1 |
46 |
Agner |
/**************************** assem6.cpp ********************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* Date created: 2017-08-07
|
4 |
|
|
* Last modified: 2021-02-23
|
5 |
|
|
* Version: 1.11
|
6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
7 |
|
|
* Module: assem.cpp
|
8 |
|
|
* Description:
|
9 |
|
|
* Module for assembling ForwardCom .as files.
|
10 |
|
|
* This module contains:
|
11 |
|
|
* - pass4(): Resolve internal cross references, optimize forward references
|
12 |
|
|
* - pass5(): Make binary file
|
13 |
|
|
* Copyright 2017-2021 GNU General Public License http://www.gnu.org/licenses
|
14 |
|
|
******************************************************************************/
|
15 |
|
|
#include "stdafx.h"
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
// Resolve symbol addresses and internal cross references, optimize forward references
|
19 |
|
|
void CAssembler::pass4() {
|
20 |
|
|
uint32_t addr = 0; // address relative to current section begin
|
21 |
|
|
//uint32_t instructId; // instruction id
|
22 |
|
|
uint32_t i; // loop counter
|
23 |
|
|
uint32_t symi; // symbol index
|
24 |
|
|
uint32_t numUncertain; // number of instructions with unresolved size in current section
|
25 |
|
|
uint32_t totUncertain; // number of instructions with unresolved size in all sections
|
26 |
|
|
uint32_t changes = 1; // number of size changes during each optimization pass
|
27 |
|
|
uint32_t optiPass = 0; // count optimization passes
|
28 |
|
|
uint32_t nSections = sectionHeaders.numEntries(); // number of sections
|
29 |
|
|
uint32_t const maxOptiPass = 10; // maximum number of optimization passes
|
30 |
|
|
|
31 |
|
|
// multiple optimization passes until size is certain or no changes
|
32 |
|
|
for (optiPass = 1; optiPass <= maxOptiPass; optiPass++) {
|
33 |
|
|
code_size = cmd.codeSizeOption; // initialize options in case they have been changed during pass 3 or 4
|
34 |
|
|
data_size = cmd.dataSizeOption;
|
35 |
|
|
|
36 |
|
|
if (changes == 0 && (totUncertain == 0 || optiPass > 2)) break;
|
37 |
|
|
changes = 0; // count instructions with changed size
|
38 |
|
|
section = 0;
|
39 |
|
|
numUncertain = totUncertain = 0;
|
40 |
|
|
for (i = 1; i < nSections; i++) {
|
41 |
|
|
sectionHeaders[i].sh_link = 0; // reset count of uncertain instruction sizes
|
42 |
|
|
sectionHeaders[i].sh_size = 0;
|
43 |
|
|
}
|
44 |
|
|
// loop through code objects
|
45 |
|
|
for (i = 0; i < codeBuffer.numEntries(); i++) {
|
46 |
|
|
//instructId = codeBuffer[i].instr1;
|
47 |
|
|
if (codeBuffer[i].section == 0 || codeBuffer[i].section >= nSections)
|
48 |
|
|
continue;
|
49 |
|
|
if (codeBuffer[i].section != section) {
|
50 |
|
|
if (section) {
|
51 |
|
|
// save results of previous section
|
52 |
|
|
sectionHeaders[section].sh_size = addr;
|
53 |
|
|
sectionHeaders[section].sh_link = numUncertain; // sh_link is temporarily used for indicating number of instructions with uncertain size
|
54 |
|
|
totUncertain += numUncertain;
|
55 |
|
|
}
|
56 |
|
|
// restore status for current section
|
57 |
|
|
section = codeBuffer[i].section;
|
58 |
|
|
addr = (uint32_t)sectionHeaders[section].sh_size;
|
59 |
|
|
numUncertain = sectionHeaders[section].sh_link;
|
60 |
|
|
}
|
61 |
|
|
codeBuffer[i].address = addr;
|
62 |
|
|
if (codeBuffer[i].label) {
|
63 |
|
|
// there is a label here. put the address into the symbol record
|
64 |
|
|
symi = findSymbol(codeBuffer[i].label);
|
65 |
|
|
if (symi > 0 && symi < symbols.numEntries()) {
|
66 |
|
|
// the upper half of st_value is temporarily used for indicating if address is not yet precise
|
67 |
|
|
symbols[symi].st_value = addr | (uint64_t)numUncertain << 32;
|
68 |
|
|
symbols[symi].st_unitsize = 1; // set an arbitrary size to indicate that a value has been assigned
|
69 |
|
|
}
|
70 |
|
|
}
|
71 |
|
|
if (codeBuffer[i].sizeUnknown) {
|
72 |
|
|
// update the size of this instruction
|
73 |
|
|
uint8_t lastSize = codeBuffer[i].size;
|
74 |
|
|
if (codeBuffer[i].instr1) { // update normal instruction
|
75 |
|
|
if (optiPass >= maxOptiPass - 1) {
|
76 |
|
|
// rare case. optimization has slow convergence. choose larger instruction size if uncertain
|
77 |
|
|
if (codeBuffer[i].fitAddr) codeBuffer[i].fitAddr |= IFIT_LARGE;
|
78 |
|
|
if (codeBuffer[i].fitJump) codeBuffer[i].fitJump |= IFIT_LARGE;
|
79 |
|
|
}
|
80 |
|
|
sectionHeaders[section].sh_link = numUncertain;
|
81 |
|
|
fitConstant(codeBuffer[i]); // recalculate necessary size of immediate constant
|
82 |
|
|
fitAddress(codeBuffer[i]); // recalculate necessary size of address
|
83 |
|
|
fitCode(codeBuffer[i]); // fit instruction to new size
|
84 |
|
|
if (codeBuffer[i].size != lastSize) changes++; // count changes if size changed
|
85 |
|
|
}
|
86 |
|
|
else { // not an instruction
|
87 |
|
|
if (codeBuffer[i].instruction == II_ALIGN) {
|
88 |
|
|
// align directive. round up address to nearest multiple of alignment value
|
89 |
|
|
uint32_t ali = bitScanReverse(codeBuffer[i].value.u);
|
90 |
|
|
uint32_t newAddress = (addr + ali - 1) & uint32_t(-(int32_t)ali);
|
91 |
|
|
codeBuffer[i].size = (newAddress - addr) >> 2; // size of alignment fillers
|
92 |
|
|
if (codeBuffer[i].size != lastSize) changes++; // count changes if size changed
|
93 |
|
|
if (numUncertain) numUncertain += (ali >> 2) - 1 - codeBuffer[i].size; // maximum additional size if size of previous instructions change
|
94 |
|
|
if (section && sectionHeaders[section].sh_align < ali) {
|
95 |
|
|
sectionHeaders[section].sh_align = ali; // adjust alignment of this section
|
96 |
|
|
}
|
97 |
|
|
}
|
98 |
|
|
else if (codeBuffer[i].instruction == II_OPTIONS) {
|
99 |
|
|
// options directive. change option
|
100 |
|
|
// This code object was created by CAssembler::interpretOptionsLine()
|
101 |
|
|
switch (codeBuffer[i].fitNum) {
|
102 |
|
|
case 1:
|
103 |
|
|
code_size = codeBuffer[i].value.u;
|
104 |
|
|
break;
|
105 |
|
|
case 2:
|
106 |
|
|
data_size = codeBuffer[i].value.u;
|
107 |
|
|
break;
|
108 |
|
|
}
|
109 |
|
|
}
|
110 |
|
|
}
|
111 |
|
|
}
|
112 |
|
|
addr += codeBuffer[i].size * 4; // update address
|
113 |
|
|
numUncertain += codeBuffer[i].sizeUnknown & 0x7F; // update uncertainty
|
114 |
|
|
}
|
115 |
|
|
// update last section
|
116 |
|
|
if (section) {
|
117 |
|
|
// save results of previous section
|
118 |
|
|
sectionHeaders[section].sh_size = addr;
|
119 |
|
|
sectionHeaders[section].sh_link = numUncertain;
|
120 |
|
|
totUncertain += numUncertain;
|
121 |
|
|
}
|
122 |
|
|
}
|
123 |
|
|
