| 1 |
67 |
Agner |
/**************************** containers.h ********************************
|
| 2 |
|
|
* Author: Agner Fog
|
| 3 |
|
|
* Date created: 2006-07-15
|
| 4 |
|
|
* Last modified: 2018-02-28
|
| 5 |
|
|
* Version: 1.10
|
| 6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
| 7 |
|
|
* Module: containers.h
|
| 8 |
|
|
* Description:
|
| 9 |
|
|
* Header file for container classes and dynamic memory allocation
|
| 10 |
|
|
*
|
| 11 |
|
|
* Copyright 2006-2020 GNU General Public License http://www.gnu.org/licenses
|
| 12 |
|
|
*****************************************************************************/
|
| 13 |
|
|
|
| 14 |
|
|
/*****************************************************************************
|
| 15 |
|
|
This header file declares various container classes for dynamic allocation
|
| 16 |
|
|
of memory for files and other types of data with unpredictable sizes.
|
| 17 |
|
|
These classes have private access to the memory buffer in order to prevent
|
| 18 |
|
|
memory leaks. It is important to use these classes for all dynamic memory
|
| 19 |
|
|
allocation.
|
| 20 |
|
|
|
| 21 |
|
|
The class CMemoryBuffer and its descendants are used for many purposes of
|
| 22 |
|
|
storage of data with a size that is not known in advance. CMemoryBuffer
|
| 23 |
|
|
allows the size of its data to grow when new data are appended with the
|
| 24 |
|
|
Push() member function.
|
| 25 |
|
|
|
| 26 |
|
|
Several classes are derived from CMemoryBuffer:
|
| 27 |
|
|
|
| 28 |
|
|
The template class CDynamicArray<> is used as a dynamic array where all
|
| 29 |
|
|
elements have the same type. It cannot be used for types that have non-
|
| 30 |
|
|
default constructors or destructors.
|
| 31 |
|
|
|
| 32 |
|
|
The class CFileBuffer is used for reading, writing and storing files.
|
| 33 |
|
|
|
| 34 |
|
|
Other classes can be derived from these to add more properties or functionality.
|
| 35 |
|
|
|
| 36 |
|
|
It is possible to transfer a data buffer from one of these buffers to another,
|
| 37 |
|
|
using the operator
|
| 38 |
|
|
|
| 39 |
|
|
A >> B
|
| 40 |
|
|
|
| 41 |
|
|
where A and B are both objects of classes that descend from CMemoryBuffer or
|
| 42 |
|
|
CFileBuffer. This operator transfers ownership of the allocated data buffer
|
| 43 |
|
|
from A to B, so that A is empty after the tranfer. This makes sure that a
|
| 44 |
|
|
memory buffer is always owned by one, and only one, object. Any data owned
|
| 45 |
|
|
by B before the transfer is deallocated.
|
| 46 |
|
|
The opposite operator B << A does the same thing.
|
| 47 |
|
|
|
| 48 |
|
|
The >> operator can be used when we want to do something to a data buffer
|
| 49 |
|
|
that requires a specialized class. The data buffer can be transferred from
|
| 50 |
|
|
the object that owns it to an object of the specialized class and
|
| 51 |
|
|
transferred back again to the original owner when the object of the
|
| 52 |
|
|
specialized class has done its job. The >> operator transfers the data and
|
| 53 |
|
|
properties of CMemoryBuffer or CFileBuffer, but not the additional properties
|
| 54 |
|
|
of other classes derived from these.
|
| 55 |
|
|
|
| 56 |
|
|
You may say that these classes have a chameleonic nature:
|
| 57 |
|
|
You can change the nature of a piece of data owned by an object by
|
| 58 |
|
|
transferring it to an object of a different class. This couldn't be done
|
| 59 |
|
|
by traditional polymorphism because it is not possible to change the class
|
| 60 |
|
|
of an object after it is created.
