interpretEndDirective();
|
| 655 |
|
|
break;
|
| 656 |
|
|
default:
|
| 657 |
|
|
errors.report(tokens[tokenB + 1]);
|
| 658 |
|
|
}
|
| 659 |
|
|
}
|
| 660 |
|
|
else if (lines[linei].type == LINE_DATADEF) {
|
| 661 |
|
|
lineError = 0;
|
| 662 |
|
|
tokenB = lines[linei].firstToken; // first token in line
|
| 663 |
|
|
tokenN = lines[linei].numTokens; // number of tokens in line
|
| 664 |
|
|
if (tokens[tokenB].type == TOK_DIR) continue; // ignore directives here
|
| 665 |
|
|
if (tokenN > 1) { // lines with a single token cannot legally define a symbol name
|
| 666 |
|
|
if (tokens[tokenB].type == TOK_TYP && tokens[tokenB+1].type == TOK_SYM) {
|
| 667 |
|
|
interpretVariableDefinition2();
|
| 668 |
|
|
}
|
| 669 |
|
|
else if (tokens[tokenB].type == TOK_ATT && tokens[tokenB].id == ATT_ALIGN) {
|
| 670 |
|
|
interpretAlign();
|
| 671 |
|
|
}
|
| 672 |
|
|
else {
|
| 673 |
|
|
interpretVariableDefinition1();
|
| 674 |
|
|
}
|
| 675 |
|
|
}
|
| 676 |
|
|
}
|
| 677 |
|
|
}
|
| 678 |
|
|
}
|
| 679 |
|
|
|
| 680 |
|
|
|
| 681 |
|
|
// put relocation records in output file
|
| 682 |
|
|
void CAssembler::makeBinaryRelocations() {
|
| 683 |
|
|
uint32_t i; // loop counter
|
| 684 |
|
|
// copy relocation records
|
| 685 |
|
|
for (i = 0; i < relocations.numEntries(); i++) {
|
| 686 |
|
|
// translate symbol indexes in relocation records
|
| 687 |
|
|
int32_t symi1, symi2; // symbol index
|
| 688 |
|
|
uint32_t newSymi1, newSymi2; // symbol index in output file
|
| 689 |
|
|
if (relocations[i].r_sym) {
|
| 690 |
|
|
symi1 = findSymbol(relocations[i].r_sym);
|
| 691 |
|
|
if (symi1 > 0) {
|
| 692 |
|
|
newSymi1 = symbols[symi1].st_unitnum;
|
| 693 |
|
|
relocations[i].r_sym = newSymi1; // replace by symbol index in outFile
|
| 694 |
|
|
uint32_t sect = symbols[symi1].st_section;
|
| 695 |
|
|
if (sect && symbols[symi1].st_bind == STB_WEAK) {
|
| 696 |
|
|
// there is a local reference to a weak public symbol. Make it both import and export
|
| 697 |
|
|
outFile.symbols[newSymi1].st_bind = STB_WEAK2;
|
| 698 |
|
|
}
|
| 699 |
|
|
if (sect && sect < sectionHeaders.numEntries() && sectionHeaders[sect].sh_type == SHT_COMDAT) {
|
| 700 |
|
|
// there is a local reference to a symbol in a communal section. Make it both import and export
|
| 701 |
|
|
outFile.symbols[newSymi1].st_bind = STB_WEAK2;
|
| 702 |
|
|
}
|
| 703 |
|
|
}
|
| 704 |
|
|
else relocations[i].r_sym = 0; // should not occur
|
| 705 |
|
|
}
|
| 706 |
|
|
if (relocations[i].r_refsym) { // reference symbol
|
| 707 |
|
|
symi2 = findSymbol(relocations[i].r_refsym);
|
| 708 |
|
|
if (symi2 > 0) {
|
| 709 |
|
|
newSymi2 = symbols[symi2].st_unitnum;
|
| 710 |
|
|
relocations[i].r_refsym = newSymi2; // replace by symbol index in outFile
|
| 711 |
|
|
if (symbols[symi2].st_section && symbols[symi2].st_bind == STB_WEAK) {
|
| 712 |
|
|
// there is a local reference to a weak public symbol. Make it both import and export
|
| 713 |
|
|
outFile.symbols[newSymi2].st_bind = STB_WEAK2;
|
| 714 |
|
|
}
|
| 715 |
|
|
}
|
| 716 |
|
|
else relocations[i].r_refsym = 0; // should not occur
|
| 717 |