// remove temporary uncertainty information from symbol records
|
124 |
|
|
for (symi = 1; symi < symbols.numEntries(); symi++) {
|
125 |
|
|
if (symbols[symi].st_type == STT_OBJECT || symbols[symi].st_type == STT_FUNC) {
|
126 |
|
|
symbols[symi].st_value &= 0xFFFFFFFFU;
|
127 |
|
|
}
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
// make public symbol definitions
|
131 |
|
|
for (linei = 1; linei < lines.numEntries(); linei++) {
|
132 |
|
|
if (lines[linei].type == LINE_PUBLICDEF) {
|
133 |
|
|
interpretPublicDirective();
|
134 |
|
|
}
|
135 |
|
|
}
|
136 |
|
|
}
|
137 |
|
|
|
138 |
|
|
|
139 |
|
|
// interpret public name: options {, name: options}
|
140 |
|
|
void CAssembler::interpretPublicDirective() {
|
141 |
|
|
int state = 0; // 0: start
|
142 |
|
|
// 1: after 'public' or ','
|
143 |
|
|
// 2: after name
|
144 |
|
|
// 3: after ':'
|
145 |
|
|
// 4: after attribute
|
146 |
|
|
|
147 |
|
|
uint32_t symi = 0; // symbol index
|
148 |
|
|
uint32_t symn; // symbol name index
|
149 |
|
|
uint32_t tok; // token index
|
150 |
|
|
uint32_t symtok = 0; // symbol token
|
151 |
|
|
SToken token; // current token
|
152 |
|
|
|
153 |
|
|
tokenB = lines[linei].firstToken; // first token in line
|
154 |
|
|
tokenN = lines[linei].numTokens; // number of tokens in line
|
155 |
|
|
// loop through tokens on this line
|
156 |
|
|
for (tok = tokenB; tok < tokenB + tokenN; tok++) {
|
157 |
|
|
token = tokens[tok];
|
158 |
|
|
switch (state) {
|
159 |
|
|
case 0: // start
|
160 |
|
|
if (token.id == DIR_PUBLIC) state = 1; else return;
|
161 |
|
|
break;
|
162 |
|
|
case 1: // expect symbol name
|
163 |
|
|
if (token.type == TOK_SYM) {
|
164 |
|
|
symtok = tok;
|
165 |
|
|
symn = token.id;
|
166 |
|
|
symi = findSymbol(symn);
|
167 |
|
|
if ((int32_t)symi < 1) {
|
168 |
|
|
errors.report(token.pos, token.stringLength, ERR_SYMBOL_UNDEFINED); return;
|
169 |
|
|
}
|
170 |
|
|
state = 2;
|
171 |
|
|
}
|
172 |
|
|
else if (token.type == TOK_NAM) {
|
173 |
|
|
// name found. find symbol
|
174 |
|
|
symi = findSymbol((char*)buf() + tokens[tok].pos, tokens[tok].stringLength);
|
175 |
|
|
if ((int32_t)symi < 1) {
|
176 |
|
|
errors.report(token.pos, token.stringLength, ERR_SYMBOL_UNDEFINED); return;
|
177 |
|
|
}
|
178 |
|
|
symtok = tok;
|
179 |
|
|
symn = symbols[symi].st_name;
|
180 |
|
|
state = 2;
|
181 |
|
|
}
|
182 |
|
|
else errors.report(token);
|
183 |
|
|
break;
|
184 |
|
|
case 2: // after name. expect ':' or ','
|
185 |
|
|
if (token.type == TOK_OPR && token.id == ':') state = 3;
|
186 |
|
|
else if (token.type == TOK_OPR && token.id == ',') {
|
187 |
|
|
EXPORT_SYMBOL:
|
188 |
|
|
// check if external
|
189 |
|
|
if (symbols[symi].st_section == 0) {
|
190 |
|
|
errors.report(tokens[symtok].pos, tokens[symtok].stringLength, ERR_CANNOT_EXPORT);
|
191 |
|
|
state = 1;
|
192 |
|
|
continue;
|
193 |
|
|
}
|
194 |
|
|
// check symbol type
|
195 |
|
|
switch (symbols[symi].st_type) {
|
196 |
|
|
case STT_NOTYPE: // type missing. set type
|
197 |
|
|
symbols[symi].st_type = (symbols[symi].st_other & STV_EXEC) ? STT_FUNC : STT_OBJECT;
|
198 |
|
|
break;
|
199 |
|
|
case STT_OBJECT:
|
200 |
|
|
case STT_FUNC:
|
201 |
|
|
break; // ok
|
202 |
|
|
case STT_CONSTANT:
|
203 |
|
|
if (sectionHeaders.numEntries() == 0) {
|
204 |
|
|
// file must have at least one section because constant needs a section idex
|
205 |
|
|
err.submit(ERR_ELF_NO_SECTIONS);
|
206 |
|
|
}
|
207 |
|
|
break; // ok
|
208 |
|
|
case STT_VARIABLE: // meta-variable has been assigned multiple values
|
209 |
|
|
errors.report(tokens[symtok].pos, tokens[symtok].stringLength, ERR_SYMBOL_REDEFINED);
|
210 |
|
|
state = 1;
|
211 |
|
|
continue;
|
212 |
|
|
case STT_EXPRESSION: // cannot export expression
|
213 |
|
|
errors.report(tokens[symtok].pos, tokens[symtok].stringLength, ERR_EXPORT_EXPRESSION);
|
214 |
|
|
state = 1;
|
215 |
|
|
continue;
|
216 |
|
|
default:
|
217 |
|
|
errors.report(tokens[symtok].pos, tokens[symtok].stringLength, ERR_CANNOT_EXPORT);
|
218 |
|
|
state = 1;
|
219 |
|
|
continue;
|
220 |
|
|
}
|
221 |
|
|
// make symbol global or weak
|
222 |
|
|
if (symbols[symi].st_bind != STB_WEAK) symbols[symi].st_bind = STB_GLOBAL;
|
223 |
|
|
state = 1;
|
224 |
|
|
}
|
225 |
|
|
else {
|
226 |
|
|
errors.report(token); return;
|
227 |
|
|
}
|
228 |
|
|
break;
|
229 |
|
|
case 3: // after ':'. expect attribute
|
230 |
|
|
SET_ATTRIBUTE:
|
231 |
|
|
if (token.id == ATT_WEAK) {
|
232 |
|
|
symbols[symi].st_bind = STB_WEAK;
|
233 |
|
|
}
|
234 |
|
|
else if (token.id == ATT_CONSTANT && symbols[symi].st_type != STT_OBJECT && symbols[symi].st_type != STT_FUNC) {
|
235 |
|
|
symbols[symi].st_type = STT_CONSTANT;
|
236 |
|
|
}
|
237 |
|
|
else if (token.id == DIR_FUNCTION) {
|
238 |
|
|
symbols[symi].st_type = STT_FUNC;
|
239 |
|
|
}
|
240 |
|
|
else if (token.id == REG_IP) {
|
241 |
|
|
symbols[symi].st_other = (symbols[symi].st_other & ~ (SHF_DATAP | SHF_THREADP)) | STV_IP;
|
242 |
|
|
}
|
243 |
|
|
else if (token.id == REG_DATAP) {
|
244 |
|
|
symbols[symi].st_other = (symbols[symi].st_other & ~ (STV_IP | SHF_THREADP)) | SHF_DATAP;
|
245 |
|
|
}
|
246 |
|
|
else if (token.id == REG_THREADP) {
|
247 |
|
|
symbols[symi].st_other = (symbols[symi].st_other & ~ (STV_IP | SHF_DATAP)) | SHF_THREADP;
|
248 |
|
|
}
|
249 |
|
|
else if (token.id == ATT_REGUSE) {
|
250 |
|
|
if (tokens[tok + 1].id == '=' && tokens[tok + 2].type == TOK_NUM) {
|
251 |
|
|
tok += 2;
|
252 |
|
|
symbols[symi].st_reguse1 = expression(tok, 1, 0).value.w;
|
253 |
|
|
symbols[symi].st_other |= STV_REGUSE;
|
254 |
|
|
if (tokens[tok + 1].id == ',' && tokens[tok + 2].type == TOK_NUM) {
|
255 |
|
|
tok += 2;
|
256 |
|
|
symbols[symi].st_reguse2 = expression(tok, 1, 0).value.w;
|
257 |
|
|
}
|
258 |
|
|
}
|
259 |
|
|
}
|
260 |
|
|
else errors.report(token);
|
261 |
|
|
state = 4;
|
262 |
|
|
break;
|
263 |
|
|
case 4: // after attribute. expect ',' or more attributes
|
264 |
|
|
if (token.type == TOK_OPR && token.id == ',') {
|
265 |
|
|
uint32_t typ2 = tokens[tok+1].type;
|
266 |
|
|
if (typ2 == TOK_ATT || typ2 == TOK_DIR || typ2 == TOK_REG) break;
|
267 |
|
|
else goto EXPORT_SYMBOL;
|
268 |
|
|
}
|
269 |
|
|
if (token.type == TOK_ATT || token.type == TOK_DIR || token.type == TOK_REG)
|
270 |
|
|
goto SET_ATTRIBUTE;
|
271 |
|
|
errors.report(token);
|
272 |
|
|
return;
|
273 |
|
|
}
|
274 |
|
|
}
|
275 |
|
|
if (state > 1) goto EXPORT_SYMBOL; // unfinished symbol
|
276 |
|
|
}
|
277 |
|
|
|
278 |
|
|
|
279 |
|
|
// Make binary file
|
280 |
|
|
void CAssembler::pass5() {