|
| 61 |
|
|
|
| 62 |
|
|
The container class CMemoryBuffer is useful for storing data of mixed types.
|
| 63 |
|
|
Data of arbitrary type can be accessed by Get<type>(offset) or by
|
| 64 |
|
|
Buf() + offset.
|
| 65 |
|
|
|
| 66 |
|
|
The container class template CDynamicArray is useful for storing data of
|
| 67 |
|
|
the same type.
|
| 68 |
|
|
|
| 69 |
|
|
Warning:
|
| 70 |
|
|
It is not safe to make pointers or references to data inside one of these
|
| 71 |
|
|
container classes because the internal buffer may be re-allocated when the
|
| 72 |
|
|
size grows. Such pointers will work only as long as the size of the container
|
| 73 |
|
|
is unchanged. It is safer to address data inside the buffer by their index
|
| 74 |
|
|
or offset relative to the buffer.
|
| 75 |
|
|
|
| 76 |
|
|
*****************************************************************************/
|
| 77 |
|
|
|
| 78 |
|
|
#pragma once
|
| 79 |
|
|
|
| 80 |
|
|
class CMemoryBuffer; // Declared below
|
| 81 |
|
|
class CFileBuffer; // Declared below
|
| 82 |
|
|
|
| 83 |
|
|
void operator >> (CMemoryBuffer & a, CMemoryBuffer & b); // Transfer ownership of buffer and other properties
|
| 84 |
|
|
void operator >> (CFileBuffer & a, CFileBuffer & b); // Transfer ownership of buffer and other properties
|
| 85 |
|
|
|
| 86 |
|
|
// Class CMemoryBuffer makes a container for arbitrary data, which can grow as new data are added.
|
| 87 |
|
|
class CMemoryBuffer {
|
| 88 |
|
|
public:
|
| 89 |
|
|
CMemoryBuffer(); // Constructor
|
| 90 |
|
|
~CMemoryBuffer(); // Destructor
|
| 91 |
|
|
void setSize(uint32_t size); // Allocate buffer of specified size
|
| 92 |
|
|
void setDataSize(uint32_t size); // Set data size and fill any new data with zeroes
|
| 93 |
|
|
void clear(); // De-allocate buffer
|
| 94 |
|
|
void zero(); // Set all contents to zero without changing data size
|
| 95 |
|
|
uint32_t dataSize() const {return data_size;};// Get file data size
|
| 96 |
|
|
uint32_t bufferSize() const {return buffer_size;};// Get buffer size
|
| 97 |
|
|
uint32_t numEntries() const {return num_entries;};// Get number of entries
|
| 98 |
|
|
uint32_t push(void const* obj, uint32_t size);// Add object to buffer, return offset
|
| 99 |
|
|
uint32_t pushString(char const * s); // Add ASCIIZ string to buffer, return offset
|
| 100 |
|
|
uint32_t getLastIndex() const; // Index of last object pushed (zero-based)
|
| 101 |
|
|
void align(uint32_t a); // Align next entry to address divisible by a. must be a power of 2
|
| 102 |
|
|
int8_t * buf() {return buffer;}; // Access to buffer
|
| 103 |
|
|
int8_t const * buf() const {return buffer;}; // Access to buffer, const
|
| 104 |
|
|
template <class TX> TX & get(uint32_t offset) { // Get object of arbitrary type from buffer
|
| 105 |
|
|
if (offset >= data_size) {
|
| 106 |
|
|
err.submit(ERR_CONTAINER_INDEX); offset = 0;} // Offset out of range
|
| 107 |
|
|
return *(TX*)(buffer + offset);}
|
| 108 |
|
|
char * getString(uint32_t offset) { // Get string from offset returned from pushString
|
| 109 |
|
|
return (char *)(buffer + offset);
|
| 110 |
|
|
}
|
| 111 |
|
|
void copy(CMemoryBuffer const & b); // Make a copy of whole buffer
|
| 112 |
|
|
private:
|
| 113 |
|
|
CMemoryBuffer(CMemoryBuffer&); // Make private copy constructor to prevent simple copying
|
| 114 |
|
|
CMemoryBuffer & operator = (CMemoryBuffer const&);// Make assignment operator to prevent simple copying
|
| 115 |
|
|
int8_t * buffer; // Buffer containing binary data. To be modified only by SetSize and operator >>