|
|
}
|
| 718 |
|
|
outFile.addRelocation(relocations[i]); // put relocation in outFile
|
| 719 |
|
|
}
|
| 720 |
|
|
}
|
| 721 |
|
|
|
| 722 |
|
|
// make output listing
|
| 723 |
|
|
void CAssembler::makeListFile() {
|
| 724 |
|
|
// Use the disassembler for making output listing
|
| 725 |
|
|
CDisassembler disassembler; // make an instance of CDisassembler
|
| 726 |
|
|
// give all my tables to the disassembler
|
| 727 |
|
|
disassembler.getComponents2(outFile, instructionlist);
|
| 728 |
|
|
// change output file name
|
| 729 |
|
|
disassembler.outputFile = cmd.outputListFile;
|
| 730 |
|
|
// do the disassembly
|
| 731 |
|
|
disassembler.go();
|
| 732 |
|
|
}
|
| 733 |
|
|
|
| 734 |
|
|
// calculate memory address possibly involving symbol. generate relocation if necessary
|
| 735 |
|
|
int64_t CAssembler::calculateMemoryOffset(SCode & code) {
|
| 736 |
|
|
int64_t value = 0;
|
| 737 |
|
|
int32_t symi1 = 0, symi2 = 0;
|
| 738 |
|
|
if (code.sym1) symi1 = findSymbol(code.sym1); // target symbol, if any
|
| 739 |
|
|
if (code.sym2) symi2 = findSymbol(code.sym2); // reference symbol, if any
|
| 740 |
|
|
ElfFwcReloc relocation; // relocation, if needed
|
| 741 |
|
|
bool needsRelocation = false; // relocation needed
|
| 742 |
|
|
|
| 743 |
|
|
uint8_t fieldPos = code.formatp->addrPos; // position of address or immediate field
|
| 744 |
|
|
uint8_t fieldSize = code.formatp->addrSize; // size of address or immediate field
|
| 745 |
|
|
|
| 746 |
|
|
uint32_t scale = 0; // log2 scale factor to address, not including explicit symbol scale
|
| 747 |
|
|
if (fieldSize == 1) {
|
| 748 |
|
|
// scale factor determined by type
|
| 749 |
|
|
uint32_t type = code.dtype;
|
| 750 |
|
|
scale = type & 0xF;
|
| 751 |
|
|
if (type & 0x40) scale -= 3;
|
| 752 |
|
|
}
|
| 753 |
|
|
|
| 754 |
|
|
// check target symbol
|
| 755 |
|
|
if (symi1) {
|
| 756 |
|
|
if (symi2) {
|
| 757 |
|
|
// difference between two symbols
|
| 758 |
|
|
if (code.symscale1 == 0) code.symscale1 = 1;
|
| 759 |
|
|
if (symbols[symi1].st_section == symbols[symi2].st_section && symbols[symi1].st_bind == STB_LOCAL && symbols[symi2].st_bind == STB_LOCAL) {
|
| 760 |
|
|
// both symbols are local in same section. final value can be calculated
|
| 761 |
|
|
value = (int64_t)(symbols[symi1].st_value - symbols[symi2].st_value) / code.symscale1;
|
| 762 |
|
|
value = (value + code.offset_mem) >> scale;
|
| 763 |
|
|
}
|
| 764 |
|
|
else {
|
| 765 |
|
|
// symbols are in different section or external. relocation needed
|
| 766 |
|
|
relocation.r_type = R_FORW_REFP; // relative to arbitrary reference point
|
| 767 |
|
|
relocation.r_type |= bitScanReverse(code.symscale1) + scale; // scale factor
|
| 768 |
|
|
relocation.r_sym = code.sym1; // Symbol index
|
| 769 |
|
|
relocation.r_refsym = code.sym2; // Reference symbol
|
| 770 |
|
|
relocation.r_addend = uint32_t(code.offset_mem); // Addend
|
| 771 |
|
|
needsRelocation = true;
|
| 772 |
|
|
}
|
| 773 |
|
|
}
|
| 774 |
|
|
else {
|
| 775 |
|
|
// a single symbol
|
| 776 |
|
|
// is symbol relative to IP, DATAP, THREADP or constant?