|
281 |
|
|
|
282 |
|
|
// make a databuffer for each section
|
283 |
|
|
uint32_t nSections = sectionHeaders.numEntries();
|
284 |
|
|
dataBuffers.setSize(nSections);
|
285 |
|
|
section = 0;
|
286 |
|
|
|
287 |
|
|
// make binary code from code records
|
288 |
|
|
makeBinaryCode();
|
289 |
|
|
|
290 |
|
|
// make binary data for data sections
|
291 |
|
|
makeBinaryData();
|
292 |
|
|
|
293 |
|
|
// make sections
|
294 |
|
|
copySections();
|
295 |
|
|
|
296 |
|
|
// copy symbols
|
297 |
|
|
copySymbols();
|
298 |
|
|
|
299 |
|
|
// copy relocations
|
300 |
|
|
makeBinaryRelocations();
|
301 |
|
|
|
302 |
|
|
// make output list file
|
303 |
|
|
if (cmd.outputListFile) makeListFile();
|
304 |
|
|
|
305 |
|
|
// remove local and external symbols if there is no relocation reference to them,
|
306 |
|
|
// and adjust relocation records with new symbol indexes, after making list file.
|
307 |
|
|
// Preserve local symbols if debugOptions > 0
|
308 |
|
|
outFile.removePrivateSymbols(cmd.debugOptions);
|
309 |
|
|
|
310 |
|
|
// write assembly output file
|
311 |
|
|
outFile.join(0); // make ELF file from sections, etc.
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
// copy sections to outFile
|
315 |
|
|
void CAssembler::copySections() {
|
316 |
|
|
for (uint32_t i = 1; i < sectionHeaders.numEntries(); i++) {
|
317 |
|
|
if (dataBuffers[i].dataSize() > sectionHeaders[i].sh_size) { // dataSize() is zero for uninitialized data sections
|
318 |
|
|
sectionHeaders[i].sh_size = dataBuffers[i].dataSize(); // this should never be necessary
|
319 |
|
|
}
|
320 |
|
|
sectionHeaders[i].sh_link = 0; // remove temporary information used during optimization passes
|
321 |
|
|
outFile.addSection(sectionHeaders[i], symbolNameBuffer, dataBuffers[i]);
|
322 |
|
|
}
|
323 |
|
|
}
|
324 |
|
|
|
325 |
|
|
// copy symbols to outFile
|
326 |
|
|
void CAssembler::copySymbols() {
|
327 |
|
|
for (uint32_t i = 0; i < symbols.numEntries(); i++) {
|
328 |
|
|
// exclude section symbols and local constants
|
329 |
|
|
if (symbols[i].st_type != STT_SECTION && symbols[i].st_type < STT_VARIABLE) {
|
330 |
|
|
// check if symbol is in a communal section
|
331 |
|
|
uint32_t sect = symbols[i].st_section;
|
332 |
|
|
if (sect && sect < sectionHeaders.numEntries() && sectionHeaders[sect].sh_type == SHT_COMDAT && symbols[i].st_bind == STB_GLOBAL) {
|
333 |
|
|
// public symbol in communal section must be weak
|
334 |
|
|
symbols[i].st_bind = STB_WEAK;
|
335 |
|
|
}
|
336 |
|
|
uint32_t newSymi = outFile.addSymbol(symbols[i], symbolNameBuffer);
|
337 |
|
|
// save new symbol index for use in relocation records
|
338 |
|
|
symbols[i].st_unitnum = newSymi;
|
339 |
|
|
}
|
340 |
|
|
}
|
341 |
|
|
}
|
342 |
|
|
|
343 |
|
|
// make binary data for code sections
|
344 |
|
|
void CAssembler::makeBinaryCode() {
|
345 |
|
|
uint32_t i; // loop counter
|
346 |
|
|
STemplate instr; // instruction template
|
347 |
|
|
uint32_t format; // format
|
348 |
|
|
uint32_t templ; // format template
|
349 |
|
|
uint32_t instructId; // instruction as index into instructionlistId
|
350 |
|
|
SFormat const * formatp = 0; // record in formatList
|
351 |
|
|
uint32_t nSections = sectionHeaders.numEntries();
|
352 |
|
|
|
353 |
|
|
// loop through code objects
|
354 |
|
|
for (i = 0; i < codeBuffer.numEntries(); i++) {
|
355 |
|
|
instructId = codeBuffer[i].instr1;
|
356 |
|
|
if (instructId == 0) {
|
357 |
|
|
// not an instruction. possibly label or directive
|
358 |
|
|
if (codeBuffer[i].instruction == II_ALIGN && section) {
|
359 |
|
|
// alignment directive. size has been calculated in pass 4
|
360 |
|
|
int32_t asize = codeBuffer[i].size;
|
361 |
|
|
instr.q = 0; // nop instruction
|
362 |
|
|
if (asize & 1) {
|
363 |
|
|
dataBuffers[section].push(&instr, 4); // single size nop
|
364 |
|
|
asize -= 1;
|
365 |
|
|
}
|
366 |
|
|
instr.a.il = 2; // double size nop
|
367 |
|
|
while (asize >= 2) {
|
368 |
|
|
dataBuffers[section].push(&instr, 8); // add double size nop
|
369 |
|
|
asize -= 2;
|
370 |
|
|
}
|
371 |
|
|
}
|
372 |
|
|
// else if (codeBuffer[i].instruction == II_OPTIONS) {} // II_OPTIONS can be ignored here
|
373 |
|
|
continue; // skip the rest
|
374 |
|
|
}
|
375 |
|
|
section = codeBuffer[i].section;
|
376 |
|
|
if (section == 0 || section >= nSections) continue;
|
377 |
|
|
|
378 |
|
|
instr.q = 0; // reset template
|
379 |
|
|
formatp = codeBuffer[i].formatp;
|
380 |
|
|
templ = formatp->tmplate;
|
381 |
|
|
format = formatp->format2;
|
382 |
|
|
|
383 |
|
|
// assign registers
|
384 |
|
|
uint8_t opAvail = formatp->opAvail; // registers available in this format
|
385 |
|
|
|
386 |
|
|
int nOp = instructionlistId[instructId].sourceoperands;
|
387 |
|
|
if (nOp > 3 && instructionlistId[instructId].opimmediate) {
|
388 |
|
|
opAvail |= 1; // 3 registers and an immediate currently used only in truth_tab3 instruction
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
if (templ == 0xA || templ == 0xE) nOp++; // make one more register for fallback, even if it is unused
|
392 |
|
|
|
393 |
|
|
uint8_t operands[4] = {0,0,0,0};
|
394 |
|
|
int a = 0; // bit index to opAvail
|
395 |
|
|
int j = 3; // Index into operands
|
396 |
|
|
// Loop through the bits in opAvail in reverse order to pick operands according to priority
|
397 |
|
|
while (j >= 0 && a < 8) {
|
398 |
|
|
if (opAvail & (1 << a)) {
|
399 |
|
|
operands[j--] = 1 << a;
|
400 |
|
|
}
|
401 |
|
|
a++;
|
402 |
|
|
}
|
403 |
|
|
|
404 |
|
|
// List register operands
|
405 |
|
|
uint8_t registers[4] = {0,0,0,0};
|
406 |
|
|
a = 3;
|
407 |
|
|
if (codeBuffer[i].etype & XPR_REG3) registers[a--] = codeBuffer[i].reg3;
|
408 |
|
|
if (codeBuffer[i].etype & XPR_REG2) registers[a--] = codeBuffer[i].reg2;
|
409 |
|
|
if (codeBuffer[i].etype & XPR_REG1) registers[a--] = codeBuffer[i].reg1;
|
410 |
|
|
// Make any remaining registers equal to fallback or first source
|
411 |
|
|
// to avoid false dependence on unused register in superscalar processor
|
412 |
|
|
while (a >= 0) {
|
413 |
|
|
if (codeBuffer[i].etype & (XPR_MASK | XPR_FALLBACK)) {
|
414 |
|
|
registers[a--] = codeBuffer[i].fallback;
|
415 |
|
|
}
|
416 |
|
|
else {
|
417 |
|
|
registers[a--] = codeBuffer[i].reg1;
|
418 |
|
|
}
|
419 |
|
|
}
|
420 |
|
|
|
421 |
|
|
// Loop through operands to assign registers
|
422 |
|
|
for (j = 3, a = 3; j >= 0; j--) {
|
423 |
|
|
// put next operand in the sequence reg3, reg2, reg1, fallback into rt, rs, ru, or rd
|
424 |
|
|
// these may be overwritten below in template B, C, and D.