|
| 116 |
|
|
uint32_t buffer_size; // Size of allocated buffer ( > DataSize)
|
| 117 |
|
|
protected:
|
| 118 |
|
|
uint32_t num_entries; // Number of objects pushed
|
| 119 |
|
|
uint32_t data_size; // Size of data, offset to vacant space
|
| 120 |
|
|
friend void operator >> (CMemoryBuffer & a, CMemoryBuffer & b); // Transfer ownership of buffer
|
| 121 |
|
|
friend void operator >> (CFileBuffer & a, CFileBuffer & b); // Transfer ownership of buffer
|
| 122 |
|
|
};
|
| 123 |
|
|
|
| 124 |
|
|
inline void operator << (CMemoryBuffer & b, CMemoryBuffer & a) {a >> b;} // Same as operator << above
|
| 125 |
|
|
inline void operator << (CFileBuffer & b, CFileBuffer & a) {a >> b;} // Same as operator << above
|
| 126 |
|
|
|
| 127 |
|
|
// Class CFileBuffer is used for storage of input and output files
|
| 128 |
|
|
class CFileBuffer : public CMemoryBuffer {
|
| 129 |
|
|
public:
|
| 130 |
|
|
CFileBuffer(); // Default constructor
|
| 131 |
|
|
//CFileBuffer(uint32_t filename); // Constructor
|
| 132 |
|
|
void read(const char * filename, int ignoreError = 0); // Read file into buffer
|
| 133 |
|
|
void write(const char * filename); // Write buffer to file
|
| 134 |
|
|
int getFileType(); // Get file format type
|
| 135 |
|
|
void setFileType(int type); // Set file format type
|
| 136 |
|
|
void reset(); // Set all members to zero
|
| 137 |
|
|
static char const * getFileFormatName(int fileType); // Get name of file format type
|
| 138 |
|
|
int wordSize; // Segment word size (16, 32, 64)
|
| 139 |
|
|
int fileType; // Object file type
|
| 140 |
|
|
int executable; // File is executable
|
| 141 |
|
|
int machineType; // Machine type, x86 or ForwarCom
|
| 142 |
|
|
};
|
| 143 |
|
|
|
| 144 |
|
|
|
| 145 |
|
|
// Class CTextFileBuffer is used for building text files
|
| 146 |
|
|
class CTextFileBuffer : public CFileBuffer {
|
| 147 |
|
|
public:
|
| 148 |
|
|
CTextFileBuffer(); // Constructor
|
| 149 |
|
|
uint32_t put(const char * text); // Write text string to buffer without terminating zero
|
| 150 |
|
|
void put(const char character); // Write single character to buffer
|
| 151 |
|
|
uint32_t putStringN(const char * s, uint32_t len);// Write string to buffer, add terminating zero
|
| 152 |
|
|
void newLine(); // Add linefeed
|
| 153 |
|
|
void tabulate(uint32_t i); // Insert spaces until column i
|
| 154 |
|
|
int lineType; // 0 = DOS/Windows linefeeds, 1 = UNIX linefeeds
|
| 155 |
|
|
void putDecimal(int32_t x, int IsSigned = 0); // Write decimal number to buffer
|
| 156 |
|
|
void putHex(uint8_t x, int ox = 1); // Write hexadecimal number to buffer
|
| 157 |
|
|
void putHex(uint16_t x, int ox = 1); // Write hexadecimal number to buffer
|
| 158 |
|
|
void putHex(uint32_t x, int ox = 1); // Write hexadecimal number to buffer
|
| 159 |
|
|
void putHex(uint64_t x, int ox = 1); // Write hexadecimal number to buffer
|
| 160 |
|
|
void putFloat16(uint16_t x); // Write half precision floating point number to buffer
|
| 161 |
|
|
void putFloat(float x); // Write floating point number to buffer
|
| 162 |
|
|
void putFloat(double x); // Write floating point number to buffer
|
| 163 |
|
|
uint32_t getColumn() {return column;} // Get column number
|
| 164 |
|
|
protected:
|
| 165 |
|
|
uint32_t column; // Current column
|
| 166 |
|
|
};
|
| 167 |
|
|
|
| 168 |
|
|
|
| 169 |
|
|
// Class CDynamicArray<> is used for a variable-size array with elements of the same type
|
| 170 |
|
|
// Note: This will not work correctly if the contained type has non-default constructors or destructors.
