1 |
50 |
Agner |
/**************************** disasm2.cpp ********************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* Date created: 2017-04-26
|
4 |
|
|
* Last modified: 2021-07-16
|
5 |
|
|
* Version: 1.11
|
6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
7 |
|
|
* Module: disassem.h
|
8 |
|
|
* Description:
|
9 |
|
|
* Disassembler for ForwardCom
|
10 |
|
|
*
|
11 |
|
|
* Copyright 2007-2021 GNU General Public License http://www.gnu.org/licenses
|
12 |
|
|
*****************************************************************************/
|
13 |
|
|
#include "stdafx.h"
|
14 |
|
|
|
15 |
|
|
static const char * commentSeparator = "//"; // Comment separator in output assembly file
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
/************************** class CDisassembler *****************************
|
19 |
|
|
Most member functions of CDisassembler are defined in disasm1.cpp
|
20 |
|
|
|
21 |
|
|
Only the functions that produce output are defined here:
|
22 |
|
|
******************************************************************************/
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
void CDisassembler::writeSymbolName(uint32_t symi) {
|
26 |
|
|
// Write symbol name. symi = symbol index
|
27 |
|
|
uint32_t sname = symbols[symi].st_name;
|
28 |
|
|
if (sname == 0) outFile.put("no_name");
|
29 |
|
|
else if (sname >= stringBuffer.dataSize()) outFile.put("(illegal name index)");
|
30 |
|
|
else outFile.put((char*)stringBuffer.buf() + sname);
|
31 |
|
|
}
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
void CDisassembler::writeSectionName(int32_t SegIndex) {
|
35 |
|
|
// Write name of section, segment or group from section index
|
36 |
|
|
const char * name = "noname";
|
37 |
|
|
if (sectionHeaders[SegIndex].sh_name < stringBuffer.dataSize()) {
|
38 |
|
|
name = (char*)stringBuffer.buf() + sectionHeaders[SegIndex].sh_name;
|
39 |
|
|
}
|
40 |
|
|
outFile.put(name);
|
41 |
|
|
}
|
42 |
|
|
|
43 |
|
|
|
44 |
|
|
// Find any labels at current position and next
|
45 |
|
|
void CDisassembler::writeLabels() {
|
46 |
|
|
// check section type
|
47 |
|
|
uint8_t sectionType = sectionHeaders[section].sh_type;
|
48 |
|
|
if (!(sectionType & SHT_ALLOCATED)) {
|
49 |
|
|
return; // section is not allocated
|
50 |
|
|
}
|
51 |
|
|
// start at new line
|
52 |
|
|
if (outFile.getColumn() && !debugMode) outFile.newLine();
|
53 |
|
|
|
54 |
|
|
if (iInstr == currentFunctionEnd && currentFunction) {
|
55 |
|
|
// Current function is ending here
|
56 |
|
|
writeSymbolName(currentFunction);
|
57 |
|
|
outFile.put(' '); outFile.tabulate(asmTab2); // at least one space
|
58 |
|
|
outFile.put("end");
|
59 |
|
|
outFile.newLine();
|
60 |
|
|
currentFunction = 0; currentFunctionEnd = 0;
|
61 |
|
|
}
|
62 |
|
|
//bool isFunction = false;
|
63 |
|
|
|
64 |
|
|
// Make dummy symbol to search for
|
65 |
|
|
ElfFwcSym currentPosition;
|
66 |
|
|
currentPosition.st_section = section;
|
67 |
|
|
currentPosition.st_value = iInstr;
|
68 |
|
|
symbolExeAddress(currentPosition);
|
69 |
|
|
|
70 |
|
|
// Search for any symbol here. Look for any misplaced symbols we might have skipped before last output
|
71 |
|
|
uint32_t numSymbols = 0; // Check if multiple symbols at same place
|
72 |
|
|
while (nextSymbol < symbols.numEntries()
|
73 |
|
|
&& symbols[nextSymbol] < currentPosition) {
|
74 |
|
|
if (symbols[nextSymbol].st_section == currentPosition.st_section && iInstr
|
75 |
|
|
&& symbols[nextSymbol].st_type != STT_CONSTANT) {
|
76 |
|
|
outFile.put(commentSeparator);
|
77 |
|
|
outFile.put(" Warning: Misplaced symbol: ");
|
78 |
|
|
writeSymbolName(nextSymbol);
|
79 |
|
|
outFile.put(" at offset ");
|
80 |
|
|
outFile.putHex(symbols[nextSymbol].st_value);
|
81 |
|
|
outFile.newLine();
|
82 |
|
|
symbols[nextSymbol].st_other |= 0x80000000; // Remember symbol has been written
|
83 |
|
|
}
|
84 |
|
|
nextSymbol++;
|
85 |
|
|
}
|
86 |
|
|
// Write all symbols at current position
|
87 |
|
|
while (nextSymbol < symbols.numEntries() && symbols[nextSymbol] == currentPosition) {
|
88 |
|
|
if (symbols[nextSymbol].st_type != STT_CONSTANT) {
|
89 |
|
|
if (numSymbols++) { // Multiple symbols at same position
|
90 |
|
|
if (debugMode) {
|
91 |
|
|
outFile.put("; "); // cannot show multiple lines at same address in debug mode
|
92 |
|
|
}
|
93 |
|
|
else {
|
94 |
|
|
outFile.put("\n"); // put on separate lines
|
95 |
|
|
}
|
96 |
|
|
}
|
97 |
|
|
writeSymbolName(nextSymbol);
|
98 |
|
|
if (symbols[nextSymbol].st_type == STT_FUNC && symbols[nextSymbol].st_bind != STB_LOCAL) {
|
99 |
|
|
// This is a function
|
100 |
|
|
if (debugMode) {
|
101 |
|
|
outFile.put(": ");
|
102 |
|
|
}
|
103 |
|
|
else outFile.put(": function");
|
104 |
|
|
//isFunction = true;
|
105 |
|
|
currentFunction = nextSymbol; // Remember which function we are in
|
106 |
|
|
if (symbols[nextSymbol].st_unitsize) { // Calculate end of current function
|
107 |
|
|
if (symbols[nextSymbol].st_unitnum == 0) symbols[nextSymbol].st_unitnum = 1;
|
108 |
|
|
currentFunctionEnd = iInstr + symbols[nextSymbol].st_unitsize * symbols[nextSymbol].st_unitnum;
|
109 |
|
|
}
|
110 |
|
|
else currentFunctionEnd = 0; // Function size is not known
|
111 |
|
|
}
|
112 |
|
|
else if (codeMode & 1) { // local label
|
113 |
|
|
outFile.put(": ");
|
114 |
|
|
}
|
115 |
|
|
symbols[nextSymbol].st_other |= 0x80000000; // Remember symbol has been written
|
116 |
|
|
}
|
117 |
|
|
nextSymbol++;
|
118 |
|
|
}
|
119 |
|
|
if (numSymbols) {
|
120 |
|
|
if (codeMode == 1) {
|
121 |
|
|
// if (!isFunction) outFile.put(':'); // has already been written
|
122 |
|
|
if (!debugMode) outFile.newLine(); // Code. Put label on separate line
|
123 |
|
|
}
|
124 |
|
|
else {
|
125 |
|
|
outFile.put(':'); // Data. Make space after last label
|
126 |
|
|
}
|
127 |
|
|
}
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
|
131 |
|
|
void CDisassembler::writeDataItems() {
|
132 |
|
|
// Write contents of data section to output file
|
133 |
|
|
uint32_t nextLabel = 0;
|
134 |
|
|
uint32_t nextRelocation = 0;
|
135 |
|
|
uint32_t dataSize = 4;
|
136 |
|
|
uint32_t currentSymbol;
|
137 |
|
|
uint32_t sequenceEnd;
|
138 |
|
|
ElfFwcReloc rel; // relocation record for searching
|
139 |
|
|
uint32_t irel; // index to relocation record
|
140 |
|
|
uint32_t numRel; // number of relocations found at current position
|
141 |
|
|
|
142 |
|
|
operandType = 2;
|
143 |
|
|
bool isFloat = false;
|
144 |
|
|
|
145 |
|
|
// translate addresses if executable
|
146 |
|
|
ElfFwcSym currentPosition;
|
147 |
|
|
currentPosition.st_section = section;
|
148 |
|
|
currentPosition.st_value = iInstr;
|
149 |
|
|
symbolExeAddress(currentPosition);
|
150 |
|
|
|
151 |
|
|
// find first relocation
|
152 |
|
|
rel.r_offset = iInstr;
|
153 |
|
|
rel.r_section = section;
|
154 |
|
|
irel = relocations.findFirst(rel);
|
155 |
|
|
irel &= 0x7FFFFFFF;
|
156 |
|
|
if (irel < relocations.numEntries() && relocations[irel].r_section == section) {
|
157 |
|
|
nextRelocation = (uint32_t)relocations[irel].r_offset;
|
158 |
|
|
}
|
159 |
|
|
else nextRelocation = sectionEnd;
|
160 |
|
|
|
161 |
|
|
// Loop through section
|
162 |
|
|
while (iInstr < sectionEnd) {
|
163 |
|
|
// Search for symbol labels
|
164 |
|
|
writeLabels();
|
165 |
|
|
if (nextSymbol > 1) {
|
166 |
|
|
// Get data size from current symbol
|
167 |
|
|
currentSymbol = nextSymbol - 1;
|
168 |
|
|
if (symbols[currentSymbol].st_section == currentPosition.st_section) {
|
169 |
|
|
dataSize = symbols[currentSymbol].st_unitsize;
|
170 |
|
|
if (dataSize > 8) dataSize = 8;
|
171 |
|
|
if (dataSize == 0) dataSize = 4;
|
172 |
|
|
isFloat = (symbols[currentSymbol].st_other & STV_FLOAT) != 0;
|
173 |
|
|
}
|
174 |
|
|
}
|
175 |
|
|
// Get position of next symbol
|
176 |
|
|
if (nextSymbol < symbols.numEntries()) {
|
177 |
|
|
nextLabel = (uint32_t)symbols[nextSymbol].st_value;
|
178 |
|
|
// translate to local offset
|
179 |
|
|
if (isExecutable) nextLabel -= (uint32_t)sectionHeaders[section].sh_addr;
|
180 |
|
|
}
|
181 |
|
|
else nextLabel = sectionEnd;
|
182 |
|
|
|
183 |
|
|
// Search for relocations
|
184 |
|
|
rel.r_offset = iInstr;
|
185 |
|
|
numRel = relocations.findAll(&irel, rel);
|
186 |
|
|
if (numRel) {
|
187 |
|
|
// Relocation found. Find size
|
188 |
|
|
// Relocation size overrides any symbol size
|
189 |
|
|
switch (relocations[irel].r_type & R_FORW_RELSIZEMASK) {
|
190 |
|
|
case R_FORW_8:
|
191 |
|
|
dataSize = 1;
|
192 |
|
|
break;
|
193 |
|
|
case R_FORW_16: case R_FORW_32LO: case R_FORW_32HI:
|
194 |
|
|
dataSize = 2;
|
195 |
|
|
break;
|
196 |
|
|
case R_FORW_24:
|
197 |
|
|
dataSize = 4; // 3 bytes. Round up to 4
|
198 |
|
|
break;
|
199 |
|
|
case R_FORW_32: case R_FORW_64LO: case R_FORW_64HI:
|
200 |
|
|
dataSize = 4;
|
201 |
|
|
break;
|
202 |
|
|
case R_FORW_64:
|
203 |
|
|
dataSize = 8;
|
204 |
|
|
break;
|
205 |
|
|
default:
|
206 |
|
|
writeError("Unknown data size for relocation");
|
207 |
|
|
dataSize = 4;
|
208 |
|
|
break;
|
209 |
|
|
}
|
210 |
|
|
isFloat = false;
|
211 |
|
|
if (numRel > 1) writeError("Overlapping relocations");
|
212 |
|
|
// Find position of next relocation
|
213 |
|
|
if (irel+1 < relocations.numEntries() && relocations[irel+1].r_section == section) {
|
214 |
|
|
nextRelocation = (uint32_t)relocations[irel+1].r_offset;
|
215 |
|
|
}
|
216 |
|
|
else nextRelocation = sectionEnd;
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
if (numRel) {
|
220 |
|
|
// There is a relocation here. Write only one data item
|
221 |
|
|
// Write type
|
222 |
|
|
outFile.tabulate(asmTab1);
|
223 |
|
|
switch (dataSize) {
|
224 |
|
|
case 1: outFile.put("int8 "); break;
|
225 |
|
|
case 2: outFile.put("int16 "); break;
|
226 |
|
|
case 4: outFile.put("int32 "); break;
|
227 |
|
|
case 8: outFile.put("int64 "); break;
|
228 |
|
|
}
|
229 |
|
|
outFile.tabulate(asmTab2);
|
230 |
|
|
writeRelocationTarget(iInstr, dataSize);
|
231 |
|
|
|
232 |
|
|
// Write comment with relocation type
|
233 |
|
|
outFile.put(' '); outFile.tabulate(asmTab3);
|
234 |
|
|
outFile.put(commentSeparator); outFile.put(' ');
|
235 |
|
|
if (sectionEnd + sectionAddress> 0xFFFF) outFile.putHex((uint32_t)(iInstr + sectionAddress), 2);
|
236 |
|
|
else outFile.putHex((uint16_t)(iInstr + sectionAddress), 2);
|
237 |
|
|
outFile.put(" _ ");
|
238 |
|
|
switch(relocations[irel].r_type & R_FORW_RELTYPEMASK) {
|
239 |
|
|
case R_FORW_ABS:
|
240 |
|
|
outFile.put("absolute address"); break;
|
241 |
|
|
case R_FORW_SELFREL:
|
242 |
|
|
outFile.put("self-relative"); break;
|
243 |
|
|
case R_FORW_IP_BASE:
|
244 |
|
|
outFile.put("relative to __ip_base"); break;
|
245 |
|
|
case R_FORW_DATAP:
|
246 |
|
|
outFile.put("relative to __datap_base"); break;
|
247 |
|
|
case R_FORW_THREADP:
|
248 |
|
|
outFile.put("relative to __threadp_base"); break;
|
249 |
|
|
case R_FORW_REFP:
|
250 |
|
|
outFile.put("relative to ");
|
251 |
|
|
writeSymbolName(relocations[irel].r_refsym & 0x7FFFFFFF); break;
|
252 |
|
|
case R_FORW_SYSFUNC:
|
253 |
|
|
outFile.put("system function ID"); break;
|
254 |
|
|
case R_FORW_SYSMODUL:
|
255 |
|
|
outFile.put("system module ID"); break;
|
256 |
|
|
case R_FORW_SYSCALL:
|
257 |
|
|
outFile.put("system module and function ID"); break;
|
258 |
|
|
case R_FORW_DATASTACK:
|
259 |
|
|
outFile.put("data stack size"); break;
|
260 |
|
|
case R_FORW_CALLSTACK:
|
261 |
|
|
outFile.put("call stack size"); break;
|
262 |
|
|
case R_FORW_REGUSE:
|
263 |
|
|
outFile.put("register use"); break;
|
264 |
|
|
default:
|
265 |
|
|
outFile.put("unknown relocation type"); break;
|
266 |
|
|
}
|
267 |
|
|