|
425 |
|
|
switch (operands[j]) {
|
426 |
|
|
case 0x10: // rt
|
427 |
|
|
instr.a.rt = registers[a--] & 0x1F;
|
428 |
|
|
break;
|
429 |
|
|
case 0x20: // rs
|
430 |
|
|
instr.a.rs = registers[a--] & 0x1F;
|
431 |
|
|
break;
|
432 |
|
|
case 0x40: // ru
|
433 |
|
|
instr.a.ru = registers[a--] & 0x1F;
|
434 |
|
|
break;
|
435 |
|
|
case 0x80: // rd
|
436 |
|
|
instr.a.rd = registers[a--] & 0x1F;
|
437 |
|
|
break;
|
438 |
|
|
default:; // memory and immediate operands or nothing
|
439 |
|
|
}
|
440 |
|
|
}
|
441 |
|
|
|
442 |
|
|
// insert other fields
|
443 |
|
|
instr.a.il = (format >> 8) & 3; // il = instruction length
|
444 |
|
|
instr.a.mode = (format >> 4) & 7; // mode
|
445 |
|
|
instr.a.op1 = instructionlistId[instructId].op1; // operation
|
446 |
|
|
if (templ != 0xD) {
|
447 |
|
|
if (codeBuffer[i].dest != 2 && codeBuffer[i].dest != 0) instr.a.rd = codeBuffer[i].dest & 0x1F; // destination register
|
448 |
|
|
if (templ != 0xC) {
|
449 |
|
|
instr.a.ot = codeBuffer[i].dtype & 7; // operand type
|
450 |
|
|
if (format & 0x80) instr.a.ot |= 4; // M bit
|
451 |
|
|
if (templ != 0xB) {
|
452 |
|
|
if (codeBuffer[i].etype & XPR_MASK) {
|
453 |
|
|
instr.a.mask = codeBuffer[i].mask; // mask register
|
454 |
|
|
}
|
455 |
|
|
else {
|
456 |
|
|
instr.a.mask = 7; // no mask
|
457 |
|
|
}
|
458 |
|
|
}
|
459 |
|
|
}
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
uint8_t * instr_b = instr.b; // avoid pedantic warnings from Gnu compiler
|
463 |
|
|
// memory operand
|
464 |
|
|
if (formatp->mem) {
|
465 |
|
|
if (formatp->mem & 2) instr.a.rs = codeBuffer[i].base & 0x1F; // base in rs
|
466 |
|
|
if (formatp->mem & 4) instr.a.rt = codeBuffer[i].index & 0x1F; // index in rt
|
467 |
|
|
uint8_t oldBase = codeBuffer[i].base; // save base pointer
|
468 |
|
|
|
469 |
|
|
// calculate offset, possibly involving symbols. make relocation if necessary
|
470 |
|
|
int64_t offset = calculateMemoryOffset(codeBuffer[i]);
|
471 |
|
|
|
472 |
|
|
if (codeBuffer[i].base != oldBase) {
|
473 |
|
|
// base pointer changed by calculateMemoryOffset
|
474 |
|
|
switch (codeBuffer[i].formatp->mem & 3) {
|
475 |
|
|
case 1: // base in RT. obsolete
|
476 |
|
|
instr.a.rt = codeBuffer[i].base; break;
|
477 |
|
|
case 2: // base in RS
|
478 |
|
|
instr.a.rs = codeBuffer[i].base; break;
|
479 |
|
|
}
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
// insert limit
|
483 |
|
|
if (codeBuffer[i].etype & XPR_LIMIT) offset = codeBuffer[i].value.i;
|
484 |
|
|
|
485 |
|
|
uint32_t addrPos = formatp->addrPos; // position of offset field
|
486 |
|
|
switch (formatp->addrSize) { // size of offset
|
487 |
|
|
case 0: // no offset
|
488 |
|
|
break;
|
489 |
|
|
case 1: // 8 bits offset
|
490 |
|
|
instr.b[addrPos] = uint8_t(offset);
|
491 |
|
|
break;
|
492 |
|
|
case 2: // 16 bits offset
|
493 |
|
|
*(int16_t *)(instr_b + addrPos) = int16_t(offset);
|
494 |
|
|
break;
|
495 |
|
|
case 4: // 32 bits offset
|
496 |
|
|
*(int32_t *)(instr_b + addrPos) = int32_t(offset);
|
497 |
|
|
break;
|
498 |
|
|
case 8: // 64 bits offset
|
499 |
|
|
*(int64_t *)(instr_b + addrPos) = offset;
|
500 |
|
|
}
|
501 |
|
|
// memory length or broadcast
|
502 |
|
|
if (formatp->vect & 6) instr.a.rt = codeBuffer[i].length;
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
// jump offset
|
506 |
|
|
if (formatp->jumpSize) {
|
507 |
|
|
|
508 |
|
|
// calculate offset, possibly involving symbols. make relocation if necessary
|
509 |
|
|
int64_t offset = calculateJumpOffset(codeBuffer[i]);
|
510 |
|
|
|
511 |
|
|
uint32_t addrSize = formatp->jumpSize; // size of offset field
|
512 |
|
|
uint32_t addrPos = formatp->jumpPos; // position of offset field
|
513 |
|
|
|
514 |
|
|
switch (addrSize) { // size of offset
|
515 |
|
|
case 0: // no offset
|
516 |
|
|
break;
|
517 |
|
|
case 1: // 8 bits offset
|
518 |
|
|
instr.b[addrPos] = uint8_t(offset);
|
519 |
|
|
break;
|
520 |
|
|
case 2: // 16 bits offset
|
521 |
|
|
*(int16_t *)(instr_b + addrPos) = int16_t(offset);
|
522 |
|
|
break;
|
523 |
|
|
case 3: // 24 bits offset
|
524 |
|
|
*(int16_t *)(instr_b + addrPos) = int16_t(offset); // first 16 of 24 bits
|
525 |
|
|
*(int8_t *)(instr_b + addrPos + 2) = int8_t(offset >> 16); // last 8 bits
|
526 |
|
|
break;
|
527 |
|
|
case 4: // 32 bits offset
|
528 |
|
|
*(int32_t *)(instr_b + addrPos) = int32_t(offset);
|
529 |
|
|
break;
|
530 |
|
|
case 8: // 64 bits offset
|
531 |
|
|
*(int64_t *)(instr_b + addrPos) = offset;
|
532 |
|
|
}
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
// immediate operand
|
536 |
|
|
if (formatp->immSize) {
|
537 |
|
|
int64_t value = codeBuffer[i].value.i; // value of operand
|
538 |
|
|
if (codeBuffer[i].sym3) {
|
539 |
|
|
// calculation of symbol address. add relocation if needed
|
540 |
|
|
value = calculateConstantOperand(codeBuffer[i], codeBuffer[i].address + codeBuffer[i].formatp->immPos, codeBuffer[i].formatp->immSize);
|
541 |
|
|
if (codeBuffer[i].etype & XPR_ERROR) {
|
542 |
|
|
linei = codeBuffer[i].line;
|
543 |
|
|
errors.reportLine(codeBuffer[i].value.w); // report error
|
544 |
|
|
}
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
uint32_t immPos = formatp->immPos; // position of immediate field
|
548 |
|
|
switch (formatp->immSize) { // size of immediate field
|
549 |
|
|
case 1: // 8 bits immediate
|
550 |