|
| 777 |
|
|
//uint8_t basepointer = 0;
|
| 778 |
|
|
uint32_t symsection = symbols[symi1].st_section;
|
| 779 |
|
|
if (symbols[symi1].st_type == STT_CONSTANT) {
|
| 780 |
|
|
// constant
|
| 781 |
|
|
relocation.r_type = R_FORW_ABS | scale;
|
| 782 |
|
|
relocation.r_sym = code.sym1; // Symbol index
|
| 783 |
|
|
relocation.r_refsym = 0; // Reference symbol
|
| 784 |
|
|
relocation.r_addend = uint32_t(code.offset_mem); // Addend
|
| 785 |
|
|
needsRelocation = true;
|
| 786 |
|
|
}
|
| 787 |
|
|
else if (symsection > 0 && symsection < sectionHeaders.numEntries()) {
|
| 788 |
|
|
// local symbol relative to IP or DATAP
|
| 789 |
|
|
if (sectionHeaders[symsection].sh_flags & (SHF_IP | SHF_EXEC)) {
|
| 790 |
|
|
if (symsection == section) {
|
| 791 |
|
|
// symbol in same section relative to IP. calculate address
|
| 792 |
|
|
code.base = uint8_t(REG_IP >> 16);
|
| 793 |
|
|
value = (int64_t)(symbols[symi1].st_value - uint64_t(code.address + code.size * 4));
|
| 794 |
|
|
value = (value + code.offset_mem) >> scale; // scale offset
|
| 795 |
|
|
}
|
| 796 |
|
|
else {
|
| 797 |
|
|
// local symbol in different IP section. needs relocation
|
| 798 |
|
|
code.base = uint8_t(REG_IP >> 16);
|
| 799 |
|
|
relocation.r_type = R_FORW_SELFREL; // self-relative
|
| 800 |
|
|
//if (code.instruction & II_JUMP_INSTR) relocation.r_type |= R_FORW_SCALE4; // jump instruction scaled by 4
|
| 801 |
|
|
relocation.r_addend = fieldPos - code.size * 4; // position of relocated field relative to instruction end
|
| 802 |
|
|
relocation.r_sym = code.sym1; // temporary symbol index. resolve when symbol table created
|
| 803 |
|
|
relocation.r_refsym = 0;
|
| 804 |
|
|
relocation.r_addend += (int32_t)code.offset_mem;
|
| 805 |
|
|
needsRelocation = true;
|
| 806 |
|
|
}
|
| 807 |
|
|
}
|
| 808 |
|
|
else {
|
| 809 |
|
|
// relative to DATAP or THREADP. needs relocation
|
| 810 |
|
|
if (sectionHeaders[symsection].sh_flags & SHF_THREADP) {
|
| 811 |
|
|
code.base = uint8_t(REG_THREADP >> 16);
|
| 812 |
|
|
relocation.r_type = R_FORW_THREADP; // relocation relative to THREADP
|
| 813 |
|
|
}
|
| 814 |
|
|
else {
|
| 815 |
|
|
code.base = uint8_t(REG_DATAP >> 16);
|
| 816 |
|
|
relocation.r_type = R_FORW_DATAP; // relocation relative to DATAP
|
| 817 |
|
|
}
|
| 818 |
|
|
relocation.r_type |= scale; // scale factor only if 8-bit offset allowed
|
| 819 |
|
|
relocation.r_sym = code.sym1; // temporary symbol index. resolve when symbol table created
|
| 820 |
|
|
relocation.r_refsym = 0;
|
| 821 |
|
|
relocation.r_addend = uint32_t(code.offset_mem);
|
| 822 |
|
|
needsRelocation = true;
|
| 823 |
|
|
}
|
| 824 |
|
|
}
|
| 825 |
|
|
else {
|
| 826 |
|
|
// remote symbol relative to IP or DATAP
|
| 827 |
|
|
if (symbols[symi1].st_other & (STV_IP | STV_EXEC)) {
|
| 828 |
|
|
// relative to IP
|
| 829 |
|
|
code.base = uint8_t(REG_IP >> 16);
|
| 830 |
|
|
relocation.r_type = R_FORW_SELFREL;
|
| 831 |
|
|
//if (code.instruction & II_JUMP_INSTR) relocation.r_type |= R_FORW_SCALE4;
|
| 832 |
|
|