iInstr += dataSize;
|
268 |
|
|
}
|
269 |
|
|
else {
|
270 |
|
|
// Write multiple data items. Find where sequence ends
|
271 |
|
|
sequenceEnd = sectionEnd;
|
272 |
|
|
if (nextLabel < sequenceEnd && nextLabel > iInstr) sequenceEnd = nextLabel;
|
273 |
|
|
if (nextRelocation < sequenceEnd && nextRelocation > iInstr) sequenceEnd = nextRelocation;
|
274 |
|
|
// Number of data items in this sequence
|
275 |
|
|
uint32_t num = (sequenceEnd - iInstr) / dataSize;
|
276 |
|
|
if (num == 0) {
|
277 |
|
|
dataSize = sequenceEnd - iInstr; // Reduce data size to avoid going past sequenceEnd
|
278 |
|
|
while (dataSize & (dataSize-1)) dataSize--; // Round down to nearest power of 2
|
279 |
|
|
num = 1;
|
280 |
|
|
}
|
281 |
|
|
// Number of data items per line
|
282 |
|
|
uint32_t itemsPerLine = 4;
|
283 |
|
|
if (dataSize > 4) itemsPerLine = 2;
|
284 |
|
|
if (dataSize < 2) itemsPerLine = 8;
|
285 |
|
|
uint32_t lineEnd = iInstr + itemsPerLine * dataSize;
|
286 |
|
|
if (lineEnd > sequenceEnd) {
|
287 |
|
|
// Round down to multiple of dataSize
|
288 |
|
|
itemsPerLine = (sequenceEnd - iInstr) / dataSize;
|
289 |
|
|
lineEnd = iInstr + itemsPerLine * dataSize;
|
290 |
|
|
}
|
291 |
|
|
// Write type
|
292 |
|
|
outFile.tabulate(asmTab1);
|
293 |
|
|
switch (dataSize) {
|
294 |
|
|
case 1: outFile.put("int8 "); break;
|
295 |
|
|
case 2: outFile.put("int16 "); break;
|
296 |
|
|
case 4: outFile.put("int32 "); break;
|
297 |
|
|
case 8: outFile.put("int64 "); break;
|
298 |
|
|
}
|
299 |
|
|
outFile.tabulate(asmTab2);
|
300 |
|
|
|
301 |
|
|
// Write items
|
302 |
|
|
uint32_t lineBegin = iInstr;
|
303 |
|
|
while (iInstr < lineEnd) {
|
304 |
|
|
if (sectionHeaders[section].sh_type == SHT_NOBITS) {
|
305 |
|
|
// BSS section has no data in buffer
|
306 |
|
|
outFile.put('0');
|
307 |
|
|
}
|
308 |
|
|
else {
|
309 |
|
|
// Write item
|
310 |
|
|
switch (dataSize) {
|
311 |
|
|
case 1:
|
312 |
|
|
outFile.putHex(*(uint8_t*)(sectionBuffer + iInstr));
|
313 |
|
|
break;
|
314 |
|
|
case 2:
|
315 |
|
|
outFile.putHex(*(uint16_t*)(sectionBuffer + iInstr));
|
316 |
|
|
break;
|
317 |
|
|
case 4:
|
318 |
|
|
outFile.putHex(*(uint32_t*)(sectionBuffer + iInstr));
|
319 |
|
|
break;
|
320 |
|
|
case 8:
|
321 |
|
|
outFile.putHex(*(uint64_t*)(sectionBuffer + iInstr));
|
322 |
|
|
break;
|
323 |
|
|
}
|
324 |
|
|
}
|
325 |
|
|
iInstr += dataSize;
|
326 |
|
|
if (iInstr < lineEnd) outFile.put(", "); // comma if not the last item on line
|
327 |
|
|
}
|
328 |
|
|
// Write data comment
|
329 |
|
|
outFile.put(' '); outFile.tabulate(asmTab3);
|
330 |
|
|
outFile.put(commentSeparator); outFile.put(' ');
|
331 |
|
|
|
332 |
|
|
// write address
|
333 |
|
|
uint64_t address = lineBegin + sectionAddress;
|
334 |
|
|
if (sectionHeaders[section].sh_flags & SHF_IP) {
|
335 |
|
|
// IP based section. subtract ip_base for continuity with code section
|
336 |
|
|
address -= fileHeader.e_ip_base;
|
337 |
|
|
}
|
338 |
|
|
if (sectionEnd + sectionAddress > 0xFFFF) outFile.putHex(uint32_t(address), 2);
|
339 |
|
|
else outFile.putHex(uint16_t(address), 2);
|
340 |
|
|
|
341 |
|
|
if (sectionHeaders[section].sh_type != SHT_NOBITS) { // skip data if BSS section
|
342 |
|
|
outFile.put(" _ ");
|
343 |
|
|
// Write data in alternative form
|
344 |
|
|
for (uint32_t i = lineBegin; i < lineEnd; i += dataSize) {
|
345 |
|
|
switch (dataSize) {
|
346 |
|
|
case 1: { // bytes. Write as characters
|
347 |
|
|
char c = *(char*)(sectionBuffer + i);
|
348 |
|
|
outFile.put((uint8_t)c < ' ' ? '.' : c);
|
349 |
|
|
break; }
|
350 |
|
|
case 2:
|
351 |
|
|
if (isFloat) { // half precision float
|
352 |
|
|
outFile.putFloat(half2float(*(uint16_t*)(sectionBuffer + i)));
|
353 |
|
|
}
|
354 |
|
|
else { // 16 bit integer. Write as signed decimal
|
355 |
|
|
outFile.putDecimal(*(int16_t*)(sectionBuffer + i), 1);
|
356 |
|
|
}
|
357 |
|
|
if (i + dataSize < lineEnd) outFile.put(", "); // Comma except before last item
|
358 |
|
|
break;
|
359 |
|
|
case 4:
|
360 |
|
|
if (isFloat) { // single precision float
|
361 |
|
|
outFile.putFloat(*(float*)(sectionBuffer + i));
|
362 |
|
|
}
|
363 |
|
|
else { // 16 bit integer. Write as signed decimal
|
364 |
|
|
outFile.putDecimal(*(int32_t*)(sectionBuffer + i), 1);
|
365 |
|
|
}
|
366 |
|
|
if (i + dataSize < lineEnd) outFile.put(", "); // Comma except before last item
|
367 |
|
|
break;
|
368 |
|
|
case 8:
|
369 |
|
|
if (isFloat) { // double precision float
|
370 |
|
|
outFile.putFloat(*(double*)(sectionBuffer + i));
|
371 |
|
|
}
|
372 |
|
|
else { // 64 bit integer. Write as signed decimal if not huge
|
373 |
|
|
int64_t x = *(int64_t*)(sectionBuffer + i);
|
374 |
|
|
if (x == (int32_t)x) outFile.putDecimal((int32_t)x, 1);
|
375 |
|
|
}
|
376 |
|
|
if (i + dataSize < lineEnd) outFile.put(", "); // Comma except before last item
|
377 |
|
|
break;
|
378 |
|
|
default:;
|
379 |
|
|
}
|
380 |
|
|
}
|
381 |
|
|
}
|
382 |
|
|
}
|
383 |
|
|
if (iInstr < sectionEnd) outFile.newLine();
|
384 |
|
|
}
|
385 |
|
|
// write label at end of data section, if any
|
386 |
|
|
if ((section + 1 == sectionHeaders.numEntries() ||
|
387 |
|
|
((sectionHeaders[section].sh_flags ^ sectionHeaders[section + 1].sh_flags) & SHF_BASEPOINTER))
|
388 |
|
|
&& nextSymbol < symbols.numEntries()) {
|
389 |
|
|
writeLabels();
|
390 |
|
|
}
|
391 |
|
|
}
|
392 |
|
|
|
393 |
|
|
static const uint32_t relocationSizes[16] = {0, 1, 2, 3, 4, 4, 4, 8, 8, 8, 0, 0, 0, 0, 0, 0};
|
394 |
|
|
|
395 |
|
|
void CDisassembler::writeRelocationTarget(uint32_t src, uint32_t size) {
|
396 |
|
|
// Write relocation target for this source position
|
397 |
|
|
// Find relocation
|
398 |
|
|
ElfFwcReloc rel;
|
399 |
|
|
rel.r_offset = src;
|
400 |
|
|
rel.r_section = section;
|
401 |
|
|
//uint32_t irel; // index to relocation record
|
402 |
|
|
uint32_t n = relocations.findAll(&relocation, rel);
|
403 |
|
|
if (n == 0) return;
|
404 |
|
|
if (n > 1) {
|
405 |
|
|
writeWarning(n ? "Overlapping relocations" : "No relocation found here");
|
406 |
|
|
return;
|
407 |
|
|
}
|
408 |
|
|
relocation++; // add 1 to avoid zero
|
409 |
|
|
relocations[relocation-1].r_refsym |= 0x80000000; // Remember relocation has been used OK
|
410 |
|
|
// write scale factor if scale factor != 1 and not a jump target
|
411 |
|
|
bool writeScale = relocations[relocation-1].r_type & R_FORW_RELSCALEMASK;
|
412 |
|
|
if (writeScale || codeMode > 1) outFile.put('(');
|
413 |
|
|
uint32_t isym = relocations[relocation-1].r_sym;
|
414 |
|
|
writeSymbolName(isym);
|
415 |
|
|
// Find any addend
|
416 |
|
|
int32_t expectedAddend = 0;
|
417 |
|
|
int32_t addend = relocations[relocation-1].r_addend;
|
418 |
|
|
if ((relocations[relocation-1].r_type & R_FORW_RELTYPEMASK) == R_FORW_SELFREL) {
|
419 |
|
|
if (fInstr) { // Expected addend for self-relative address
|
420 |
|
|
if (fInstr->addrSize) { // Jump instruction or memory operand
|
421 |
|
|
expectedAddend = fInstr->addrPos - instrLength * 4;
|
422 |
|
|
}
|
423 |
|
|
else { // Relocation of immediate operand
|
424 |
|
|
expectedAddend = fInstr->immPos - instrLength * 4;
|
425 |
|
|
}
|
426 |
|
|
}
|
427 |
|
|
}
|
428 |
|
|
addend -= expectedAddend;
|
429 |
|
|
if ((relocations[relocation-1].r_type & R_FORW_RELTYPEMASK) == R_FORW_REFP) {
|
430 |
|
|
// has reference point
|
431 |
|
|
outFile.put('-');
|
432 |
|
|
uint32_t isym2 = relocations[relocation-1].r_refsym & 0x7FFFFFFF; // remove 0x80000000 flag
|
433 |
|
|
writeSymbolName(isym2);
|
434 |
|
|
}
|
435 |
|
|
if (writeScale) {
|
436 |
|
|
// write scale factor
|
437 |
|
|
outFile.put(")/");
|
438 |
|
|
outFile.putDecimal(1 << relocations[relocation-1].r_type & R_FORW_RELSCALEMASK);
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
// Check size of relocation
|
442 |
|
|
if (addend > 0) {
|
443 |
|
|
outFile.put('+'); outFile.putHex((uint32_t)addend);
|
444 |
|
|
}
|
445 |
|
|
else if (addend < 0) {
|
446 |
|
|
outFile.put('-'); outFile.putHex(uint32_t(-addend));
|
447 |
|
|
}
|
448 |
|
|
if (codeMode > 1 && !writeScale) outFile.put(')');
|
449 |
|
|
|
450 |
|
|
// Check for errors
|
451 |
|
|
if (n > 1) writeError("Overlapping relocations here");
|
452 |
|
|
uint32_t relSize = relocationSizes[relocations[relocation-1].r_type >> 8 & 0x0F];
|
453 |
|
|
if (relSize < size) writeWarning("Relocation size less than data field");
|
454 |
|
|
if (relSize > size) writeError("Relocation size bigger than data field");
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
void CDisassembler::writeJumpTarget(uint32_t src, uint32_t size) {
|
458 |
|
|
// Write relocation jump target for this source position
|
459 |
|
|
// Find relocation
|
460 |
|
|
ElfFwcReloc rel;
|
461 |
|
|
rel.r_offset = src;
|
462 |
|
|
rel.r_section = section;
|
463 |
|
|
//uint32_t irel; // index to relocation record
|
464 |
|
|
uint32_t n = relocations.findAll(&relocation, rel);
|
465 |
|
|
if (n == 0) return;
|
466 |
|
|
if (n > 1) {
|
467 |
|
|
writeWarning(n ? "Overlapping relocations" : "No relocation found here");
|
468 |
|
|
return;
|
469 |
|
|
}
|
470 |
|
|
relocation++; // add 1 to avoid zero
|
471 |
|
|
relocations[relocation-1].r_refsym |= 0x80000000; // Remember relocation has been used OK
|
472 |
|
|
// write scale factor if scale factor != 1 and not a jump target
|
473 |
|
|
if (codeMode > 1) outFile.put('(');
|
474 |
|
|
uint32_t isym = relocations[relocation-1].r_sym;
|
475 |
|
|
writeSymbolName(isym);
|
476 |
|
|
// Find any addend
|
477 |
|
|
int32_t expectedAddend = 0;
|
478 |
|
|
int32_t addend = relocations[relocation-1].r_addend;
|
479 |
|
|
if ((relocations[relocation-1].r_type & R_FORW_RELTYPEMASK) == R_FORW_SELFREL && fInstr) {
|
480 |
|
|
expectedAddend = fInstr->jumpPos - instrLength * 4;
|
481 |
|
|
}
|
482 |
|
|
addend -= expectedAddend;
|
483 |
|
|
|
484 |
|
|
// Check size of relocation
|
485 |
|
|
uint32_t expectedRelSize = size; // Expected size of relocation
|
486 |
|
|
if (fInstr) {
|
487 |
|
|
expectedRelSize = fInstr->jumpSize;
|
488 |
|
|
}
|
489 |
|
|
if (addend > 0) {
|
490 |
|
|
outFile.put('+'); outFile.putHex((uint32_t)addend);
|
491 |
|
|
}
|
492 |
|
|
else if (addend < 0) {
|
493 |
|
|
outFile.put('-'); outFile.putHex(uint32_t(-addend));
|
494 |
|
|
}
|
495 |
|
|
if (codeMode > 1) outFile.put(')');
|
496 |
|
|
|
497 |
|
|
// Check for errors
|
498 |
|
|
if (n > 1) writeError("Overlapping relocations here");
|
499 |
|
|
uint32_t relSize = relocationSizes[relocations[relocation-1].r_type >> 8 & 0x0F];
|
500 |
|
|
if (relSize < expectedRelSize) writeWarning("Relocation size less than data field");
|
501 |
|
|
if (relSize > expectedRelSize) writeError("Relocation size bigger than data field");
|
502 |
|
|
}
|
503 |
|
|
|
504 |
|
|
|
505 |
|
|
/*
|
506 |
|
|
int CDisassembler::writeFillers() {
|
507 |
|
|
return 1;
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
void CDisassembler::writeAlign(uint32_t a) {
|
511 |
|
|
// Write alignment directive
|
512 |
|
|
outFile.put("ALIGN");
|
513 |
|
|
outFile.tabulate(asmTab1);
|
514 |
|
|
outFile.putDecimal(a);
|
515 |
|
|
outFile.newLine();
|
516 |
|
|
} */
|
517 |
|
|
|
518 |
|
|
void CDisassembler::writeFileBegin() {
|
519 |
|
|
outFile.setFileType(FILETYPE_ASM);
|
520 |
|
|
if (debugMode) return;
|
521 |
|
|
|
522 |
|
|
// Initial comment
|
523 |
|
|
outFile.put(commentSeparator);
|
524 |
|
|
if (outputFile == cmd.outputListFile) {
|
525 |
|
|
outFile.put(" Assembly listing of file: ");
|
526 |
|
|
}
|
527 |
|
|
else {
|
528 |
|
|
outFile.put(" Disassembly of file: ");
|
529 |
|
|
}
|
530 |
|
|
outFile.put(cmd.getFilename(cmd.inputFile));
|
531 |
|
|
outFile.newLine();
|
532 |
|
|
// Date and time.