|
|
if ((codeBuffer[i].etype & XPR_IMMEDIATE) == XPR_FLT) {
|
551 |
|
|
*(int8_t *)(instr_b + immPos) = (int8_t)(int)(codeBuffer[i].value.d); // convert double to float16
|
552 |
|
|
}
|
553 |
|
|
else {
|
554 |
|
|
instr.b[immPos] = uint8_t(value);
|
555 |
|
|
}
|
556 |
|
|
break;
|
557 |
|
|
case 2: // 16 bits immediate
|
558 |
|
|
if (instructionlistId[instructId].opimmediate == OPI_INT1632 && format > 0x200) {
|
559 |
|
|
// 16-bit + 32 bit integer operands
|
560 |
|
|
*(int16_t *)(instr_b + immPos) = int16_t(value >> 32);
|
561 |
|
|
*(int32_t *)(instr_b + 4) = int32_t(value);
|
562 |
|
|
}
|
563 |
|
|
else if ((codeBuffer[i].etype & XPR_IMMEDIATE) == XPR_FLT) {
|
564 |
|
|
*(int16_t *)(instr_b + immPos) = double2half(codeBuffer[i].value.d); // convert double to float16
|
565 |
|
|
}
|
566 |
|
|
else {
|
567 |
|
|
*(int16_t *)(instr_b + immPos) = int16_t(value);
|
568 |
|
|
}
|
569 |
|
|
break;
|
570 |
|
|
case 4: // 32 bits immediate
|
571 |
|
|
if (instructionlistId[instructId].opimmediate == OPI_2INT16) {
|
572 |
|
|
// two 16-bit integer operands
|
573 |
|
|
value = (uint32_t)value << 16 | uint32_t(value >> 32);
|
574 |
|
|
*(int32_t *)(instr_b + immPos) = int32_t(value);
|
575 |
|
|
}
|
576 |
|
|
else if ((codeBuffer[i].etype & XPR_IMMEDIATE) == XPR_FLT) { // convert double to float
|
577 |
|
|
*(float *)(instr_b + immPos) = float(codeBuffer[i].value.d);
|
578 |
|
|
}
|
579 |
|
|
else {
|
580 |
|
|
*(int32_t *)(instr_b + immPos) = int32_t(value);
|
581 |
|
|
if (formatp->imm2 & 8) instr.a.im2 = uint16_t((uint64_t)value >> 32);
|
582 |
|
|
}
|
583 |
|
|
break;
|
584 |
|
|
case 8: // 64 bits immediate
|
585 |
|
|
if (instructionlistId[instructId].opimmediate == OPI_2INT32) {
|
586 |
|
|
// two 32-bit integers. swap them
|
587 |
|
|
value = value >> 32 | value << 32;
|
588 |
|
|
}
|
589 |
|
|
*(int64_t *)(instr_b + immPos) = value;
|
590 |
|
|
}
|
591 |
|
|
}
|
592 |
|
|
else if (opAvail & 1) { // special case: three registers and an immediate
|
593 |
|
|
int64_t value = calculateConstantOperand(codeBuffer[i], codeBuffer[i].address + codeBuffer[i].formatp->immPos, codeBuffer[i].formatp->immSize);
|
594 |
|
|
*(int16_t *)(instr_b + 4) = int16_t(value);
|
595 |
|
|
}
|
596 |
|
|
else if (formatp->tmplate == 0xC && instructionlistId[instructId].opimmediate == OPI_IMPLICIT) {
|
597 |
|
|
// insert implicit operand
|
598 |
|
|
instr.i[0] |= instructionlistId[instructId].implicit_imm;
|
599 |
|
|
}
|
600 |
|
|
if (formatp->imm2 & 0x80) { // various placements of OPJ
|
601 |
|
|
if (formatp->imm2 & 0x10) {
|
602 |
|
|
instr.b[7] = instructionlistId[instructId].op1; // OPJ in high part of IM2
|
603 |
|
|
}
|
604 |
|
|
else if (formatp->imm2 & 0x40) { // no OPJ
|
605 |
|
|
}
|
606 |
|
|
else {
|
607 |
|
|
instr.b[0] = instructionlistId[instructId].op1; // OPJ is in IM1
|
608 |
|
|
}
|
609 |
|
|
instr.a.op1 = format & 7; // op1 is part of format
|
610 |
|
|
}
|
611 |
|
|
if (formatp->imm2 & 0x40) {
|
612 |
|
|
// insert constant
|
613 |
|
|
if (formatp->format2 == 0x155) {
|
614 |
|
|
instr.i[0] = fillerInstruction; // filler instruction
|
615 |
|
|
}
|
616 |
|
|
}
|
617 |
|
|
// additional fields for format E
|
618 |
|
|
if (templ == 0xE) {
|
619 |
|
|
instr.a.mode2 = format & 7;
|
620 |
|
|
if (formatp->imm2 & 2) instr.a.im3 = codeBuffer[i].optionbits;
|
621 |
|
|
if (!(formatp->imm2 & 0x100))
|
622 |
|
|
instr.a.op2 = instructionlistId[instructId].op2;
|
623 |
|
|
}
|
624 |
|
|
|
625 |
|
|
if (formatp->category == 3 && instr.a.op1 == 0 && instr.a.op2 == 0) {
|
626 |
|
|
// simplify NOP instruction. Remove all unnecessary bits
|
627 |
|
|
instr.a.mask = 0;
|
628 |
|
|
instr.a.ot = 0;
|
629 |
|
|
if (instr.a.il > 1) instr.i[1] = 0;
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
// save code
|
633 |
|
|
uint32_t ilen = instr.a.il;
|
634 |
|
|
if (ilen == 0) ilen = 1;
|
635 |
|
|
dataBuffers[section].push(&instr, ilen * 4);
|
636 |
|
|
}
|
637 |
|
|
}
|
638 |
|
|
|
639 |
|
|
// make binary data for data sections
|
640 |
|
|
void CAssembler::makeBinaryData() {
|
641 |
|
|
// similar to pass2, but data lines only
|
642 |
|
|
section = 0;
|
643 |
|
|
|
644 |
|
|
// lines loop
|
645 |
|
|
for (linei = 1; linei < lines.numEntries(); linei++) {
|
646 |
|
|
tokenB = lines[linei].firstToken; // first token in line
|
647 |
|
|
tokenN = lines[linei].numTokens; // number of tokens in line
|
648 |
|
|
if (lines[linei].type == LINE_SECTION && tokens[tokenB+1].type == TOK_DIR) {
|
649 |
|
|
switch (tokens[tokenB+1].id) {
|
650 |
|
|
case DIR_SECTION: // section starts here
|
651 |
|
|
interpretSectionDirective();
|
652 |
|
|
break;
|
653 |
|
|
case DIR_END: // section or function end
|
654 |
|
|
interpretEndDirective();
|
655 |
|
|
break;
|
656 |
|
|
default:
|
657 |
|
|
errors.report(tokens[tokenB + 1]);
|
658 |
|
|
}
|
659 |
|
|
}
|
660 |
|
|
else if (lines[linei].type == LINE_DATADEF) {
|
661 |
|
|
lineError = 0;
|
662 |
|
|
tokenB = lines[linei].firstToken; // first token in line
|
663 |
|
|
tokenN = lines[linei].numTokens; // number of tokens in line
|
664 |
|
|
if (tokens[tokenB].type == TOK_DIR) continue; // ignore directives here
|
665 |
|
|
if (tokenN > 1) { // lines with a single token cannot legally define a symbol name
|
666 |
|
|
if (tokens[tokenB].type == TOK_TYP && tokens[tokenB+1].type == TOK_SYM) {
|
667 |