relocation.r_addend = fieldPos - code.size * 4; // position of relocated field relative to instruction end
|
| 833 |
|
|
}
|
| 834 |
|
|
else if (symbols[symi1].st_other & STV_THREADP) {
|
| 835 |
|
|
// relative to THREADP
|
| 836 |
|
|
code.base = uint8_t(REG_THREADP >> 16);
|
| 837 |
|
|
relocation.r_type = R_FORW_THREADP;
|
| 838 |
|
|
relocation.r_addend = 0;
|
| 839 |
|
|
}
|
| 840 |
|
|
else {
|
| 841 |
|
|
// relative to DATAP
|
| 842 |
|
|
code.base = uint8_t(REG_DATAP >> 16);
|
| 843 |
|
|
relocation.r_type = R_FORW_DATAP;
|
| 844 |
|
|
relocation.r_addend = 0;
|
| 845 |
|
|
}
|
| 846 |
|
|
relocation.r_sym = code.sym1; // temporary symbol index. resolve when symbol table created
|
| 847 |
|
|
relocation.r_refsym = 0;
|
| 848 |
|
|
relocation.r_addend += (int32_t)code.offset_mem;
|
| 849 |
|
|
if (code.formatp->addrSize == 1 && !(relocation.r_type & R_FORW_RELSCALEMASK)) {
|
| 850 |
|
|
relocation.r_type |= scale;
|
| 851 |
|
|
}
|
| 852 |
|
|
needsRelocation = true;
|
| 853 |
|
|
}
|
| 854 |
|
|
}
|
| 855 |
|
|
}
|
| 856 |
|
|
else {
|
| 857 |
|
|
// no symbol
|
| 858 |
|
|
value = code.offset_mem >> scale;
|
| 859 |
|
|
}
|
| 860 |
|
|
|
| 861 |
|
|
if (needsRelocation) {
|
| 862 |
|
|
// relocation needed. insert source address
|
| 863 |
|
|
relocation.r_type |= fieldSize << 8; // relocation size
|
| 864 |
|
|
relocation.r_offset = (uint64_t)code.address + fieldPos;
|
| 865 |
|
|
relocation.r_section = code.section;
|
| 866 |
|
|
value = 0; // value included in relocation addend
|
| 867 |
|
|
relocations.push(relocation); // save relocation
|
| 868 |
|
|
}
|
| 869 |
|
|
return value;
|
| 870 |
|
|
}
|
| 871 |
|
|
|
| 872 |
|
|
int64_t CAssembler::calculateJumpOffset(SCode & code) { // calculate jump offset possibly involving symbol. generate relocation if necessary
|
| 873 |
|
|
int64_t value = 0;
|
| 874 |
|
|
int32_t symi5 = 0;
|
| 875 |
|
|
if (code.sym5) symi5 = findSymbol(code.sym5); // target symbol, if any
|
| 876 |
|
|
ElfFwcReloc relocation; // relocation, if needed
|
| 877 |
|
|
bool needsRelocation = false; // relocation needed
|
| 878 |
|
|
|
| 879 |
|
|
uint8_t fieldSize = code.formatp->jumpSize; // size of jump offset field
|
| 880 |
|
|
uint8_t fieldPos = code.formatp->jumpPos; // position of jump offset field
|
| 881 |
|
|
|
| 882 |
|
|
uint32_t scale = 2; // jumps always scaled by 1 << 2 = 4
|
| 883 |
|
|
|
| 884 |
|
|
// check target symbol
|
| 885 |
|
|
if (symi5) {
|
| 886 |
|
|
uint32_t symsection = symbols[symi5].st_section;
|
| 887 |
|
|
|
| 888 |
|
|
if (symsection > 0 && symsection < sectionHeaders.numEntries()) {
|
| 889 |
|
|
// local symbol relative to IP
|
| 890 |
|
|
if (sectionHeaders[symsection].sh_flags & (SHF_IP | SHF_EXEC)) {
|
| 891 |
|
|
if (symsection == section) {
|
| 892 |
|
|
// symbol in same section relative to IP. calculate address
|
| 893 |
|
|
value = (int64_t)(symbols[symi5].st_value - uint64_t(code.address + code.size * 4));
|
| 894 |
|
|
value = (value + code.offset_jump) >> scale; // scale jump offset by 4
|
| 895 |
|
|
// address size must be at least 2
|
| 896 |
|
|
}
|
| 897 |
|
|
else {