|
| 171 |
|
|
// Sorting and searching is supported if operator < is defined for the contained type.
|
| 172 |
|
|
template <class TX>
|
| 173 |
|
|
class CDynamicArray : public CMemoryBuffer {
|
| 174 |
|
|
public:
|
| 175 |
|
|
// Allocate space for n of entries. Elements will be zero only if the array was empty before
|
| 176 |
|
|
void setNum(uint32_t n) {
|
| 177 |
|
|
setSize(n * (uint32_t)sizeof(TX));
|
| 178 |
|
|
num_entries = n; data_size = n * (uint32_t)sizeof(TX);}
|
| 179 |
|
|
|
| 180 |
|
|
// Add object to buffer. Return index
|
| 181 |
|
|
uint32_t push(TX const& obj) {
|
| 182 |
|
|
CMemoryBuffer::push(&obj, (uint32_t)sizeof(TX));
|
| 183 |
|
|
return num_entries - 1;
|
| 184 |
|
|
}
|
| 185 |
|
|
|
| 186 |
|
|
// Add multiple objects. Return total number
|
| 187 |
|
|
uint32_t pushBig(TX const * obj, uint32_t sizeInBytes) {
|
| 188 |
|
|
CMemoryBuffer::push(obj, sizeInBytes);
|
| 189 |
|
|
num_entries += sizeInBytes / sizeof(TX) - 1;
|
| 190 |
|
|
return num_entries;
|
| 191 |
|
|
}
|
| 192 |
|
|
|
| 193 |
|
|
// Read or write existing elements. Cannot be used for adding new elements
|
| 194 |
|
|
TX & operator [] (uint32_t i) {
|
| 195 |
|
|
uint64_t ii = (uint64_t)i * sizeof(TX);
|
| 196 |
|
|
if (ii >= dataSize()) {
|
| 197 |
|
|
err.submit(ERR_CONTAINER_INDEX); ii = 0;
|
| 198 |
|
|
}
|
| 199 |
|
|
return get<TX>((uint32_t)ii);}
|
| 200 |
|
|
|
| 201 |
|
|
// Remove latest added object when buffer is used as stack
|
| 202 |
|
|
TX pop() {
|
| 203 |
|
|
TX temp;
|
| 204 |
|
|
if (num_entries == 0) { // stack is empty. return zero object
|
| 205 |
|
|
zeroAllMembers(temp);
|
| 206 |
|
|
}
|
| 207 |
|
|
else {
|
| 208 |
|
|
temp = (*this)[num_entries-1];
|
| 209 |
|
|
data_size -= sizeof(TX);
|
| 210 |
|
|
num_entries--;
|
| 211 |
|
|
}
|
| 212 |
|
|
return temp;
|
| 213 |
|
|
}
|
| 214 |
|
|
|
| 215 |
|
|
// Sort list in ascending order. Operator < must be defined for record type TX
|
| 216 |
|
|
void sort() {
|
| 217 |
|
|
// Bubble sort:
|
| 218 |
|
|
TX temp, *p1, *p2;
|
| 219 |
|
|
int32_t j, n;
|
| 220 |
|
|
bool swapped;
|
| 221 |
|
|
n = num_entries - 1;
|
| 222 |
|
|
do {
|
| 223 |
|
|
swapped = false;
|
| 224 |
|
|
for (j = 0; j < n; j++) {
|
| 225 |
|
|
p1 = (TX*)(buf() + j * sizeof(TX));
|
| 226 |
|
|
p2 = (TX*)(buf() + j * sizeof(TX) + sizeof(TX));
|
| 227 |
|
|
if (*p2 < *p1) { // Swap adjacent records
|
| 228 |
|
|
temp = *p1; *p1 = *p2; *p2 = temp; swapped = true;
|
| 229 |
|
|
}
|
| 230 |
|
|
}
|
| 231 |
|
|
n--;
|
| 232 |
|
|
} while (swapped); // Early out if already mostly sorted