|
|
interpretVariableDefinition2();
|
668 |
|
|
}
|
669 |
|
|
else if (tokens[tokenB].type == TOK_ATT && tokens[tokenB].id == ATT_ALIGN) {
|
670 |
|
|
interpretAlign();
|
671 |
|
|
}
|
672 |
|
|
else {
|
673 |
|
|
interpretVariableDefinition1();
|
674 |
|
|
}
|
675 |
|
|
}
|
676 |
|
|
}
|
677 |
|
|
}
|
678 |
|
|
}
|
679 |
|
|
|
680 |
|
|
|
681 |
|
|
// put relocation records in output file
|
682 |
|
|
void CAssembler::makeBinaryRelocations() {
|
683 |
|
|
uint32_t i; // loop counter
|
684 |
|
|
// copy relocation records
|
685 |
|
|
for (i = 0; i < relocations.numEntries(); i++) {
|
686 |
|
|
// translate symbol indexes in relocation records
|
687 |
|
|
int32_t symi1, symi2; // symbol index
|
688 |
|
|
uint32_t newSymi1, newSymi2; // symbol index in output file
|
689 |
|
|
if (relocations[i].r_sym) {
|
690 |
|
|
symi1 = findSymbol(relocations[i].r_sym);
|
691 |
|
|
if (symi1 > 0) {
|
692 |
|
|
newSymi1 = symbols[symi1].st_unitnum;
|
693 |
|
|
relocations[i].r_sym = newSymi1; // replace by symbol index in outFile
|
694 |
|
|
uint32_t sect = symbols[symi1].st_section;
|
695 |
|
|
if (sect && symbols[symi1].st_bind == STB_WEAK) {
|
696 |
|
|
// there is a local reference to a weak public symbol. Make it both import and export
|
697 |
|
|
outFile.symbols[newSymi1].st_bind = STB_WEAK2;
|
698 |
|
|
}
|
699 |
|
|
if (sect && sect < sectionHeaders.numEntries() && sectionHeaders[sect].sh_type == SHT_COMDAT) {
|
700 |
|
|
// there is a local reference to a symbol in a communal section. Make it both import and export
|
701 |
|
|
outFile.symbols[newSymi1].st_bind = STB_WEAK2;
|
702 |
|
|
}
|
703 |
|
|
}
|
704 |
|
|
else relocations[i].r_sym = 0; // should not occur
|
705 |
|
|
}
|
706 |
|
|
if (relocations[i].r_refsym) { // reference symbol
|
707 |
|
|
symi2 = findSymbol(relocations[i].r_refsym);
|
708 |
|
|
if (symi2 > 0) {
|
709 |
|
|
newSymi2 = symbols[symi2].st_unitnum;
|
710 |
|
|
relocations[i].r_refsym = newSymi2; // replace by symbol index in outFile
|
711 |
|
|
if (symbols[symi2].st_section && symbols[symi2].st_bind == STB_WEAK) {
|
712 |
|
|
// there is a local reference to a weak public symbol. Make it both import and export
|
713 |
|
|
outFile.symbols[newSymi2].st_bind = STB_WEAK2;
|
714 |
|
|
}
|
715 |
|
|
}
|
716 |
|
|
else relocations[i].r_refsym = 0; // should not occur
|
717 |
|
|
}
|
718 |
|
|
outFile.addRelocation(relocations[i]); // put relocation in outFile
|
719 |
|
|
}
|
720 |
|
|
}
|
721 |
|
|
|
722 |
|
|
// make output listing
|
723 |
|
|
void CAssembler::makeListFile() {
|
724 |
|
|
// Use the disassembler for making output listing
|
725 |
|
|
CDisassembler disassembler; // make an instance of CDisassembler
|
726 |
|
|
// give all my tables to the disassembler
|
727 |
|
|
disassembler.getComponents2(outFile, instructionlist);
|
728 |
|
|
// change output file name
|
729 |
|
|
disassembler.outputFile = cmd.outputListFile;
|
730 |
|
|
// do the disassembly
|
731 |
|
|
disassembler.go();
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
// calculate memory address possibly involving symbol. generate relocation if necessary
|
735 |
|
|
int64_t CAssembler::calculateMemoryOffset(SCode & code) {
|
736 |
|
|
int64_t value = 0;
|
737 |
|
|
int32_t symi1 = 0, symi2 = 0;
|
738 |
|
|
if (code.sym1) symi1 = findSymbol(code.sym1); // target symbol, if any
|
739 |
|
|
if (code.sym2) symi2 = findSymbol(code.sym2); // reference symbol, if any
|
740 |
|
|
ElfFwcReloc relocation; // relocation, if needed
|
741 |
|
|
bool needsRelocation = false; // relocation needed
|
742 |
|
|
|
743 |
|
|
uint8_t fieldPos = code.formatp->addrPos; // position of address or immediate field
|
744 |
|
|
uint8_t fieldSize = code.formatp->addrSize; // size of address or immediate field
|
745 |
|
|
|
746 |
|
|
uint32_t scale = 0; // log2 scale factor to address, not including explicit symbol scale
|
747 |
|
|
if (fieldSize == 1) {
|
748 |
|
|
// scale factor determined by type
|
749 |
|
|
uint32_t type = code.dtype;
|
750 |
|
|
scale = type & 0xF;
|
751 |
|
|
if (type & 0x40) scale -= 3;
|
752 |
|
|
}
|
753 |
|
|
|
754 |
|
|
// check target symbol
|
755 |
|
|
if (symi1) {
|
756 |
|
|
if (symi2) {
|
757 |
|
|
// difference between two symbols
|
758 |
|
|
if (code.symscale1 == 0) code.symscale1 = 1;
|
759 |
|
|
if (symbols[symi1].st_section == symbols[symi2].st_section && symbols[symi1].st_bind == STB_LOCAL && symbols[symi2].st_bind == STB_LOCAL) {
|
760 |
|
|
// both symbols are local in same section. final value can be calculated
|
761 |
|
|
value = (int64_t)(symbols[symi1].st_value - symbols[symi2].st_value) / code.symscale1;
|
762 |
|
|
value = (value + code.offset_mem) >> scale;
|
763 |
|
|
}
|
764 |
|
|
else {
|
765 |
|
|
// symbols are in different section or external. relocation needed
|
766 |
|
|
relocation.r_type = R_FORW_REFP; // relative to arbitrary reference point
|
767 |
|
|
relocation.r_type |= bitScanReverse(code.symscale1) + scale; // scale factor
|
768 |
|
|
relocation.r_sym = code.sym1; // Symbol index
|
769 |
|
|
relocation.r_refsym = code.sym2; // Reference symbol
|
770 |
|
|
relocation.r_addend = uint32_t(code.offset_mem); // Addend
|
771 |
|
|
needsRelocation = true;
|
772 |
|
|
}
|
773 |
|
|
}
|
774 |
|
|
else {
|
775 |
|
|
// a single symbol
|
776 |
|
|
// is symbol relative to IP, DATAP, THREADP or constant?