|
| 898 |
|
|
// local symbol in different IP section. needs relocation
|
| 899 |
|
|
relocation.r_type = R_FORW_SELFREL; // self-relative
|
| 900 |
|
|
relocation.r_type |= R_FORW_SCALE4; // jump instruction scaled by 4
|
| 901 |
|
|
relocation.r_addend = fieldPos - code.size * 4; // position of relocated field relative to instruction end
|
| 902 |
|
|
relocation.r_sym = code.sym5; // temporary symbol index. resolve when symbol table created
|
| 903 |
|
|
relocation.r_refsym = 0;
|
| 904 |
|
|
relocation.r_addend += (int32_t)code.offset_jump;
|
| 905 |
|
|
needsRelocation = true;
|
| 906 |
|
|
}
|
| 907 |
|
|
}
|
| 908 |
|
|
}
|
| 909 |
|
|
else {
|
| 910 |
|
|
// remote symbol relative to IP
|
| 911 |
|
|
relocation.r_type = R_FORW_SELFREL;
|
| 912 |
|
|
relocation.r_type |= R_FORW_SCALE4;
|
| 913 |
|
|
relocation.r_addend = fieldPos - code.size * 4; // position of relocated field relative to instruction end
|
| 914 |
|
|
relocation.r_sym = code.sym5; // temporary symbol index. resolve when symbol table created
|
| 915 |
|
|
relocation.r_refsym = 0;
|
| 916 |
|
|
relocation.r_addend += (int32_t)code.offset_jump;
|
| 917 |
|
|
needsRelocation = true;
|
| 918 |
|
|
}
|
| 919 |
|
|
}
|
| 920 |
|
|
else {
|
| 921 |
|
|
// no symbol
|
| 922 |
|
|
value = code.offset_jump >> scale;
|
| 923 |
|
|
}
|
| 924 |
|
|
|
| 925 |
|
|
if (needsRelocation) {
|
| 926 |
|
|
// relocation needed. insert source address
|
| 927 |
|
|
relocation.r_type |= fieldSize << 8; // relocation size
|
| 928 |
|
|
relocation.r_offset = (uint64_t)code.address + fieldPos;
|
| 929 |
|
|
relocation.r_section = code.section;
|
| 930 |
|
|
value = 0; // value included in relocation addend
|
| 931 |
|
|
relocations.push(relocation); // save relocation
|
| 932 |
|
|
}
|
| 933 |
|
|
return value;
|
| 934 |
|
|
}
|
| 935 |
|
|
|
| 936 |
|
|
|
| 937 |
|
|
// calculate constant or immediate operand possibly involving symbol. generate relocation if necessary
|
| 938 |
|
|
int64_t CAssembler::calculateConstantOperand(SExpression & expr, uint64_t address, uint32_t fieldSize) {
|
| 939 |
|
|
int64_t value = 0;
|
| 940 |
|
|
int32_t symi3 = 0, symi4 = 0;
|
| 941 |
|
|
if (expr.sym3) {
|
| 942 |
|
|
symi3 = findSymbol(expr.sym3); // target symbol, if any
|
| 943 |
|
|
if (symi3 < 1) {errors.reportLine(ERR_SYMBOL_UNDEFINED); return 0;}
|
| 944 |
|
|
}
|
| 945 |
|
|
if (expr.sym4) {
|
| 946 |
|
|
symi4 = findSymbol(expr.sym4); // reference symbol, if any
|
| 947 |
|
|
if (symi4 < 1) {errors.reportLine(ERR_SYMBOL_UNDEFINED); return 0;}
|
| 948 |
|
|
}
|
| 949 |
|
|
|
| 950 |
|
|
ElfFwcReloc relocation; // relocation, if needed
|
| 951 |
|
|
bool needsRelocation = false;
|
| 952 |
|
|
// relocation needed
|
| 953 |
|
|
|
| 954 |
|
|
if (symi3) {
|
| 955 |
|
|
// there is a symbol
|
| 956 |
|
|
if (symi4) {
|
| 957 |
|
|
// difference between two symbols
|
| 958 |
|
|
if (symbols[symi3].st_section == symbols[symi4].st_section && symbols[symi3].st_bind == STB_LOCAL && symbols[symi4].st_bind == STB_LOCAL) {
|
| 959 |
|
|
// both symbols are local in same section. final value can be calculated