|
533 |
|
|
// Note: will fail after year 2038 on computers that use 32-bit time_t
|
534 |
|
|
time_t time1 = time(0);
|
535 |
|
|
char * timestring = ctime(&time1);
|
536 |
|
|
if (timestring) {
|
537 |
|
|
// Remove terminating '\n' in timestring
|
538 |
|
|
for (char *c = timestring; *c; c++) {
|
539 |
|
|
if (*c < ' ') *c = 0;
|
540 |
|
|
}
|
541 |
|
|
// Write date and time as comment
|
542 |
|
|
outFile.put(commentSeparator); outFile.put(' ');
|
543 |
|
|
outFile.put(timestring);
|
544 |
|
|
outFile.newLine();
|
545 |
|
|
}
|
546 |
|
|
// Write special symbols and addresses if executable file
|
547 |
|
|
if (isExecutable) {
|
548 |
|
|
outFile.newLine(); outFile.put(commentSeparator);
|
549 |
|
|
outFile.put(" __ip_base = "); outFile.putHex(fileHeader.e_ip_base);
|
550 |
|
|
outFile.newLine(); outFile.put(commentSeparator);
|
551 |
|
|
outFile.put(" __datap_base = "); outFile.putHex(fileHeader.e_datap_base);
|
552 |
|
|
outFile.newLine(); outFile.put(commentSeparator);
|
553 |
|
|
outFile.put(" __threadp_base = "); outFile.putHex(fileHeader.e_threadp_base);
|
554 |
|
|
outFile.newLine(); outFile.put(commentSeparator);
|
555 |
|
|
outFile.put(" __entry_point = "); outFile.putHex(fileHeader.e_entry);
|
556 |
|
|
outFile.newLine();
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
// Write imported and exported symbols
|
560 |
|
|
outFile.newLine();
|
561 |
|
|
writePublicsAndExternals();
|
562 |
|
|
}
|
563 |
|
|
|
564 |
|
|
|
565 |
|
|
void CDisassembler::writePublicsAndExternals() {
|
566 |
|
|
// Write public and external symbol definitions
|
567 |
|
|
if (debugMode) return;
|
568 |
|
|
uint32_t i; // Loop counter
|
569 |
|
|
uint32_t linesWritten = 0; // Count lines written
|
570 |
|
|
|
571 |
|
|
// Loop through public symbols
|
572 |
|
|
for (i = 0; i < symbols.numEntries(); i++) {
|
573 |
|
|
if (symbols[i].st_bind && symbols[i].st_section) {
|
574 |
|
|
// Symbol is public
|
575 |
|
|
outFile.put("public ");
|
576 |
|
|
// Write name
|
577 |
|
|
writeSymbolName(i);
|
578 |
|
|
// Code or data
|
579 |
|
|
if (symbols[i].st_type == STT_FUNC) {
|
580 |
|
|
outFile.put(": function");
|
581 |
|
|
if (symbols[i].st_other & STV_REGUSE) {
|
582 |
|
|
// Write register use
|
583 |
|
|
outFile.put(", registeruse = "); outFile.putHex(symbols[i].st_reguse1);
|
584 |
|
|
outFile.put(", "); outFile.putHex(symbols[i].st_reguse2);
|
585 |
|
|
}
|
586 |
|
|
}
|
587 |
|
|
else if (symbols[i].st_other & STV_EXEC) outFile.put(": function");
|
588 |
|
|
else if (symbols[i].st_type == STT_OBJECT || symbols[i].st_type == STT_SECTION) {
|
589 |
|
|
// data object. get base pointer
|
590 |
|
|
if (symbols[i].st_other & (STV_IP | STV_EXEC)) outFile.put(": ip");
|
591 |
|
|
else if (symbols[i].st_other & STV_DATAP) outFile.put(": datap");
|
592 |
|
|
else if (symbols[i].st_other & STV_THREADP) outFile.put(": threadp");
|
593 |
|
|
else if (symbols[i].st_other & STV_WRITE) outFile.put(": datap");
|
594 |
|
|
}
|
595 |
|
|
//else if (symbols[i].st_type == STT_FILE) outFile.put(": filename");
|
596 |
|
|
//else if (symbols[i].st_type == STT_SECTION) outFile.put(": section");
|
597 |
|
|
else if (symbols[i].st_type == STT_CONSTANT) {
|
598 |
|
|
outFile.put(": constant"); outFile.newLine(); // write value
|
599 |
|
|
outFile.put("% "); writeSymbolName(i); outFile.put(" = ");
|
600 |
|
|
outFile.putHex(symbols[i].st_value);
|
601 |
|
|
}
|
602 |
|
|
else if (symbols[i].st_type == 0) {
|
603 |
|
|
outFile.put(": absolute"); outFile.newLine();
|
604 |
|
|
}
|
605 |
|
|
else {
|
606 |
|
|
outFile.put(": unknown type. type="); outFile.putHex(symbols[i].st_type);
|
607 |
|
|
outFile.put(", bind="); outFile.putHex(symbols[i].st_bind);
|
608 |
|
|
outFile.put(", other="); outFile.putHex(symbols[i].st_other);
|
609 |
|
|
}
|
610 |
|
|
// Check if weak or communal
|
611 |
|
|
if (symbols[i].st_bind & STB_WEAK) {
|
612 |
|
|
outFile.put(" weak");
|
613 |
|
|
}
|
614 |
|
|
if (symbols[i].st_type == STT_COMMON || (symbols[i].st_other & STV_COMMON)) outFile.put(", communal");
|
615 |
|
|
outFile.newLine(); linesWritten++;
|
616 |
|
|
}
|
617 |
|
|
}
|
618 |
|
|
// Blank line if anything written
|
619 |
|
|
if (linesWritten) {
|
620 |
|
|
outFile.newLine();
|
621 |
|
|
linesWritten = 0;
|
622 |
|
|
}
|
623 |
|
|
// Loop through external symbols
|
624 |
|
|
for (i = 0; i < symbols.numEntries(); i++) {
|
625 |
|
|
if (symbols[i].st_bind && !symbols[i].st_section) {
|
626 |
|
|
// Symbol is external
|
627 |
|
|
outFile.put("extern ");
|
628 |
|
|
// Write name
|
629 |
|
|
writeSymbolName(i);
|
630 |
|
|
// Code or data
|
631 |
|
|
if (symbols[i].st_type == STT_FUNC) {
|
632 |
|
|
outFile.put(": function");
|
633 |
|
|
if (symbols[i].st_other & STV_REGUSE) {
|
634 |
|
|
// Write register use
|
635 |
|
|
outFile.put(", registeruse = "); outFile.putHex(symbols[i].st_reguse1);
|
636 |
|
|
outFile.put(", "); outFile.putHex(symbols[i].st_reguse2);
|
637 |
|
|
}
|
638 |
|
|
}
|
639 |
|
|
else if (symbols[i].st_other & STV_EXEC) outFile.put(": function");
|
640 |
|
|
//else if (symbols[i].st_other & (STV_READ | SHF_WRITE)) outFile.put(": data");
|
641 |
|
|
else if (symbols[i].st_other & STV_IP) outFile.put(": ip");
|
642 |
|
|
else if (symbols[i].st_other & STV_DATAP) outFile.put(": datap");
|
643 |
|
|
else if (symbols[i].st_other & STV_THREADP) outFile.put(": threadp");
|
644 |
|
|
else if (symbols[i].st_type == STT_OBJECT) outFile.put(": datap");
|
645 |
|
|
else if (symbols[i].st_type == STT_CONSTANT) outFile.put(": constant");
|
646 |
|
|
else if (symbols[i].st_type == 0) outFile.put(": absolute");
|
647 |
|
|
else {
|
648 |
|
|
outFile.put(": unknown type. type="); outFile.putHex(symbols[i].st_type);
|
649 |
|
|
outFile.put(", other="); outFile.putHex(symbols[i].st_other);
|
650 |
|
|
}
|
651 |
|
|
// Check if weak or communal
|
652 |
|
|
if (symbols[i].st_bind & STB_WEAK) {
|
653 |
|
|
if (symbols[i].st_bind == STB_UNRESOLVED) outFile.put(" // unresolved!");
|
654 |
|
|
else outFile.put(", weak");
|
655 |
|
|
}
|
656 |
|
|
if (symbols[i].st_type == STT_COMMON) outFile.put(", communal");
|
657 |
|
|
// Finished line
|
658 |
|
|
outFile.newLine(); linesWritten++;
|
659 |
|
|
}
|
660 |
|
|
}
|
661 |
|
|
// Blank line if anything written
|
662 |
|
|
if (linesWritten) {
|
663 |
|
|
outFile.newLine();
|
664 |
|
|
linesWritten = 0;
|
665 |
|
|
}
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
|
669 |
|
|
void CDisassembler::writeFileEnd() {
|
670 |
|
|
// Write end of file
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
void CDisassembler::writeSectionBegin() {
|
674 |
|
|
// Write begin of section
|
675 |
|
|
outFile.newLine(); // Blank line
|
676 |
|
|
|
677 |
|
|
// Check if section is valid
|
678 |
|
|
if (section == 0 || section >= sectionHeaders.numEntries()) {
|
679 |
|
|
// Illegal segment entry
|
680 |
|
|
outFile.put("UNKNOWN SEGMENT"); outFile.newLine();
|
681 |
|
|
return;
|
682 |
|
|
}
|
683 |
|
|
|
684 |
|
|
// Write segment name
|
685 |
|
|
writeSectionName(section); outFile.put(" ");
|
686 |
|
|
// tabulate
|
687 |
|
|
outFile.tabulate(asmTab1);
|
688 |
|
|
// Write "segment"
|
689 |
|
|
outFile.put("section");
|
690 |
|
|
|
691 |
|
|
// Write type
|
692 |
|
|
if (sectionHeaders[section].sh_flags & SHF_READ) outFile.put(" read");
|
693 |
|
|
if (sectionHeaders[section].sh_flags & SHF_WRITE) outFile.put(" write");
|
694 |
|
|
if (sectionHeaders[section].sh_flags & SHF_EXEC) outFile.put(" execute");
|
695 |
|
|
else if (sectionHeaders[section].sh_flags & SHF_IP) outFile.put(" ip");
|
696 |
|
|
if (sectionHeaders[section].sh_flags & SHF_DATAP) outFile.put(" datap");
|
697 |
|
|
if (sectionHeaders[section].sh_flags & SHF_THREADP) outFile.put(" threadp");
|
698 |
|
|
if (sectionHeaders[section].sh_flags & SHF_EXCEPTION_HND) outFile.put(" exception_hand");
|
699 |
|
|
if (sectionHeaders[section].sh_flags & SHF_EVENT_HND) outFile.put(" event_hand");
|
700 |
|
|
if (sectionHeaders[section].sh_flags & SHF_DEBUG_INFO) outFile.put(" debug_info");
|
701 |
|
|
if (sectionHeaders[section].sh_flags & SHF_COMMENT) outFile.put(" comment_info");
|
702 |
|
|
if (sectionHeaders[section].sh_type == SHT_NOBITS) outFile.put(" uninitialized");
|
703 |
|
|
if (sectionHeaders[section].sh_type == SHT_COMDAT) outFile.put(" communal");
|
704 |
|
|
|
705 |
|
|
// Write alignment
|
706 |
|
|
uint32_t align = 1 << sectionHeaders[section].sh_align;
|
707 |
|
|
outFile.put(" align=");
|
708 |
|
|
if (align < 16) outFile.putDecimal(align); else outFile.putHex(align);
|
709 |
|
|
|
710 |
|
|
// tabulate to comment
|
711 |
|
|
outFile.put(" "); outFile.tabulate(asmTab3);
|
712 |
|
|
outFile.put(commentSeparator);
|
713 |
|
|
if (codeMode == 1) { // code section
|
714 |
|
|
outFile.put(" address/4. ");
|
715 |
|
|
}
|
716 |
|
|
else {
|
717 |
|
|
outFile.put(" address. ");
|
718 |
|
|
}
|
719 |
|
|
// Write section number
|
720 |
|
|
outFile.put("section ");
|
721 |
|
|
outFile.putDecimal(section);
|
722 |
|
|
// Write library and module, if available
|
723 |
|
|
if (sectionHeaders[section].sh_module && sectionHeaders[section].sh_module < secStringTableLen) {