|
777 |
|
|
//uint8_t basepointer = 0;
|
778 |
|
|
uint32_t symsection = symbols[symi1].st_section;
|
779 |
|
|
if (symbols[symi1].st_type == STT_CONSTANT) {
|
780 |
|
|
// constant
|
781 |
|
|
relocation.r_type = R_FORW_ABS | scale;
|
782 |
|
|
relocation.r_sym = code.sym1; // Symbol index
|
783 |
|
|
relocation.r_refsym = 0; // Reference symbol
|
784 |
|
|
relocation.r_addend = uint32_t(code.offset_mem); // Addend
|
785 |
|
|
needsRelocation = true;
|
786 |
|
|
}
|
787 |
|
|
else if (symsection > 0 && symsection < sectionHeaders.numEntries()) {
|
788 |
|
|
// local symbol relative to IP or DATAP
|
789 |
|
|
if (sectionHeaders[symsection].sh_flags & (SHF_IP | SHF_EXEC)) {
|
790 |
|
|
if (symsection == section) {
|
791 |
|
|
// symbol in same section relative to IP. calculate address
|
792 |
|
|
code.base = uint8_t(REG_IP >> 16);
|
793 |
|
|
value = (int64_t)(symbols[symi1].st_value - uint64_t(code.address + code.size * 4));
|
794 |
|
|
value = (value + code.offset_mem) >> scale; // scale offset
|
795 |
|
|
}
|
796 |
|
|
else {
|
797 |
|
|
// local symbol in different IP section. needs relocation
|
798 |
|
|
code.base = uint8_t(REG_IP >> 16);
|
799 |
|
|
relocation.r_type = R_FORW_SELFREL; // self-relative
|
800 |
|
|
//if (code.instruction & II_JUMP_INSTR) relocation.r_type |= R_FORW_SCALE4; // jump instruction scaled by 4
|
801 |
|
|
relocation.r_addend = fieldPos - code.size * 4; // position of relocated field relative to instruction end
|
802 |
|
|
relocation.r_sym = code.sym1; // temporary symbol index. resolve when symbol table created
|
803 |
|
|
relocation.r_refsym = 0;
|
804 |
|
|
relocation.r_addend += (int32_t)code.offset_mem;
|
805 |
|
|
needsRelocation = true;
|
806 |
|
|
}
|
807 |
|
|
}
|
808 |
|
|
else {
|
809 |
|
|
// relative to DATAP or THREADP. needs relocation
|
810 |
|
|
if (sectionHeaders[symsection].sh_flags & SHF_THREADP) {
|
811 |
|
|
code.base = uint8_t(REG_THREADP >> 16);
|
812 |
|
|
relocation.r_type = R_FORW_THREADP; // relocation relative to THREADP
|
813 |
|
|
}
|
814 |
|
|
else {
|
815 |
|
|
code.base = uint8_t(REG_DATAP >> 16);
|
816 |
|
|
relocation.r_type = R_FORW_DATAP; // relocation relative to DATAP
|
817 |
|
|
}
|
818 |
|
|
relocation.r_type |= scale; // scale factor only if 8-bit offset allowed
|
819 |
|
|
relocation.r_sym = code.sym1; // temporary symbol index. resolve when symbol table created
|
820 |
|
|
relocation.r_refsym = 0;
|
821 |
|
|
relocation.r_addend = uint32_t(code.offset_mem);
|
822 |
|
|
needsRelocation = true;
|
823 |
|
|
}
|
824 |
|
|
}
|
825 |
|
|
else {
|
826 |
|
|
// remote symbol relative to IP or DATAP
|
827 |
|
|
if (symbols[symi1].st_other & (STV_IP | STV_EXEC)) {
|
828 |
|
|
// relative to IP
|
829 |
|
|
code.base = uint8_t(REG_IP >> 16);
|
830 |
|
|
relocation.r_type = R_FORW_SELFREL;
|
831 |
|
|
//if (code.instruction & II_JUMP_INSTR) relocation.r_type |= R_FORW_SCALE4;
|
832 |
|
|
relocation.r_addend = fieldPos - code.size * 4; // position of relocated field relative to instruction end
|
833 |
|
|
}
|
834 |
|
|
else if (symbols[symi1].st_other & STV_THREADP) {
|
835 |
|
|
// relative to THREADP
|
836 |
|
|
code.base = uint8_t(REG_THREADP >> 16);
|
837 |
|
|
relocation.r_type = R_FORW_THREADP;
|
838 |
|
|
relocation.r_addend = 0;
|
839 |
|
|
}
|
840 |
|
|
else {
|
841 |
|
|
// relative to DATAP
|
842 |
|
|
code.base = uint8_t(REG_DATAP >> 16);
|
843 |
|
|
relocation.r_type = R_FORW_DATAP;
|
844 |
|
|
relocation.r_addend = 0;
|
845 |
|
|
}
|
846 |
|
|
relocation.r_sym = code.sym1; // temporary symbol index. resolve when symbol table created
|
847 |
|
|
relocation.r_refsym = 0;
|
848 |
|
|
relocation.r_addend += (int32_t)code.offset_mem;
|
849 |
|
|
if (code.formatp->addrSize == 1 && !(relocation.r_type & R_FORW_RELSCALEMASK)) {
|
850 |
|
|
relocation.r_type |= scale;
|
851 |
|
|
}
|
852 |
|
|
needsRelocation = true;
|
853 |
|
|
}
|
854 |
|
|
}
|
855 |
|
|
}
|
856 |
|
|
else {
|
857 |
|
|
// no symbol
|
858 |
|
|
value = code.offset_mem >> scale;
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
if (needsRelocation) {
|
862 |
|
|
// relocation needed. insert source address
|
863 |
|
|
relocation.r_type |= fieldSize << 8; // relocation size
|
864 |
|
|
relocation.r_offset = (uint64_t)code.address + fieldPos;
|
865 |
|
|
relocation.r_section = code.section;
|
866 |
|
|
value = 0; // value included in relocation addend
|
867 |
|
|
relocations.push(relocation); // save relocation
|
868 |
|
|
}
|
869 |
|
|
return value;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
int64_t CAssembler::calculateJumpOffset(SCode & code) { // calculate jump offset possibly involving symbol. generate relocation if necessary
|
873 |
|
|
int64_t value = 0;
|
874 |
|
|
int32_t symi5 = 0;
|
875 |
|
|
if (code.sym5) symi5 = findSymbol(code.sym5); // target symbol, if any
|
876 |
|
|
ElfFwcReloc relocation; // relocation, if needed
|
877 |
|
|
bool needsRelocation = false; // relocation needed
|
878 |
|
|
|
879 |
|
|
uint8_t fieldSize = code.formatp->jumpSize; // size of jump offset field
|
880 |
|
|
uint8_t fieldPos = code.formatp->jumpPos; // position of jump offset field
|
881 |
|
|
|
882 |
|
|
uint32_t scale = 2; // jumps always scaled by 1 << 2 = 4
|
883 |
|
|
|
884 |
|
|
// check target symbol
|
885 |
|
|
if (symi5) {
|
886 |
|
|
uint32_t symsection = symbols[symi5].st_section;
|
887 |
|
|
|
888 |
|
|
if (symsection > 0 && symsection < sectionHeaders.numEntries()) {
|
889 |
|
|
// local symbol relative to IP
|
890 |
|
|
if (sectionHeaders[symsection].sh_flags & (SHF_IP | SHF_EXEC)) {
|
891 |
|
|
if (symsection == section) {
|
892 |
|
|
// symbol in same section relative to IP. calculate address
|
893 |
|
|
value = (int64_t)(symbols[symi5].st_value - uint64_t(code.address + code.size * 4));
|
894 |
|
|
value = (value + code.offset_jump) >> scale; // scale jump offset by 4
|
895 |
|
|
// address size must be at least 2
|
896 |
|
|
}
|
897 |
|
|
else {
|
898 |