|
| 233 |
|
|
}
|
| 234 |
|
|
|
| 235 |
|
|
int32_t findFirst(TX const & x) {
|
| 236 |
|
|
// Finds matching record and returns index to the first matching record
|
| 237 |
|
|
// Important: The list must be sorted first
|
| 238 |
|
|
// Returns a negative value if not found
|
| 239 |
|
|
uint32_t a = 0; // Start of search interval
|
| 240 |
|
|
uint32_t b = num_entries; // End of search interval + 1
|
| 241 |
|
|
uint32_t c = 0; // Middle of search interval
|
| 242 |
|
|
if (num_entries > 0x7FFFFFFF) {err.submit(ERR_CONTAINER_OVERFLOW); return 0x80000000;} // Size overflow
|
| 243 |
|
|
|
| 244 |
|
|
while (a < b) { // Binary search loop:
|
| 245 |
|
|
c = (a + b) / 2;
|
| 246 |
|
|
if ((*this)[c] < x) {
|
| 247 |
|
|
a = c + 1;
|
| 248 |
|
|
}
|
| 249 |
|
|
else {
|
| 250 |
|
|
b = c;
|
| 251 |
|
|
}
|
| 252 |
|
|
}
|
| 253 |
|
|
if (a == num_entries || x < (*this)[a]) a |= 0x80000000; // Not found
|
| 254 |
|
|
return (int32_t)a;
|
| 255 |
|
|
}
|
| 256 |
|
|
|
| 257 |
|
|
int32_t findUnsorted(TX const & x) {
|
| 258 |
|
|
// Finds matching record and returns index to the first matching record
|
| 259 |
|
|
// Use this if the list is not sorted, or sort the list first and use findFirst
|
| 260 |
|
|
// Returns a negative value if not found
|
| 261 |
|
|
uint32_t a = 0;
|
| 262 |
|
|
for (a = 0; a < num_entries; a++) {
|
| 263 |
|
|
if ((*this)[a] == x) return a;
|
| 264 |
|
|
}
|
| 265 |
|
|
return -1;
|
| 266 |
|
|
}
|
| 267 |
|
|
|
| 268 |
|
|
uint32_t findAll(uint32_t * firstIndex, TX const & x) {
|
| 269 |
|
|
// Returns the number of records that are equal to x.
|
| 270 |
|
|
// X is regarded as equal to y if !(x < y) && !(y < x)
|
| 271 |
|
|
// Important: The list must be sorted first.
|
| 272 |
|
|
// firstIndex (if not null) gets the index to the first matching record
|
| 273 |
|
|
int32_t index = findFirst(x); // finds first matching record
|
| 274 |
|
|
if (index < 0) return 0; // None found
|
| 275 |
|
|
if (firstIndex) *firstIndex = (uint32_t)index; // Save index to first matching record
|
| 276 |
|
|
uint32_t n = 1; // Count matching records
|
| 277 |
|
|
for (uint32_t i = index+1; i < num_entries; i++) {
|
| 278 |
|
|
if (x < (*this)[i]) break;
|
| 279 |
|
|
n++;
|
| 280 |
|
|
}
|
| 281 |
|
|
return n;
|
| 282 |
|
|
}
|
| 283 |
|
|
|
| 284 |
|
|
uint32_t addUnique(TX const& x) {
|
| 285 |
|
|
// Add object x to the list only if an object equal to x is not already in the list
|
| 286 |
|
|
// Important: The list must be sorted first. The list will remain sorted after the addition of x.