|
724 |
|
|
outFile.put(". ");
|
725 |
|
|
if (sectionHeaders[section].sh_library) {
|
726 |
|
|
outFile.put(secStringTable + sectionHeaders[section].sh_library);
|
727 |
|
|
outFile.put(':');
|
728 |
|
|
}
|
729 |
|
|
outFile.put(secStringTable + sectionHeaders[section].sh_module);
|
730 |
|
|
}
|
731 |
|
|
|
732 |
|
|
// New line
|
733 |
|
|
outFile.newLine();
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
|
737 |
|
|
void CDisassembler::writeSectionEnd() {
|
738 |
|
|
// Write end of section
|
739 |
|
|
outFile.newLine();
|
740 |
|
|
|
741 |
|
|
// Write segment name
|
742 |
|
|
writeSectionName(section); outFile.put(" "); outFile.tabulate(asmTab1);
|
743 |
|
|
// Write "segment"
|
744 |
|
|
outFile.put("end"); outFile.newLine();
|
745 |
|
|
}
|
746 |
|
|
|
747 |
|
|
|
748 |
|
|
void CDisassembler::writeInstruction() {
|
749 |
|
|
// Write instruction and operands
|
750 |
|
|
// Check if instruction crosses section boundary
|
751 |
|
|
if (iInstr + instrLength * 4 > sectionEnd) writeError("Instruction crosses section boundary");
|
752 |
|
|
|
753 |
|
|
// Find instruction in instruction_list
|
754 |
|
|
SInstruction2 iRecSearch;
|
755 |
|
|
|
756 |
|
|
iRecSearch.format = format;
|
757 |
|
|
iRecSearch.category = fInstr->category;
|
758 |
|
|
iRecSearch.op1 = pInstr->a.op1;
|
759 |
|
|
relocation = 0;
|
760 |
|
|
|
761 |
|
|
if (iRecSearch.category == 4) { // jump instruction
|
762 |
|
|
// Set op1 = opj for jump instructions in format 2.5.x and 3.1.0
|
763 |
|
|
if (fInstr->imm2 & 0x80) {
|
764 |
|
|
iRecSearch.op1 = pInstr->b[0]; // OPJ is in IM1
|
765 |
|
|
if (fInstr->imm2 & 0x40) iRecSearch.op1 = 63; // OPJ has fixed value
|
766 |
|
|
if (fInstr->imm2 & 0x10) iRecSearch.op1 = pInstr->b[7]; // OPJ is in upper part of IM2
|
767 |
|
|
}
|
768 |
|
|
// Set op1 for template D
|
769 |
|
|
if (fInstr->tmplate == 0xD) iRecSearch.op1 &= 0xF8;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
// Insert op2 only if template E
|
773 |
|
|
if (instrLength > 1 && fInstr->tmplate == 0xE && !(fInstr->imm2 & 0x100)) {
|
774 |
|
|
iRecSearch.op2 = pInstr->a.op2;
|
775 |
|
|
}
|
776 |
|
|
else iRecSearch.op2 = 0;
|
777 |
|
|
|
778 |
|
|
uint32_t index, n, i;
|
779 |
|
|
n = instructionlist.findAll(&index, iRecSearch);
|
780 |
|
|
if (n == 0) { // Instruction not found in list
|
781 |
|
|
writeWarning("Unknown instruction: ");
|
782 |
|
|
for (i = 0; i < instrLength; i++) {
|
783 |
|
|
outFile.putHex(pInstr->i[i]);
|
784 |
|
|
if (i + 1 < instrLength) outFile.put(" ");
|
785 |
|
|
}
|
786 |
|
|
writeCodeComment(); outFile.newLine();
|
787 |
|
|
return;
|
788 |
|
|
}
|
789 |
|
|
// One or more matches in instruction table. Check if one of these fits the operand type and format
|
790 |
|
|
uint32_t otMask = 0x101 << operandType; // operand type mask for supported + optional
|
791 |
|
|
bool otFits = true; // Check if operand type fits
|
792 |
|
|
bool formatFits = true; // Check if format fits
|
793 |
|
|
for (i = 0; i < n; i++) { // search through matching instruction table entries
|
794 |
|
|
if (operandType < 4 && !(fInstr->vect & 1)) { // general purpose register
|
795 |
|
|
otFits = (instructionlist[index + i].optypesgp & otMask) != 0;
|
796 |
|
|
}
|
797 |
|
|
else { // vector register
|
798 |
|
|
otFits = ((instructionlist[index + i].optypesscalar | instructionlist[index + i].optypesvector) & otMask) != 0;
|
799 |
|
|
}
|
800 |
|
|
if (fInstr->category >= 3) {
|
801 |
|
|
// Multi format or jump instruction. Check if format allowed
|
802 |
|
|
formatFits = (instructionlist[index+i].format & ((uint64_t)1 << fInstr->formatIndex)) != 0;
|
803 |
|
|
}
|
804 |
|
|
if (instructionlist[index+i].opimmediate == OPI_IMPLICIT) {
|
805 |
|
|
// check if implicit operand fits
|
806 |
|
|
const uint8_t * bb = pInstr->b;
|
807 |
|
|
uint32_t x = 0; // get value of immediate operand
|
808 |
|
|
switch (fInstr->immSize) {
|
809 |
|
|
case 1: // 8 bits
|
810 |
|
|
x = *(int8_t*)(bb + fInstr->immPos);
|
811 |
|
|
break;
|
812 |
|
|
case 2: // 16 bits
|
813 |
|
|
x = *(int16_t*)(bb + fInstr->immPos);
|
814 |
|
|
break;
|
815 |
|
|
case 4: default: // 32 bits
|
816 |
|
|
x = *(int32_t*)(bb + fInstr->immPos);
|
817 |
|
|
break;
|
818 |
|
|
}
|
819 |
|
|
if (instructionlist[index+i].implicit_imm != x) formatFits = false;
|
820 |
|
|
}
|
821 |
|
|
if (otFits && formatFits) {
|
822 |
|
|
index += i; // match found
|
823 |
|
|
break;
|
824 |
|
|
}
|
825 |
|
|
}
|
826 |
|
|
if (!otFits) {
|
827 |
|
|
writeWarning("No instruction fits the operand type");
|
828 |
|
|
}
|
829 |
|
|
else if (!formatFits) {
|
830 |
|
|
writeWarning("Error in instruction format");
|
831 |
|
|
}
|
832 |
|
|
// Save pointer to record
|
833 |
|
|
iRecord = &instructionlist[index];
|
834 |
|
|
|
835 |
|
|
// Template C or D has no OT field. Get operand type from instruction list if template C or D
|
836 |
|
|
if (((iRecord->templt) & 0xFE) == 0xC) {
|
837 |
|
|
uint32_t i, optypeSuppport = iRecord->optypesgp;
|
838 |
|
|
if (fInstr->vect) optypeSuppport = iRecord->optypesscalar | iRecord->optypesvector;
|
839 |
|
|
for (i = 0; i < 16; i++) { // Search for supported operand type
|
840 |
|
|
if (optypeSuppport & (1 << i)) break;
|
841 |
|
|
}
|
842 |
|
|
operandType = i & 7;
|
843 |
|
|
}
|
844 |
|
|
// Get variant and options
|
845 |
|
|
variant = iRecord->variant;
|
846 |
|
|
|
847 |
|
|
// Write jump instruction or normal instruction
|
848 |
|
|
if (fInstr->category == 4 && fInstr->jumpSize) {
|
849 |
|
|
writeJumpInstruction();
|
850 |
|
|
}
|
851 |
|
|
else {
|
852 |
|
|
writeNormalInstruction();
|
853 |
|
|
}
|
854 |
|
|
// Write comment
|
855 |
|
|
writeCodeComment();
|
856 |
|
|
|
857 |
|
|
// End instruction
|
858 |
|
|
outFile.newLine();
|
859 |
|
|
}
|
860 |
|
|
|
861 |
|
|
// Select a register from template
|
862 |
|
|
uint8_t getRegister(const STemplate * pInstr, int i) {
|
863 |
|
|
// i = 5: RT, 6: RS, 7: RU, 8: RD
|
864 |
|
|
uint8_t r = 0xFF;
|
865 |
|
|
switch (i) {
|
866 |
|
|
case 5: r = pInstr->a.rt; break;
|
867 |
|
|
case 6: r = pInstr->a.rs; break;
|
868 |
|
|
case 7: r = pInstr->a.ru; break;
|
869 |
|
|
case 8: r = pInstr->a.rd; break;
|
870 |
|
|
}
|
871 |
|
|
return r;
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
uint8_t findFallback(SFormat const * fInstr, STemplate const * pInstr, int nOperands) {
|
875 |
|
|
// Find the fallback register for an instruction code.
|
876 |
|
|
// The return value is the register that is used for fallback
|
877 |
|
|
// The return value is 0xFF if the fallback is zero or there is no fallback
|
878 |
|
|
if (fInstr->tmplate != 0xA && fInstr->tmplate != 0xE) {
|
879 |
|
|
return 0xFF; // cannot have fallback
|
880 |
|
|
}
|
881 |
|
|
|
882 |
|
|
uint8_t operands[6] = {0,0,0,0,0,0}; // Make list of operands
|
883 |
|
|
|
884 |
|
|
int j = 5;
|
885 |
|
|
if (fInstr->opAvail & 0x01) operands[j--] = 1; // immediate operand
|
886 |
|
|
if (fInstr->opAvail & 0x02) operands[j--] = 2; // memory operand
|
887 |
|
|
if (fInstr->opAvail & 0x10) operands[j--] = 5; // register RT
|
888 |
|
|
if (fInstr->opAvail & 0x20) operands[j--] = 6; // register RS
|
889 |
|
|
if (fInstr->opAvail & 0x40) operands[j--] = 7; // register RU
|
890 |
|
|
//if (fInstr->opAvail & 0x80) operands[j--] = 8; // don't include register RD yet
|
891 |
|
|
uint8_t fallback; // fallback register
|
892 |
|
|
bool fallbackSeparate = false; // fallback register is not first source register
|
893 |
|
|
|
894 |
|
|
if (nOperands >= 3 && j < 3) {
|
895 |
|
|
fallback = operands[3]; // first of three source operands
|
896 |
|
|
}
|
897 |
|
|
else if (5-j-nOperands > 1) { // more than one vacant register field
|
898 |
|
|
fallback = operands[3]; // first of three possible source operands
|
899 |
|
|
fallbackSeparate = true;
|
900 |
|
|
}
|
901 |
|
|
else if (5-j-nOperands == 1) { // one vacant register field used for fallback
|
902 |
|
|
fallback = operands[j+1];
|
903 |
|
|
fallbackSeparate = true;
|
904 |
|
|
}
|
905 |
|
|
else if (5-j-nOperands == 0) { // no vacant register field. RD not used for source operand
|
906 |
|
|
fallback = operands[j+1]; // first source operand
|
907 |
|
|
}
|
908 |
|
|
else if (fInstr->opAvail & 0x80) { // RD is first source operand
|
909 |
|
|
fallback = 8; // fallback is RD
|
910 |
|
|
}
|
911 |
|
|
else {
|
912 |
|
|
fallback = 0xFF;
|
913 |
|
|
}
|
914 |
|
|
fallback = getRegister(pInstr, fallback); // find register in specified register field
|
915 |
|
|
if (fallback == 0x1F && fallbackSeparate) {
|
916 |
|
|
return 0xFF; // fallback is zero if register 31 is specified and not also a source register
|
917 |
|
|
}
|
918 |
|
|
return fallback;
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
|
922 |
|
|
void CDisassembler::writeNormalInstruction() {
|
923 |
|
|
// Write operand type
|
924 |
|
|
if (!((variant & VARIANT_D0) /*|| iRecord->sourceoperands == 0*/)) { // skip if no operand type
|
925 |
|
|
if ((variant & VARIANT_U0) && operandType < 5 && !debugMode) outFile.put('u'); // Unsigned
|
926 |
|
|
else if (variant & VARIANT_U3 && operandType < 5) {
|
927 |
|
|
// Unsigned if option bit 5 is set.