|
|
// local symbol in different IP section. needs relocation
|
899 |
|
|
relocation.r_type = R_FORW_SELFREL; // self-relative
|
900 |
|
|
relocation.r_type |= R_FORW_SCALE4; // jump instruction scaled by 4
|
901 |
|
|
relocation.r_addend = fieldPos - code.size * 4; // position of relocated field relative to instruction end
|
902 |
|
|
relocation.r_sym = code.sym5; // temporary symbol index. resolve when symbol table created
|
903 |
|
|
relocation.r_refsym = 0;
|
904 |
|
|
relocation.r_addend += (int32_t)code.offset_jump;
|
905 |
|
|
needsRelocation = true;
|
906 |
|
|
}
|
907 |
|
|
}
|
908 |
|
|
}
|
909 |
|
|
else {
|
910 |
|
|
// remote symbol relative to IP
|
911 |
|
|
relocation.r_type = R_FORW_SELFREL;
|
912 |
|
|
relocation.r_type |= R_FORW_SCALE4;
|
913 |
|
|
relocation.r_addend = fieldPos - code.size * 4; // position of relocated field relative to instruction end
|
914 |
|
|
relocation.r_sym = code.sym5; // temporary symbol index. resolve when symbol table created
|
915 |
|
|
relocation.r_refsym = 0;
|
916 |
|
|
relocation.r_addend += (int32_t)code.offset_jump;
|
917 |
|
|
needsRelocation = true;
|
918 |
|
|
}
|
919 |
|
|
}
|
920 |
|
|
else {
|
921 |
|
|
// no symbol
|
922 |
|
|
value = code.offset_jump >> scale;
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
if (needsRelocation) {
|
926 |
|
|
// relocation needed. insert source address
|
927 |
|
|
relocation.r_type |= fieldSize << 8; // relocation size
|
928 |
|
|
relocation.r_offset = (uint64_t)code.address + fieldPos;
|
929 |
|
|
relocation.r_section = code.section;
|
930 |
|
|
value = 0; // value included in relocation addend
|
931 |
|
|
relocations.push(relocation); // save relocation
|
932 |
|
|
}
|
933 |
|
|
return value;
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
|
937 |
|
|
// calculate constant or immediate operand possibly involving symbol. generate relocation if necessary
|
938 |
|
|
int64_t CAssembler::calculateConstantOperand(SExpression & expr, uint64_t address, uint32_t fieldSize) {
|
939 |
|
|
int64_t value = 0;
|
940 |
|
|
int32_t symi3 = 0, symi4 = 0;
|
941 |
|
|
if (expr.sym3) {
|
942 |
|
|
symi3 = findSymbol(expr.sym3); // target symbol, if any
|
943 |
|
|
if (symi3 < 1) {errors.reportLine(ERR_SYMBOL_UNDEFINED); return 0;}
|
944 |
|
|
}
|
945 |
|
|
if (expr.sym4) {
|
946 |
|
|
symi4 = findSymbol(expr.sym4); // reference symbol, if any
|
947 |
|
|
if (symi4 < 1) {errors.reportLine(ERR_SYMBOL_UNDEFINED); return 0;}
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
ElfFwcReloc relocation; // relocation, if needed
|
951 |
|
|
bool needsRelocation = false;
|
952 |
|
|
// relocation needed
|
953 |
|
|
|
954 |
|
|
if (symi3) {
|
955 |
|
|
// there is a symbol
|
956 |
|
|
if (symi4) {
|
957 |
|
|
// difference between two symbols
|
958 |
|
|
if (symbols[symi3].st_section == symbols[symi4].st_section && symbols[symi3].st_bind == STB_LOCAL && symbols[symi4].st_bind == STB_LOCAL) {
|
959 |
|
|
// both symbols are local in same section. final value can be calculated
|
960 |
|
|
value = (int64_t)(symbols[symi3].st_value - symbols[symi4].st_value);
|
961 |
|
|
if (expr.symscale1 > 1) value /= expr.symscale1;
|
962 |
|
|
}
|
963 |
|
|
else {
|
964 |
|
|
// symbols are in different section or external. relocation needed
|
965 |
|
|
relocation.r_type = R_FORW_REFP; // relative to arbitrary reference point
|
966 |
|
|
if (expr.symscale1 > 1) relocation.r_type |= bitScanReverse(expr.symscale1); // scale factor
|
967 |
|
|
relocation.r_sym = expr.sym3; // Symbol index
|
968 |
|
|
relocation.r_refsym = expr.sym4; // Reference symbol
|
969 |
|
|
relocation.r_addend = int32_t(expr.value.w); // Addend
|
970 |
|
|
needsRelocation = true;
|
971 |
|
|
}
|
972 |
|
|
}
|
973 |
|
|
else {
|
974 |
|
|
// single symbol
|
975 |
|
|
if (symbols[symi3].st_type & STT_CONSTANT) {
|
976 |
|
|
// symbol is an external constant
|
977 |
|
|
relocation.r_type = R_FORW_ABS; // absolute value
|
978 |
|
|
if (expr.symscale1 > 1) relocation.r_type |= bitScanReverse(expr.symscale1); // scale factor
|
979 |
|
|
relocation.r_sym = expr.sym3; // Symbol index
|
980 |
|
|
relocation.r_refsym = 0; // Reference symbol
|
981 |
|
|
relocation.r_addend = int32_t(expr.value.w); // Addend
|
982 |
|
|
needsRelocation = true;
|
983 |
|
|
}
|
984 |
|
|
else if ((sectionHeaders[section].sh_flags & (SHF_WRITE | SHF_DATAP)) && fieldSize >= 4) {
|
985 |
|
|
// other symbol. absolute address allowed only in writeable data section
|
986 |
|
|
relocation.r_type = R_FORW_ABS; // absolute value, 64 bits, no scale
|
987 |
|
|
relocation.r_sym = expr.sym3; // Symbol index
|
988 |
|
|
relocation.r_refsym = 0; // Reference symbol
|
989 |
|
|
if (expr.symscale1 > 1) relocation.r_type |= bitScanReverse(expr.symscale1); // scale factor
|
990 |
|
|
relocation.r_addend = int32_t(expr.value.w); // Addend
|
991 |
|
|
if (symbols[symi3].st_section && fieldSize < 4) {
|
992 |
|
|
expr.etype = XPR_ERROR;
|
993 |
|
|
value = ERR_ABS_RELOCATION;
|
994 |
|
|
}
|
995 |
|
|
// warn if absolute address
|
996 |
|
|
err.submit(ERR_ABS_RELOCATION_WARN, lines[linei].linenum, (char*)symbolNameBuffer.buf() + symbols[symi3].st_name);
|
997 |
|
|
needsRelocation = true;
|
998 |
|
|
}
|
999 |
|
|
else {
|
1000 |
|
|
// symbol without reference point not allowed here
|
1001 |
|
|
expr.etype = XPR_ERROR;
|
1002 |
|
|
value = ERR_ABS_RELOCATION;
|
1003 |
|
|
}
|
1004 |
|
|
}
|
1005 |
|
|
}
|
1006 |
|
|
else {
|
1007 |
|
|
// no symbol
|
1008 |
|
|
value = expr.value.i;
|
1009 |
|
|
}
|
1010 |
|
|
if (needsRelocation) {
|
1011 |
|
|
// relocation needed. insert source address
|
1012 |
|
|
relocation.r_offset = address;
|
1013 |
|
|
relocation.r_section = section;
|
1014 |
|
|
relocation.r_type |= fieldSize << 8; // relocation size
|
1015 |
|
|
value = 0; // value included in relocation addend
|
1016 |
|
|
relocations.push(relocation); // save relocation
|
1017 |
|
|
}
|
1018 |
|
|
return value;
|
1019 |
|
|
}
|