|
| 287 |
|
|
// The return value is the index of the inserted object or a preexisting object equal to x.
|
| 288 |
|
|
// The indexes of pre-existing objects above the inserted object are incremented.
|
| 289 |
|
|
int32_t index = findFirst(x); // Find where to insert x
|
| 290 |
|
|
if (index < 0) {
|
| 291 |
|
|
index &= 0x7FFFFFFF; // Remove "not found" bit to recover index
|
| 292 |
|
|
uint32_t recordsToMove = num_entries - (uint32_t)index; // Number of records to move
|
| 293 |
|
|
setNum(num_entries + 1); // Make space for one more record
|
| 294 |
|
|
if (recordsToMove > 0) { // Move subsequent entries up one place
|
| 295 |
|
|
memmove(buf() + index * sizeof(TX) + sizeof(TX),
|
| 296 |
|
|
buf() + index * sizeof(TX),
|
| 297 |
|
|
recordsToMove * sizeof(TX));
|
| 298 |
|
|
}
|
| 299 |
|
|
// Insert x at index position
|
| 300 |
|
|
(*this)[index] = x;
|
| 301 |
|
|
}
|
| 302 |
|
|
return (uint32_t)index; // Return index to symbol
|
| 303 |
|
|
}
|
| 304 |
|
|
};
|
| 305 |
|
|
|
| 306 |
|
|
|
| 307 |
|
|
// CMetaBuffer is a buffer of buffers. The size can be set only once, it cannot be resized
|
| 308 |
|
|
// The elements of type B may have constructors and destructors
|
| 309 |
|
|
template <class B>
|
| 310 |
|
|
class CMetaBuffer {
|
| 311 |
|
|
public:
|
| 312 |
|
|
CMetaBuffer<B>() { // constructor
|
| 313 |
|
|
num = 0; p = 0;
|
| 314 |
|
|
}
|
| 315 |
|
|
~CMetaBuffer<B>() { // destructor
|
| 316 |
|
|
if (p) delete[] p; // call destructors and deallocate
|
| 317 |
|
|
}
|
| 318 |
|
|
void setSize(uint32_t n) { // allocate memory for n elements
|
| 319 |
|
|
if (num) {
|
| 320 |
|
|
err.submit(ERR_MEMORY_ALLOCATION); return; // re-allocation not allowed
|
| 321 |
|
|
}
|
| 322 |
|
|
p = new B[n]; // allocate, call constructors
|
| 323 |
|
|
if (p) {
|
| 324 |
|
|
num = n;
|
| 325 |
|
|
}
|
| 326 |
|
|
else {
|
| 327 |
|
|
err.submit(ERR_MEMORY_ALLOCATION);
|
| 328 |
|
|
}
|
| 329 |
|
|
}
|
| 330 |
|
|
uint32_t numEntries() const {
|
| 331 |
|
|
return num;
|
| 332 |
|
|
};
|
| 333 |
|
|
B & operator [] (uint32_t i) { // access element number i
|
| 334 |
|
|
if (i >= num) {
|
| 335 |
|
|
err.submit(ERR_CONTAINER_INDEX); i = 0; // index out of range
|
| 336 |
|
|
}
|
| 337 |
|
|
return p[i];
|
| 338 |
|
|
}
|
| 339 |
|
|
protected:
|
| 340 |
|
|
uint32_t num; // number of elements
|
| 341 |
|
|
B * p; // pointer to array of buffers
|
| 342 |
|
|
};
|