|
928 |
|
|
// Option bit is in IM3 in E formats
|
929 |
|
|
if (fInstr->tmplate == 0xE && (fInstr->imm2 & 2) && (pInstr->a.im3 & 0x8) && !debugMode) {
|
930 |
|
|
outFile.put('u');
|
931 |
|
|
}
|
932 |
|
|
}
|
933 |
|
|
outFile.tabulate(asmTab0);
|
934 |
|
|
writeOperandType(operandType); outFile.put(' ');
|
935 |
|
|
}
|
936 |
|
|
outFile.tabulate(asmTab1);
|
937 |
|
|
|
938 |
|
|
// Write destination operand
|
939 |
|
|
if (!(variant & (VARIANT_D0 | VARIANT_D1 | VARIANT_D3))) { // skip if no destination operands
|
940 |
|
|
if (variant & VARIANT_M0) {
|
941 |
|
|
writeMemoryOperand(); // Memory destination operand
|
942 |
|
|
}
|
943 |
|
|
else {
|
944 |
|
|
if (variant & VARIANT_SPECD) writeSpecialRegister(pInstr->a.rd, variant >> VARIANT_SPECB);
|
945 |
|
|
else if (fInstr->vect == 0 || (variant & VARIANT_R0)) writeGPRegister(pInstr->a.rd);
|
946 |
|
|
else writeVectorRegister(pInstr->a.rd);
|
947 |
|
|
}
|
948 |
|
|
outFile.put(" = ");
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
// Write instruction name
|
952 |
|
|
outFile.put(iRecord->name);
|
953 |
|
|
|
954 |
|
|
/* Source operands are selected according to the following algorithm:
|
955 |
|
|
1. Read nOp = number of operands from instruction list.
|
956 |
|
|
2. Select nOp operands from the following list, in order of priority:
|
957 |
|
|
immediate, memory, RT, RS, RU, RD
|
958 |
|
|
If one in the list is not available, go to the next
|
959 |
|
|
3. The selected operands are used as source operands in the reversed order
|
960 |
|
|
*/
|
961 |
|
|
int nOperands = (int)iRecord->sourceoperands; // Number of source operands
|
962 |
|
|
|
963 |
|
|
// Make list of operands from available operands. 0=none, 1=immediate, 2=memory, 5=RT, 6=RS, 7=RU, 8=RD
|
964 |
|
|
uint8_t opAvail = fInstr->opAvail; // Bit index of available operands
|
965 |
|
|
// opAvail bits: 1 = immediate, 2 = memory,
|
966 |
|
|
// 0x10 = RT, 0x20 = RS, 0x40 = RU, 0x80 = RD
|
967 |
|
|
if (fInstr->category != 3) { // Single format instruction. Immediate operand determined by instruction table
|
968 |
|
|
if (iRecord->opimmediate) opAvail |= 1;
|
969 |
|
|
else opAvail &= ~1;
|
970 |
|
|
}
|
971 |
|
|
if (variant & VARIANT_M0) opAvail &= ~2; // Memory operand already written as destination
|
972 |
|
|
|
973 |
|
|
// (simular to emulator1.cpp:)
|
974 |
|
|
// Make list of operands from available operands.
|
975 |
|
|
// The operands[] array must have 6 elements to avoid overflow here,
|
976 |
|
|
// even if some elements are later overwritten and used for other purposes
|
977 |
|
|
uint8_t operands[6] = {0,0,0,0,0,0}; // Make list of operands
|
978 |
|
|
|
979 |
|
|
int j = 5;
|
980 |
|
|
if (opAvail & 0x01) operands[j--] = 1; // immediate operand
|
981 |
|
|
if (opAvail & 0x02) operands[j--] = 2; // memory operand
|
982 |
|
|
if (opAvail & 0x10) operands[j--] = 5; // register RT
|
983 |
|
|
if (opAvail & 0x20) operands[j--] = 6; // register RS
|
984 |
|
|
if (opAvail & 0x40) operands[j--] = 7; // register RU
|
985 |
|
|
if (opAvail & 0x80) operands[j--] = 8; // register RD
|
986 |
|
|
operands[0] = 8; // destination
|
987 |
|
|
|
988 |
|
|
// Write source operands
|
989 |
|
|
if (nOperands) { // Skip if no source operands
|
990 |
|
|
outFile.put("(");
|
991 |
|
|
// Loop through operands
|
992 |
|
|
int iop = 0; // operand number
|
993 |
|
|
for (j = 6 - nOperands; j < 6; j++, iop++) {
|
994 |
|
|
uint8_t reg = getRegister(pInstr, operands[j]);// select register
|
995 |
|
|
//uint8_t reg = operands[j];// select register
|
996 |
|
|
switch (operands[j]) {
|
997 |
|
|
case 1: // Immediate operand
|
998 |
|
|
writeImmediateOperand();
|
999 |
|
|
break;
|
1000 |
|
|
case 2: // Memory operand
|
1001 |
|
|
writeMemoryOperand();
|
1002 |
|
|
break;
|
1003 |
|
|
case 5: // RT
|
1004 |
|
|
if (variant & VARIANT_SPECS) writeSpecialRegister(reg, variant >> VARIANT_SPECB);
|
1005 |
|
|
else if (fInstr->vect == 0 || (variant & VARIANT_RL) || ((uint32_t)variant & VARIANT_R123 & (1 << (VARIANT_R1B + iop)))) writeGPRegister(reg);
|
1006 |
|
|
else writeVectorRegister(reg);
|
1007 |
|
|
break;
|
1008 |
|
|
case 6: // RS
|
1009 |
|
|
case 7: // RU
|
1010 |
|
|
if (variant & VARIANT_SPECS) writeSpecialRegister(reg, variant >> VARIANT_SPECB);
|
1011 |
|
|
else if (fInstr->vect == 0 || ((uint32_t)variant & VARIANT_R123 & (1 << (VARIANT_R1B + iop)))) writeGPRegister(reg);
|
1012 |
|
|
else writeVectorRegister(reg);
|
1013 |
|
|
break;
|
1014 |
|
|
case 8: // RD
|
1015 |
|
|
if (variant & VARIANT_SPECS) writeSpecialRegister(reg, variant >> VARIANT_SPECB);
|
1016 |
|
|
else if (fInstr->vect == 0 || ((uint32_t)variant & VARIANT_R123 & (1 << (VARIANT_R1B + iop))) || (variant & VARIANT_D3R0) == VARIANT_D3R0) {
|
1017 |
|
|
writeGPRegister(reg);
|
1018 |
|
|
}
|
1019 |
|
|
else writeVectorRegister(reg);
|
1020 |
|
|
break;
|
1021 |
|
|
}
|
1022 |
|
|
if (operands[j] && j < 5 &&
|
1023 |
|
|
(iRecord->opimmediate != OPI_IMPLICIT || operands[j+1] != 1)) {
|
1024 |
|
|
outFile.put(", "); // Comma if not the last operand
|
1025 |
|
|
}
|
1026 |
|
|
}
|
1027 |
|
|
// end parameter list
|
1028 |
|
|
outFile.put(")"); // we prefer to end the parenthesis before the mask and options
|
1029 |
|
|
|
1030 |
|
|
// write mask register
|
1031 |
|
|
if ((fInstr->tmplate == 0xA || fInstr->tmplate == 0xE) && (pInstr->a.mask != 7 || (variant & VARIANT_F1))) {
|
1032 |
|
|
if (pInstr->a.mask != 7) {
|
1033 |
|
|
outFile.put(", mask=");
|
1034 |
|
|
if (fInstr->vect) writeVectorRegister(pInstr->a.mask); else writeGPRegister(pInstr->a.mask);
|
1035 |
|
|
}
|
1036 |
|
|
// write fallback
|
1037 |
|
|
if (!(variant & VARIANT_F0)) {
|
1038 |
|
|
uint8_t fb = findFallback(fInstr, pInstr, nOperands); // find fallback register
|
1039 |
|
|
if (fb == 0xFF) {
|
1040 |
|
|
outFile.put(", fallback=0");
|
1041 |
|
|
}
|
1042 |
|
|
else if (!(variant & VARIANT_F1) || getRegister(pInstr, operands[6-nOperands]) != fb) {
|
1043 |
|
|
outFile.put(", fallback=");
|
1044 |
|
|
if (fInstr->vect) writeVectorRegister(fb & 0x1F); else writeGPRegister(fb & 0x1F);
|
1045 |
|
|
}
|
1046 |
|
|
}
|
1047 |
|
|
}
|
1048 |
|
|
// write options = IM3, if IM3 is used and not already written by writeImmediateOperand
|
1049 |
|
|
if ((variant & VARIANT_On) && (fInstr->imm2 & 2)
|
1050 |
|
|
&& (fInstr->category == 3 || (iRecord->opimmediate != 0 && iRecord->opimmediate != OPI_INT886))
|
1051 |
|
|
) {
|
1052 |
|
|
outFile.put(", options=");
|
1053 |
|
|
outFile.putHex(pInstr->a.im3);
|
1054 |
|
|
}
|
1055 |
|
|
}
|
1056 |
|
|
}
|
1057 |
|
|
|
1058 |
|
|
|
1059 |
|
|
void CDisassembler::writeJumpInstruction(){
|
1060 |
|
|
// Write operand type
|
1061 |
|
|
if (!(variant & VARIANT_D0 || iRecord->sourceoperands == 1)) { // skip if no operands other than target
|
1062 |
|
|
outFile.tabulate(asmTab0);
|
1063 |
|
|
if ((variant & VARIANT_U0) && operandType < 5) outFile.put("u"); // unsigned
|
1064 |
|
|
writeOperandType(operandType);
|
1065 |
|
|
}
|
1066 |
|
|
outFile.tabulate(asmTab1);
|
1067 |
|
|
|
1068 |
|
|
// Split instruction name into arithmetic operation and jump condition
|
1069 |
|
|
char iname[maxINameLen+1];
|
1070 |
|
|
char * jname;
|
1071 |
|
|
strncpy(iname, iRecord->name, maxINameLen); iname[maxINameLen] = 0;
|
1072 |
|
|
jname = strchr(iname, '/');
|
1073 |
|
|
if (jname) {
|
1074 |
|
|
*jname = 0; // end first part of name
|
1075 |
|
|
jname++; // point to second part of name
|
1076 |
|
|
}
|
1077 |
|
|
else jname = iname;
|
1078 |
|
|
|
1079 |
|
|
if (iRecord->sourceoperands > 1) {
|
1080 |
|
|
// Instruction has arithmetic operands
|
1081 |
|
|
|
1082 |
|
|
if (!(variant & (VARIANT_D0 | VARIANT_D1 | VARIANT_D3))) {
|
1083 |
|
|
// Write destination operand
|
1084 |
|
|
writeRegister(pInstr->a.rd, operandType);
|
1085 |
|
|
outFile.put(" = ");
|
1086 |
|
|
}
|
1087 |
|
|
|
1088 |
|
|
// Write first part of instruction name
|
1089 |
|
|
outFile.put(iname); outFile.put("(");
|
1090 |
|
|
|
1091 |
|
|
// Write arithmetic operands
|
1092 |
|
|
if (iRecord->sourceoperands > 2) {
|
1093 |
|
|
if ((fInstr->opAvail & 0x30) == 0x30) { // RS and RT
|
1094 |
|
|
writeRegister(pInstr->a.rs, operandType); outFile.put(", ");
|
1095 |
|
|
writeRegister(pInstr->a.rt, operandType);
|
1096 |
|
|
}
|
1097 |
|
|
else {
|
1098 |
|
|
uint32_t r1 = pInstr->a.rd; // First source operand
|
1099 |
|
|
if ((fInstr->opAvail & 0x21) == 0x21) r1 = pInstr->a.rs; // Two registers and an immediate operand
|
1100 |
|
|
writeRegister(r1, operandType); // Write operand
|
1101 |
|
|
outFile.put(", ");
|
1102 |
|
|
|
1103 |
|
|
// Second source operand
|
1104 |
|
|
if (fInstr->opAvail & 2) {
|
1105 |
|
|
writeMemoryOperand();
|
1106 |
|
|
if (fInstr->opAvail & 1) {
|
1107 |
|
|
outFile.put(", "); writeImmediateOperand();
|
1108 |
|
|
}
|
1109 |
|
|
}
|
1110 |
|
|
else if (fInstr->opAvail & 1) {
|
1111 |
|
|
writeImmediateOperand();
|
1112 |
|
|
}
|
1113 |
|
|
else {
|
1114 |
|
|
writeRegister(pInstr->a.rs, operandType);
|
1115 |
|
|
}
|
1116 |
|
|
}
|
1117 |
|
|
}
|
1118 |
|
|
else {
|
1119 |
|
|
writeRegister(pInstr->a.rs, operandType); // the only operand is rs
|
1120 |
|
|
}
|
1121 |
|
|
|
1122 |
|
|
// End operand list
|
1123 |
|
|
if (fInstr->opAvail & 0x80) outFile.put("), ");
|
1124 |
|
|
|
1125 |
|
|
}
|
1126 |
|
|
// Write second part of instruction name
|
1127 |
|
|
outFile.put(jname);
|
1128 |
|
|
|
1129 |
|
|
// Write jump target
|
1130 |
|
|
outFile.put(' ');
|
1131 |
|
|
writeJumpTarget(iInstr + fInstr->jumpPos, fInstr->jumpSize);
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
|
|