|
| 960 |
|
|
value = (int64_t)(symbols[symi3].st_value - symbols[symi4].st_value);
|
| 961 |
|
|
if (expr.symscale1 > 1) value /= expr.symscale1;
|
| 962 |
|
|
}
|
| 963 |
|
|
else {
|
| 964 |
|
|
// symbols are in different section or external. relocation needed
|
| 965 |
|
|
relocation.r_type = R_FORW_REFP; // relative to arbitrary reference point
|
| 966 |
|
|
if (expr.symscale1 > 1) relocation.r_type |= bitScanReverse(expr.symscale1); // scale factor
|
| 967 |
|
|
relocation.r_sym = expr.sym3; // Symbol index
|
| 968 |
|
|
relocation.r_refsym = expr.sym4; // Reference symbol
|
| 969 |
|
|
relocation.r_addend = int32_t(expr.value.w); // Addend
|
| 970 |
|
|
needsRelocation = true;
|
| 971 |
|
|
}
|
| 972 |
|
|
}
|
| 973 |
|
|
else {
|
| 974 |
|
|
// single symbol
|
| 975 |
|
|
if (symbols[symi3].st_type & STT_CONSTANT) {
|
| 976 |
|
|
// symbol is an external constant
|
| 977 |
|
|
relocation.r_type = R_FORW_ABS; // absolute value
|
| 978 |
|
|
if (expr.symscale1 > 1) relocation.r_type |= bitScanReverse(expr.symscale1); // scale factor
|
| 979 |
|
|
relocation.r_sym = expr.sym3; // Symbol index
|
| 980 |
|
|
relocation.r_refsym = 0; // Reference symbol
|
| 981 |
|
|
relocation.r_addend = int32_t(expr.value.w); // Addend
|
| 982 |
|
|
needsRelocation = true;
|
| 983 |
|
|
}
|
| 984 |
|
|
else if ((sectionHeaders[section].sh_flags & (SHF_WRITE | SHF_DATAP)) && fieldSize >= 4) {
|
| 985 |
|
|
// other symbol. absolute address allowed only in writeable data section
|
| 986 |
|
|
relocation.r_type = R_FORW_ABS; // absolute value, 64 bits, no scale
|
| 987 |
|
|
relocation.r_sym = expr.sym3; // Symbol index
|
| 988 |
|
|
relocation.r_refsym = 0; // Reference symbol
|
| 989 |
|
|
if (expr.symscale1 > 1) relocation.r_type |= bitScanReverse(expr.symscale1); // scale factor
|
| 990 |
|
|
relocation.r_addend = int32_t(expr.value.w); // Addend
|
| 991 |
|
|
if (symbols[symi3].st_section && fieldSize < 4) {
|
| 992 |
|
|
expr.etype = XPR_ERROR;
|
| 993 |
|
|
value = ERR_ABS_RELOCATION;
|
| 994 |
|
|
}
|
| 995 |
|
|
// warn if absolute address
|
| 996 |
|
|
err.submit(ERR_ABS_RELOCATION_WARN, lines[linei].linenum, (char*)symbolNameBuffer.buf() + symbols[symi3].st_name);
|
| 997 |
|
|
needsRelocation = true;
|
| 998 |
|
|
}
|
| 999 |
|
|
else {
|
| 1000 |
|
|
// symbol without reference point not allowed here
|
| 1001 |
|
|
expr.etype = XPR_ERROR;
|
| 1002 |
|
|
value = ERR_ABS_RELOCATION;
|
| 1003 |
|
|
}
|
| 1004 |
|
|
}
|
| 1005 |
|
|
}
|
| 1006 |
|
|
else {
|
| 1007 |
|
|
// no symbol
|
| 1008 |
|
|
value = expr.value.i;
|
| 1009 |
|
|
}
|
| 1010 |
|
|
if (needsRelocation) {
|
| 1011 |
|
|
// relocation needed. insert source address
|
| 1012 |
|
|
relocation.r_offset = address;
|
| 1013 |
|
|
relocation.r_section = section;
|
| 1014 |
|
|
relocation.r_type |= fieldSize << 8; // relocation size
|
| 1015 |
|
|
value = 0; // value included in relocation addend
|
| 1016 |
|
|
relocations.push(relocation); // save relocation
|
| 1017 |
|
|
}
|
| 1018 |
|
|
return value;
|
| 1019 |
|
|
}
|