void CDisassembler::writeCodeComment() {
|
1135 |
|
|
// Write hex listing of instruction as comment after single-format or multi-format instruction
|
1136 |
|
|
// uint32_t i; // Index to current byte
|
1137 |
|
|
// uint32_t fieldSize; // Number of bytes in field
|
1138 |
|
|
// const char * spacer; // Space between fields
|
1139 |
|
|
|
1140 |
|
|
outFile.tabulate(asmTab3); // tabulate to comment field
|
1141 |
|
|
if (debugMode) return;
|
1142 |
|
|
outFile.put(commentSeparator); outFile.put(' '); // Start comment
|
1143 |
|
|
|
1144 |
|
|
writeAddress(); // Write address
|
1145 |
|
|
|
1146 |
|
|
if (cmd.dumpOptions & 2) { // option "-b": binary listing
|
1147 |
|
|
outFile.putHex(pInstr->i[0], 2);
|
1148 |
|
|
if (instrLength > 1) {
|
1149 |
|
|
outFile.put(" "); outFile.putHex(pInstr->i[1], 2);
|
1150 |
|
|
}
|
1151 |
|
|
if (instrLength > 2) {
|
1152 |
|
|
outFile.put(" "); outFile.putHex(pInstr->i[2], 2);
|
1153 |
|
|
}
|
1154 |
|
|
outFile.put(" | ");
|
1155 |
|
|
}
|
1156 |
|
|
|
1157 |
|
|
if (fInstr->tmplate == 0xE && instrLength > 1) { // format E
|
1158 |
|
|
// Write format_template op1.op2 ot rd.rs.rt.ru mask IM2 IM3
|
1159 |
|
|
outFile.putHex((format >> 8) & 0xF, 0); outFile.putHex(uint8_t(format), 2); outFile.put('_'); // format
|
1160 |
|
|
outFile.putHex(uint8_t(fInstr->tmplate), 0); outFile.put(' ');
|
1161 |
|
|
outFile.putHex(uint8_t(pInstr->a.op1), 2); outFile.put('.'); // op1.op2
|
1162 |
|
|
if (!(fInstr->imm2 & 0x100)) {
|
1163 |
|
|
outFile.putHex(uint8_t(pInstr->a.op2), 0); outFile.put(' ');
|
1164 |
|
|
}
|
1165 |
|
|
outFile.putHex(operandType, 0); outFile.put(' ');
|
1166 |
|
|
outFile.putHex(uint8_t(pInstr->a.rd), 2); outFile.put('.'); // registers rd,rs,rt,ru
|
1167 |
|
|
outFile.putHex(uint8_t(pInstr->a.rs), 2); outFile.put('.');
|
1168 |
|
|
outFile.putHex(uint8_t(pInstr->a.rt), 2); outFile.put('.');
|
1169 |
|
|
outFile.putHex(uint8_t(pInstr->a.ru), 2); outFile.put(' ');
|
1170 |
|
|
if (pInstr->a.mask != 7) outFile.putHex(pInstr->a.mask, 0); // mask
|
1171 |
|
|
else outFile.put('_'); // no mask
|
1172 |
|
|
outFile.put(' ');
|
1173 |
|
|
outFile.putHex(pInstr->s[2], 2); outFile.put(' '); // IM2
|
1174 |
|
|
outFile.putHex(uint8_t(pInstr->a.im3), 2); // IM3
|
1175 |
|
|
if (instrLength == 3) {
|
1176 |
|
|
outFile.put(' ');
|
1177 |
|
|
outFile.putHex(pInstr->i[2], 2); // IM4
|
1178 |
|
|
}
|
1179 |
|
|
}
|
1180 |
|
|
else if (fInstr->tmplate == 0xD) {
|
1181 |
|
|
// Write format_template op1 data
|
1182 |
|
|
outFile.putHex((format >> 8) & 0xF, 0); outFile.putHex(uint8_t(format), 2); outFile.put('_');
|
1183 |
|
|
outFile.putHex(uint8_t(fInstr->tmplate), 0); outFile.put(' ');
|
1184 |
|
|
outFile.putHex(uint8_t(pInstr->a.op1), 2); outFile.put(' ');
|
1185 |
|
|
outFile.putHex(uint32_t(pInstr->d.im2 & 0xFFFFFF), 0);
|
1186 |
|
|
}
|
1187 |
|
|
else {
|
1188 |
|
|
// Write format_template op1 ot rd.rs.rt mask
|
1189 |
|
|
outFile.putHex((format >> 8) & 0xF, 0); outFile.putHex(uint8_t(format), 2); outFile.put('_');
|
1190 |
|
|
outFile.putHex(uint8_t(fInstr->tmplate), 0); outFile.put(' ');
|
1191 |
|
|
outFile.putHex(uint8_t(pInstr->a.op1), 2); outFile.put(' ');
|
1192 |
|
|
if (fInstr->tmplate == 0xC) { // Format C has 16 bit immediate
|
1193 |
|
|
outFile.putHex(uint8_t(pInstr->a.rd), 2); outFile.put(' ');
|
1194 |
|
|
outFile.putHex(pInstr->s[0], 2);
|
1195 |
|
|
}
|
1196 |
|
|
else { // not format C
|
1197 |
|
|
outFile.putHex(operandType, 0); outFile.put(' ');
|
1198 |
|
|
outFile.putHex(uint8_t(pInstr->a.rd), 2); outFile.put('.');
|
1199 |
|
|
outFile.putHex(uint8_t(pInstr->a.rs), 2);
|
1200 |
|
|
if (fInstr->tmplate == 0xB) { // Format B has 8 bit immediate
|
1201 |
|
|
outFile.put(' '); outFile.putHex(pInstr->b[0], 2);
|
1202 |
|
|
}
|
1203 |
|
|
else { // format A or E
|
1204 |
|
|
outFile.put('.'); outFile.putHex(uint8_t(pInstr->a.rt), 2); outFile.put(' ');
|
1205 |
|
|
if (pInstr->a.mask != 7) outFile.putHex(pInstr->a.mask, 0);
|
1206 |
|
|
else outFile.put('_'); // no mask
|
1207 |
|
|
}
|
1208 |
|
|
}
|
1209 |
|
|
if (instrLength > 1) {
|
1210 |
|
|
outFile.put(' ');
|
1211 |
|
|
if (instrLength == 2) { // format A2, B2, C2
|
1212 |
|
|
outFile.putHex(pInstr->i[1], 2);
|
1213 |
|
|
}
|
1214 |
|
|
else if (instrLength == 3) { // format A3, B3
|
1215 |
|
|
uint8_t const * bb = pInstr->b;
|
1216 |
|
|
uint64_t q = *(uint64_t*)(bb + 4);
|
1217 |
|
|
outFile.putHex(q, 2);
|
1218 |
|
|
}
|
1219 |
|
|
else { // unsupported formats longer than 1
|
1220 |
|
|
for (uint32_t j = 1; j < instrLength; j++) {
|
1221 |
|
|
outFile.putHex(pInstr->i[j], 2); outFile.put(' ');
|
1222 |
|
|
}
|
1223 |
|
|
}
|
1224 |
|
|
}
|
1225 |
|
|
}
|
1226 |
|
|
// Write relocation comment
|
1227 |
|
|
if (relocation && !(relocations[relocation-1].r_type & 0x80000000)) { // 0x80000000 indicates no real relocation
|
1228 |
|
|
uint32_t reltype = relocations[relocation-1].r_type;
|
1229 |
|
|
outFile.put(". Rel: ");
|
1230 |
|
|
const char * rtyp = "", * rsize = "";
|
1231 |
|
|
switch ((reltype >> 16) & 0xFF) {
|
1232 |
|
|
case R_FORW_ABS >> 16:
|
1233 |
|
|
rtyp = "abs "; break;
|
1234 |
|
|
case R_FORW_SELFREL >> 16:
|
1235 |
|
|
rtyp = "ip "; break;
|
1236 |
|
|
case R_FORW_DATAP >> 16:
|
1237 |
|
|
rtyp = "datap "; break;
|
1238 |
|
|
case R_FORW_THREADP >> 16:
|
1239 |
|
|
rtyp = "threadp "; break;
|
1240 |
|
|
case R_FORW_REFP >> 16:
|
1241 |
|
|
rtyp = "refpt "; break;
|
1242 |
|
|
default:
|
1243 |
|
|
rtyp = "other "; break;
|
1244 |
|
|
}
|
1245 |
|
|
switch ((reltype >> 8) & 0xFF) {
|
1246 |
|
|
case R_FORW_8 >> 8:
|
1247 |
|
|
rsize = "8 bit"; break;
|
1248 |
|
|
case R_FORW_16 >> 8:
|
1249 |
|
|
rsize = "16 bit"; break;
|
1250 |
|
|
case R_FORW_32 >> 8:
|
1251 |
|
|
rsize = "32 bit"; break;
|
1252 |
|
|
case R_FORW_64 >> 8:
|
1253 |
|
|
rsize = "64 bit"; break;
|
1254 |
|
|
case R_FORW_32LO >> 8:
|
1255 |
|
|
rsize = "32 low bits"; break;
|
1256 |
|
|
case R_FORW_32HI >> 8:
|
1257 |
|
|
rsize = "32 high bits"; break;
|
1258 |
|
|
case R_FORW_64LO >> 8:
|
1259 |
|
|
rsize = "64 low bits"; break;
|
1260 |
|
|
case R_FORW_64HI >> 8:
|
1261 |
|
|
rsize = "64 high bits"; break;
|
1262 |
|
|
}
|
1263 |
|
|
int scale = 1 << (reltype & 0xF);
|
1264 |
|
|
outFile.put(rtyp);
|
1265 |
|
|
outFile.put(rsize);
|
1266 |
|
|
if (scale > 1) {
|
1267 |
|
|
outFile.put(" * ");
|
1268 |
|
|
outFile.putDecimal(scale);
|
1269 |
|
|
}
|
1270 |
|
|
}
|
1271 |
|
|
|
1272 |
|
|
// Write warnings and errors detected after we started writing instruction
|
1273 |
|
|
if (instructionWarning) {
|
1274 |
|
|
if (instructionWarning & 0x100) {
|
1275 |
|
|
outFile.put(". Unsupported format for this instruction");
|
1276 |
|
|
instructionWarning = 0; // Suppress further warnings
|
1277 |
|
|
}
|
1278 |
|
|
if (instructionWarning & 0x200) {
|
1279 |
|
|
outFile.put(". Unsupported operand type for this instruction");
|
1280 |
|
|
instructionWarning = 0; // Suppress further warnings
|
1281 |
|
|
}
|
1282 |
|
|
if (instructionWarning & 4) outFile.put(". Warning: float in double size field");
|
1283 |
|
|
if (instructionWarning & 2) outFile.put(". Warning: unused immediate operand");
|
1284 |
|
|
if (instructionWarning & 1) outFile.put(". Optional");
|
1285 |
|
|
}
|
1286 |
|
|
}
|
1287 |
|
|
|
1288 |
|
|
|
1289 |
|
|
const char * baseRegisterNames[4] = {"thread", "datap", "ip", "sp"};
|
1290 |
|
|
|
1291 |
|
|
|
1292 |
|
|
void CDisassembler::writeMemoryOperand() {
|
1293 |
|
|
// Check if there is a memory operand
|
1294 |
|
|
if (fInstr->mem == 0) {
|
1295 |
|
|
writeWarning("No memory operand");
|
1296 |
|
|
return;
|
1297 |
|
|
}
|
1298 |
|
|
int itemsWritten = 0; // items inside []
|
1299 |
|
|
bool symbolFound = false; // address corresponds to symbol
|
1300 |
|
|
|
1301 |
|
|
// Check if there is a relocation here
|
1302 |
|
|
relocation = 0; // index to relocation record
|
1303 |
|
|
if (fInstr->addrSize) {
|
1304 |
|
|
ElfFwcReloc rel;
|
1305 |
|
|
rel.r_offset = iInstr + fInstr->addrPos;
|
1306 |
|
|
rel.r_section = section;
|
1307 |
|
|
uint32_t nrel = relocations.findAll(&relocation, rel);
|
1308 |
|
|
if (nrel) relocation++; // add 1 to avoid zero
|
1309 |
|
|
}
|
1310 |
|
|
// Enclose in square bracket
|
1311 |
|
|
outFile.put('[');
|
1312 |
|
|
uint32_t baseP = pInstr->a.rs; // Base pointer is RS
|
1313 |
|
|
|
1314 |
|
|
if (fInstr->mem & 0x10) { // has relocated symbol
|
1315 |
|
|
if (relocation) {
|
1316 |
|
|
writeRelocationTarget(iInstr + fInstr->addrPos, fInstr->addrSize);
|
1317 |
|
|
itemsWritten++;
|
1318 |
|
|
}
|
1319 |
|
|
else if (isExecutable) {
|
1320 |
|
|
// executable file has no relocation record. Find nearest symbol
|
1321 |
|
|
ElfFwcSym needle; // symbol address to search for
|
1322 |
|
|
needle.st_section = 0;
|
1323 |
|
|
needle.st_value = 0;
|
1324 |
|
|
if (fInstr->addrSize > 1 && baseP >= 28 && baseP <= 30) {
|
1325 |
|
|
needle.st_section = 31 - baseP; // 1: IP, 2: datap, 3: threadp
|
1326 |
|
|
|
1327 |
|
|
int64_t offset = 0;
|
1328 |
|
|
switch (fInstr->addrSize) { // Read offset of correct size
|
1329 |
|
|
case 2:
|
1330 |
|
|
offset = *(int16_t*)(sectionBuffer + iInstr + fInstr->addrPos);
|
1331 |
|
|
break;
|
1332 |
|
|
case 4:
|
1333 |
|
|
offset = *(int32_t*)(sectionBuffer + iInstr + fInstr->addrPos);
|
1334 |
|
|
break;
|
1335 |
|
|
}
|
1336 |
|
|
switch (baseP) {
|
1337 |
|
|
case 28: // threadp
|
1338 |
|
|
offset += fileHeader.e_threadp_base;
|
1339 |
|
|
break;
|
1340 |
|
|
|
1341 |
|
|
case 29: // datap
|
1342 |
|
|
offset += fileHeader.e_datap_base;
|
1343 |
|
|
break;
|
1344 |
|
|
|
1345 |
|
|
case 30: // ip, self-relative
|
1346 |
|
|
offset += sectionAddress + int64_t(iInstr) + instrLength * 4;
|
1347 |
|
|
break;
|
1348 |
|
|
}
|
1349 |
|
|
needle.st_value = offset; // Symbol position
|
1350 |
|
|
int32_t isym = symbols.findFirst(needle);
|
1351 |
|
|
if (isym >= 0) { // symbol found at target address
|
1352 |
|
|
writeSymbolName(isym);
|
1353 |
|
|
symbolFound = true; itemsWritten++;
|
1354 |
|
|
}
|
1355 |
|
|
else { // find nearest preceding symbol
|
1356 |
|
|
isym &= 0x7FFFFFFF; // remove not-found bit
|
1357 |
|
|
if (uint32_t(isym) < symbols.numEntries()) { // near symbol found
|
1358 |
|
|
if (isym > 0 && symbols[isym-1].st_section == needle.st_section) {
|
1359 |
|
|
isym--; // use nearest preceding symbol if in same section
|
1360 |
|
|
}
|
1361 |
|
|
if (symbols[isym].st_section == needle.st_section) { // write nearest symbol
|
1362 |
|
|
writeSymbolName(isym); outFile.put('+');
|
1363 |
|
|
outFile.putHex((uint32_t)(offset - symbols[isym].st_value), 1); // write offset relative to symbol
|
1364 |
|
|
symbolFound = true; itemsWritten++;
|
1365 |
|
|
}
|
1366 |
|
|
}
|
1367 |
|
|
}
|
1368 |
|
|
}
|
1369 |
|
|
}
|
1370 |
|
|
}
|
1371 |
|
|
if (!symbolFound) {
|
1372 |
|
|
if (fInstr->addrSize > 1 && baseP >= 28 && !(fInstr->mem & 0x20)) { // Special pointers used if at least 16 bit offset
|
1373 |
|
|
if (baseP == 31 || !relocation) { // Do not write base pointer if implicit in relocated symbol
|
1374 |
|
|
if (itemsWritten) outFile.put('+');
|
1375 |
|
|
outFile.put(baseRegisterNames[baseP - 28]); itemsWritten++;
|
1376 |
|
|
}
|
1377 |
|
|
}
|
1378 |
|
|
else {
|
1379 |
|
|
if (itemsWritten) outFile.put('+');
|
1380 |
|
|
writeGPRegister(baseP); itemsWritten++;
|
1381 |
|
|
}
|
1382 |
|
|
}
|
1383 |
|
|
|
1384 |
|
|
if ((fInstr->mem & 4) && pInstr->a.rt != 31) { // Has index in RT
|
1385 |
|
|
if (fInstr->scale & 4) { // Negative index
|
1386 |
|
|
outFile.put('-'); writeGPRegister(pInstr->a.rt);
|
1387 |
|
|
}
|
1388 |
|
|
else { // Positive, scaled index
|
1389 |
|
|
if (itemsWritten) outFile.put('+');
|
1390 |
|
|
writeGPRegister(pInstr->a.rt);
|
1391 |
|
|
if ((fInstr->scale & 2) && operandType > 0) { // Index is scaled
|
1392 |
|
|
outFile.put('*');
|
1393 |
|
|
outFile.putDecimal(dataSizeTable[operandType & 7]);
|
1394 |
|
|
}
|
1395 |
|
|
}
|
1396 |
|
|
itemsWritten++;
|
1397 |
|
|
}
|
1398 |
|
|
if (fInstr->mem & 0x10) { // Has offset
|
1399 |
|
|
if (relocation || symbolFound) { // has relocated symbol
|
1400 |
|
|
// has been written above
|
1401 |
|
|
//writeRelocationTarget(iInstr + fInstr->addrPos, fInstr->addrSize);
|
1402 |
|
|
}
|
1403 |
|
|
else {
|
1404 |
|
|
int32_t offset = 0;
|
1405 |
|
|
switch (fInstr->addrSize) { // Read offset of correct size
|
1406 |
|
|
case 1:
|
1407 |
|
|
offset = *(int8_t*)(sectionBuffer + iInstr + fInstr->addrPos);
|
1408 |
|
|
break;
|
1409 |
|
|
case 2:
|
1410 |
|
|
offset = *(int16_t*)(sectionBuffer + iInstr + fInstr->addrPos);
|
1411 |
|
|
break;
|
1412 |
|
|
case 4:
|
1413 |
|
|
offset = *(int32_t*)(sectionBuffer + iInstr + fInstr->addrPos);
|
1414 |
|
|
break;
|
1415 |
|
|
}
|
1416 |
|
|
if (offset > 0) { // Write positive offset
|
1417 |
|
|
outFile.put('+');
|
1418 |
|
|
outFile.putHex((uint32_t)offset, 1);
|
1419 |
|
|
}
|
1420 |
|
|
else if (offset < 0) { // Write negative offset
|
1421 |
|
|
outFile.put('-');
|
1422 |
|
|
outFile.putHex((uint32_t)(-offset), 1);
|
1423 |
|
|
}
|
1424 |
|
|
if ((fInstr->scale & 1) && offset != 0) { // Offset is scaled
|
1425 |
|
|
outFile.put('*');
|
1426 |
|
|
outFile.putDecimal(dataSizeTable[operandType & 7]);
|
1427 |
|
|
}
|
1428 |
|
|
itemsWritten++;
|
1429 |
|
|
}
|
1430 |
|
|
}
|
1431 |
|
|
if (fInstr->mem & 0x20) { // Has limit
|
1432 |
|
|
outFile.put(", limit=");
|
1433 |
|
|
if (fInstr->addrSize == 4) { // 32 bit limit
|
1434 |
|
|
outFile.putHex(*(uint32_t*)(sectionBuffer + iInstr + fInstr->addrPos));
|
1435 |
|
|
}
|
1436 |
|
|
else { // 16 bit limit
|
1437 |
|
|
outFile.putHex(*(uint16_t*)(sectionBuffer + iInstr + fInstr->addrPos));
|
1438 |
|
|
}
|
1439 |
|
|
}
|
1440 |
|
|
if ((fInstr->vect & 2) && pInstr->a.rt != 31) { // Has vector length
|
1441 |
|
|
outFile.put(", length=");
|
1442 |
|
|
writeGPRegister(pInstr->a.rt);
|
1443 |
|
|
}
|
1444 |
|
|
else if ((fInstr->vect & 4) && pInstr->a.rt != 31) { // Has broadcast
|
1445 |
|
|
outFile.put(", broadcast=");
|
1446 |
|
|
writeGPRegister(pInstr->a.rt);
|
1447 |
|
|
}
|
1448 |
|
|
else if (fInstr->vect & 7 || ((fInstr->vect & 0x10) && (pInstr->a.ot & 4))) { // Scalar
|
1449 |
|
|
outFile.put(", scalar");
|
1450 |
|
|
}
|
1451 |
|
|
|
1452 |
|
|
outFile.put(']'); // End square bracket
|
1453 |
|
|
}
|
1454 |
|
|
|
1455 |
|
|
|
1456 |
|
|
void CDisassembler::writeImmediateOperand() {
|
1457 |
|
|
// Write immediate operand depending on type in instruction list
|
1458 |
|
|
// Check if there is a relocation here
|
1459 |
|
|
ElfFwcReloc rel;
|
1460 |
|
|
rel.r_offset = (uint64_t)iInstr + fInstr->immPos;
|
1461 |
|
|
rel.r_section = section;
|
1462 |
|
|
uint32_t irel; // index to relocation record
|
1463 |
|
|
uint32_t numRel = relocations.findAll(&irel, rel);
|
1464 |
|
|
if (numRel) { // Immediate value is relocated
|
1465 |
|
|
writeRelocationTarget(iInstr + fInstr->immPos, fInstr->immSize);
|
1466 |
|
|
return;
|
1467 |
|
|
}
|
1468 |
|
|
// Value is not relocated
|
1469 |
|
|
|
1470 |
|
|
/*if ((variant & VARIANT_M1) && (fInstr->tmplate) == 0xE && (fInstr->opAvail & 2)) {
|
1471 |
|
|
// VARIANT_M1: immediate operand is in IM3
|
1472 |
|
|
outFile.putDecimal(pInstr->a.im3);
|
1473 |
|
|
return;
|
1474 |
|
|
} */
|
1475 |
|
|
const uint8_t * bb = pInstr->b; // use this for avoiding pedantic warnings from Gnu compiler when type casting
|
1476 |
|
|
if (operandType == 1 && (variant & VARIANT_H0)) operandType = 8; // half precision float
|
1477 |
|
|
if (operandType < 5 || iRecord->opimmediate || (variant & VARIANT_I2)) {
|
1478 |
|
|
// integer, or type specified in instruction list
|
1479 |
|
|
// Get value of right size
|
1480 |
|
|
int64_t x = 0;
|
1481 |
|
|
switch (fInstr->immSize) {
|
1482 |
|
|
case 1: // 8 bits
|
1483 |
|
|
x = *(int8_t*)(bb + fInstr->immPos);
|
1484 |
|
|
break;
|
1485 |
|
|
case 2: // 16 bits
|
1486 |
|
|
x = *(int16_t*)(bb + fInstr->immPos);
|
1487 |
|
|
break;
|
1488 |
|
|
case 3: // 24 bits, sign extend to 32 bits
|
1489 |
|
|
x = *(int32_t*)(bb + fInstr->immPos) << 8 >> 8;
|
1490 |
|
|
break;
|
1491 |
|
|
case 4: // 32 bits
|
1492 |
|
|
x = *(int32_t*)(bb + fInstr->immPos);
|
1493 |
|
|
break;
|
1494 |
|
|
case 8:
|
1495 |
|
|
x = *(int64_t*)(bb + fInstr->immPos);
|
1496 |
|
|
break;
|
1497 |
|
|
case 0:
|
1498 |
|
|
if (fInstr->tmplate == 0xE) {
|
1499 |
|
|
x = (pInstr->s[2]);
|
1500 |
|
|
}
|
1501 |
|
|
break;
|
1502 |
|
|
// else continue in default:
|
1503 |
|
|
default:
|
1504 |
|
|
writeError("Unknown immediate size");
|
1505 |
|
|
}
|
1506 |
|
|
// Write in the form specified in instruction list
|
1507 |
|
|
switch (iRecord->opimmediate) {
|
1508 |
|
|
case 0: // No form specified
|
1509 |
|
|
case OPI_OT: // same as operand type
|
1510 |
|
|
if (fInstr->category == 1 && iRecord->opimmediate == 0 && x != 0) instructionWarning |= 2; // Immediate field not used in this instruction. Write nothing
|
1511 |
|
|
switch (fInstr->immSize) { // Output as hexadecimal
|
1512 |
|
|
case 1:
|
1513 |
|
|
if (operandType > 0) outFile.putDecimal((int32_t)x, 1); // sign extend to larger size
|
1514 |
|
|
else outFile.putHex(uint8_t(x), 1);
|
1515 |
|
|
break;
|
1516 |
|
|
case 2:
|
1517 |
|
|
if ((fInstr->imm2 & 4) && pInstr->a.im3 && !(variant & VARIANT_On)) { // constant is IM2 << IM3
|
1518 |
|
|
if ((int16_t)x < 0) {
|
1519 |
|
|
outFile.put('-'); x = -x;
|
1520 |
|
|
}
|
1521 |
|
|
outFile.putHex(uint16_t(x), 1);
|
1522 |
|
|
outFile.put(" << ");
|
1523 |
|
|
outFile.putDecimal(pInstr->a.im3);
|
1524 |
|
|
}
|
1525 |
|
|
else if (operandType > 1) {
|
1526 |
|
|
outFile.putDecimal((int32_t)x, 1); // sign extend to larger size
|
1527 |
|
|
}
|
1528 |
|
|
else {
|
1529 |
|
|
outFile.putHex(uint16_t(x), 1);
|
1530 |
|
|
}
|
1531 |
|
|
break;
|
1532 |
|
|
default:
|
1533 |
|
|
case 4:
|
1534 |
|
|
if ((fInstr->imm2 & 8) && pInstr->a.im2) { // constant is IM4 << IM2
|
1535 |
|
|
if ((int32_t)x < 0) {
|
1536 |
|
|
outFile.put('-'); x = -x;
|
1537 |
|
|
}
|
1538 |
|
|
outFile.putHex(uint32_t(x), 1);
|
1539 |
|
|
outFile.put(" << ");
|
1540 |
|
|
outFile.putDecimal(pInstr->a.im2);
|
1541 |
|
|
}
|
1542 |
|
|
else if (operandType <= 2) outFile.putHex(uint32_t(x), 1);
|
1543 |
|
|
else if (operandType == 5 || operandType == 6) {
|
1544 |
|
|
outFile.putFloat(*(float*)(bb + fInstr->immPos));
|
1545 |
|
|
}
|
1546 |
|
|
else {
|
1547 |
|
|
outFile.putDecimal((int32_t)x, 1); // sign extend to larger size
|
1548 |
|
|
}
|
1549 |
|
|
break;
|
1550 |
|
|
case 8:
|
1551 |
|
|
if (operandType == 6) outFile.putFloat(*(double*)(bb + fInstr->immPos));
|
1552 |
|
|
else outFile.putHex(uint64_t(x), 1);
|
1553 |
|
|
break;
|
1554 |
|
|
}
|
1555 |
|
|
break;
|
1556 |
|
|
case OPI_INT8:
|
1557 |
|
|
outFile.putDecimal(int8_t(x), 1);
|
1558 |
|
|
break;
|
1559 |
|
|
case OPI_INT16:
|
1560 |
|
|
outFile.putDecimal(int16_t(x), 1);
|
1561 |
|
|
break;
|
1562 |
|
|
case OPI_INT32:
|
1563 |
|
|
outFile.putDecimal(int32_t(x), 1);
|
1564 |
|
|
break;
|
1565 |
|
|
case OPI_INT8SH:
|
1566 |
|
|
if (int8_t(x >> 8) < 0) {
|
1567 |
|
|
outFile.put('-');
|
1568 |
|
|
outFile.putHex(uint8_t(-int8_t(x >> 8)), 1);
|
1569 |
|
|
}
|
1570 |
|
|
else outFile.putHex(uint8_t(x >> 8), 1);
|
1571 |
|
|
outFile.put(" << ");
|
1572 |
|
|
outFile.putDecimal(uint8_t(x));
|
1573 |
|
|
break;
|
1574 |
|
|
case OPI_INT16SH16:
|
1575 |
|
|
if (x < 0) {
|
1576 |
|
|
outFile.put('-');
|
1577 |
|
|
x = -x;
|
1578 |
|
|
}
|
1579 |
|
|
outFile.putHex(uint16_t(x), 1);
|
1580 |
|
|
outFile.put(" << 16");
|
1581 |
|
|
break;
|
1582 |
|
|
case OPI_INT32SH32:
|
1583 |
|
|
outFile.putHex(uint32_t(x), 1);
|
1584 |
|
|
outFile.put(" << 32");
|
1585 |
|
|
break;
|
1586 |
|
|
case OPI_UINT8:
|
1587 |
|
|
outFile.putHex(uint8_t(x), 1);
|
1588 |
|
|
break;
|
1589 |
|
|
case OPI_UINT16:
|
1590 |
|
|
outFile.putHex(uint16_t(x), 1);
|
1591 |
|
|
break;
|
1592 |
|
|
case OPI_UINT32:
|
1593 |
|
|
outFile.putHex(uint32_t(x), 1);
|
1594 |
|
|
break;
|
1595 |
|
|
case OPI_INT64: case OPI_UINT64:
|
1596 |
|
|
outFile.putHex(uint64_t(x), 1);
|
1597 |
|
|
break;
|
1598 |
|
|
case OPI_2INT8: // Two unsigned integers
|
1599 |
|
|
outFile.putHex(uint8_t(x), 1); outFile.put(", ");
|
1600 |
|
|
outFile.putHex(uint8_t(x >> 8), 1);
|
1601 |
|
|
break;
|
1602 |
|
|
case OPI_INT886: // Three unsigned integers, including IM3
|
1603 |
|
|
outFile.putDecimal(uint8_t(x)); outFile.put(", ");
|
1604 |
|
|
outFile.putDecimal(uint8_t(x >> 8)); outFile.put(", ");
|
1605 |
|
|
outFile.putDecimal(uint8_t(pInstr->a.im3));
|
1606 |
|
|
break;
|
1607 |
|
|
case OPI_2INT16: // Two 16-bit unsigned integers
|
1608 |
|
|
outFile.putHex(uint16_t(x >> 16), 1); outFile.put(", ");
|
1609 |
|
|
outFile.putHex(uint16_t(x), 1);
|
1610 |
|
|
break;
|
1611 |
|
|
case OPI_INT1632: // One 16-bit and one 32-bit unsigned integer
|
1612 |
|
|
outFile.putHex(uint32_t(pInstr->i[1]), 1); outFile.put(", ");
|
1613 |
|
|
outFile.putHex(uint16_t(x), 1);
|
1614 |
|
|
break;
|
1615 |
|
|
case OPI_2INT32: // Two 32-bit unsigned integer
|
1616 |
|
|
outFile.putHex(uint32_t(x >> 32), 1); outFile.put(", ");
|
1617 |
|
|
outFile.putHex(uint32_t(x), 1);
|
1618 |
|
|
break;
|
1619 |
|
|
case OPI_INT1688: // 16 + 8 + 8 bits
|
1620 |
|
|
outFile.putHex(uint16_t(x), 1); outFile.put(", ");
|
1621 |
|
|
outFile.putHex(uint8_t(x >> 16), 1); outFile.put(", ");
|
1622 |
|
|
outFile.putHex(uint8_t(x >> 24), 1);
|
1623 |
|
|
break;
|
1624 |
|
|
case OPI_FLOAT16: // Half precision float
|
1625 |
|
|
outFile.putFloat(half2float(uint16_t(x)));
|
1626 |
|
|
break;
|
1627 |
|
|
case OPI_IMPLICIT:
|
1628 |
|
|
if (x != iRecord->implicit_imm) { // Does not match implicit value. Make value explicit
|
1629 |
|
|
if (iRecord->sourceoperands > 1) outFile.put(", ");
|
1630 |
|
|
outFile.putHex(uint8_t(x), 1);
|
1631 |
|
|
}
|
1632 |
|
|
break;
|
1633 |
|
|
default:
|
1634 |
|
|
writeWarning("Unknown immediate operand type");
|
1635 |
|
|
}
|
1636 |
|
|
}
|
1637 |
|
|
else { // floating point
|
1638 |
|
|
uint32_t immSize = fInstr->immSize; // Size of immediate field
|
1639 |
|
|
if (immSize == 8 && operandType == 5) {
|
1640 |
|
|
immSize = 4; instructionWarning |= 4; // float in double size field
|
1641 |
|
|
}
|
1642 |
|
|
switch (immSize) {
|
1643 |
|
|
case 1: // 8 bits. float as integer
|
1644 |
|
|
outFile.putFloat((float)*(int8_t*)(bb + fInstr->immPos));
|
1645 |
|
|
break;
|
1646 |
|
|
case 2: { // 16 bits
|
1647 |
|
|
uint16_t x = *(uint16_t*)(bb + fInstr->immPos);
|
1648 |
|
|
outFile.putFloat(half2float(x));
|
1649 |
|
|
break;}
|
1650 |
|
|
case 4: { // float
|
1651 |
|
|
float x = *(float*)(bb + fInstr->immPos);
|
1652 |
|
|
outFile.putFloat(x);
|
1653 |
|
|
break;}
|
1654 |
|
|
case 8: { // double
|
1655 |
|
|
double x = *(double*)(bb + fInstr->immPos);
|
1656 |
|
|
outFile.putFloat(x);
|
1657 |
|
|
break;}
|
1658 |
|
|
default:
|
1659 |
|
|
writeError("unknown size for float operand");
|
1660 |
|
|
}
|
1661 |
|
|
}
|
1662 |
|
|
}
|
1663 |
|
|
|
1664 |
|
|
|
1665 |
|
|
void CDisassembler::writeRegister(uint32_t r, uint32_t ot) {
|
1666 |
|
|
if (r == 31 && !(ot & 4)) outFile.put("sp");
|
1667 |
|
|
else {
|
1668 |
|
|
outFile.put(ot & 4 ? "v" : "r"); outFile.putDecimal(r);
|
1669 |
|
|
}
|
1670 |
|
|
}
|
1671 |
|
|
|
1672 |
|
|
|
1673 |
|
|
void CDisassembler::writeGPRegister(uint32_t r) {
|
1674 |
|
|
// Write name of general purpose register
|
1675 |
|
|
if (r == 31) outFile.put("sp");
|
1676 |
|
|
else {
|
1677 |
|
|
outFile.put("r"); outFile.putDecimal(r);
|
1678 |
|
|
}
|
1679 |
|
|
}
|
1680 |
|
|
|
1681 |
|
|
|
1682 |
|
|
void CDisassembler::writeVectorRegister(uint32_t v) {
|
1683 |
|
|
// Write name of vector register
|
1684 |
|
|
outFile.put("v"); outFile.putDecimal(v);
|
1685 |
|
|
}
|
1686 |
|
|
|
1687 |
|
|
// Special register types according to Xn and Yn in 'variant' field in instruction list
|
1688 |
|
|
static const char * specialRegNamesPrefix[8] = {"?", "spec", "capab", "perf", "sys", "?", "?", "?"};
|
1689 |
|
|
static const char * pointerRegNames[4] = {"threadp", "datap", "ip", "sp"};
|
1690 |
|
|
static const char * specialRegNames[] = {"numcontr", "threadp", "datap", "?", "?", "?"};
|
1691 |
|
|
void CDisassembler::writeSpecialRegister(uint32_t r, uint32_t type) {
|
1692 |
|
|
// Write name of other type of register
|
1693 |
|
|
if ((type & 0xF) == 0) {
|
1694 |
|
|
// May be special pointer
|
1695 |
|
|
if (r < 28) {
|
1696 |
|
|
writeGPRegister(r);
|
1697 |
|
|
}
|
1698 |
|
|
else {
|
1699 |
|
|
outFile.put(pointerRegNames[(r-28) & 3]);
|
1700 |
|
|
}
|
1701 |
|
|
}
|
1702 |
|
|
else if ((type & 0xF) == 1 && r <= 2) {
|
1703 |
|
|
// special registers with unique names
|
1704 |
|
|
outFile.put(specialRegNames[r]);
|
1705 |
|
|
}
|
1706 |
|
|
else {
|
1707 |
|
|
outFile.put(specialRegNamesPrefix[type & 7]);
|
1708 |
|
|
outFile.putDecimal(r);
|
1709 |
|
|
}
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
|
1713 |
|
|
// Write name of operand type
|
1714 |
|
|
static const char * operandTypeNames[8] = {
|
1715 |
|
|
"int8", "int16", "int32", "int64", "int128", "float", "double", "float128 "};
|
1716 |
|
|
|
1717 |
|
|
void CDisassembler::writeOperandType(uint32_t ot) {
|
1718 |
|
|
if ((variant & VARIANT_H0) && ot == 1) outFile.put("float16");
|
1719 |
|
|
else outFile.put(operandTypeNames[ot & 7]);
|
1720 |
|
|
}
|
1721 |
|
|
|
1722 |
|
|
|
1723 |
|
|
void CDisassembler::writeWarning(const char * w) {
|
1724 |
|
|
// Write warning to output file
|
1725 |
|
|
outFile.put(commentSeparator);
|
1726 |
|
|
outFile.put(" Warning: ");
|
1727 |
|
|
outFile.put(w);
|
1728 |
|
|
outFile.newLine();
|
1729 |
|
|
}
|
1730 |
|
|
|
1731 |
|
|
|
1732 |
|
|
void CDisassembler::writeError(const char * w) {
|
1733 |
|
|
// Write warning to output file
|
1734 |
|
|
outFile.put(commentSeparator);
|
1735 |
|
|
outFile.put(" Error: ");
|
1736 |
|
|
outFile.put(w);
|
1737 |
|
|
outFile.newLine();
|
1738 |
|
|
}
|
1739 |
|
|
|
1740 |
|
|
|
1741 |
|
|
void CDisassembler::finalErrorCheck() {
|
1742 |
|
|
// Check for illegal entries in symbol table and relocations table
|
1743 |
|
|
// Check for orphaned symbols
|
1744 |
|
|
uint32_t i; // Loop counter
|
1745 |
|
|
uint32_t linesWritten = 0; // Count lines written
|
1746 |
|
|
// Check for orphaned symbols
|
1747 |
|
|
for (i = 0; i < symbols.numEntries(); i++) {
|
1748 |
|
|
if ((symbols[i].st_other & 0x80000000) == 0
|
1749 |
|
|
&& (symbols[i].st_section || symbols[i].st_value)
|
1750 |
|
|
&& symbols[i].st_type != STT_CONSTANT
|
1751 |
|
|
&& symbols[i].st_type != STT_FILE) {
|
1752 |
|
|
// This symbol has not been written out
|
1753 |
|
|
if (linesWritten == 0) {
|
1754 |
|
|
// First orphaned symbol. Write text
|
1755 |
|
|
outFile.newLine(); outFile.newLine(); outFile.put(commentSeparator);
|
1756 |
|
|
outFile.put(" Warning: Symbols outside address range:");
|
1757 |
|
|
outFile.newLine();
|
1758 |
|
|
}
|
1759 |
|
|
outFile.put(commentSeparator); outFile.put(' ');
|
1760 |
|
|
writeSymbolName(i); outFile.put(" = ");
|
1761 |
|
|
outFile.putHex(symbols[i].st_section, 0); outFile.put(':'); outFile.putHex(symbols[i].st_value, 0);
|
1762 |
|
|
outFile.newLine(); linesWritten++;
|
1763 |
|
|
}
|
1764 |
|
|
}
|
1765 |
|
|
// Check for orphaned relocations
|
1766 |
|
|
linesWritten = 0;
|
1767 |
|
|
for (i = 0; i < relocations.numEntries(); i++) {
|
1768 |
|
|
if (relocations[i].r_type == 0) continue; // ignore empty relocation 0
|
1769 |
|
|
if ((relocations[i].r_refsym & 0x80000000) == 0) {
|
1770 |
|
|
// This relocation has not been used
|
1771 |
|
|
if (linesWritten == 0) {
|
1772 |
|
|
// First orphaned symbol. Write text
|
1773 |
|
|
outFile.newLine(); outFile.newLine(); outFile.put(commentSeparator);
|
1774 |
|
|
outFile.put(" Warning: Unused or misplaced relocations:");
|
1775 |
|
|
outFile.newLine();
|
1776 |
|
|
}
|
1777 |
|
|
outFile.put(commentSeparator); outFile.put(" at ");
|
1778 |
|
|
outFile.putHex(uint32_t(relocations[i].r_section)); outFile.put(':'); // Section
|
1779 |
|
|
outFile.putHex(uint32_t(relocations[i].r_offset)); // Offset
|
1780 |
|
|
outFile.put(" to symbol ");
|
1781 |
|
|
writeSymbolName(relocations[i].r_sym & 0x7FFFFFFF);
|
1782 |
|
|
outFile.newLine(); linesWritten++;
|
1783 |
|
|
}
|
1784 |
|
|
}
|
1785 |
|
|
}
|
1786 |
|
|
|
1787 |
|
|
void CDisassembler::writeAddress() {
|
1788 |
|
|
// write code address >> 2. Subtract ip_base to put code section at address 0
|
1789 |
|
|
uint64_t address = (iInstr + sectionAddress - fileHeader.e_ip_base) >> 2;
|
1790 |
|
|
|
1791 |
|
|
if (fileHeader.e_ip_base + sectionEnd + sectionAddress > 0xFFFF * 4) {
|
1792 |
|
|
// Write 32 bit address
|
1793 |
|
|
outFile.putHex(uint32_t(address), 2);
|
1794 |
|
|
}
|
1795 |
|
|
else {
|
1796 |
|
|
// Write 16 bit address
|
1797 |
|
|
outFile.putHex(uint16_t(address), 2);
|
1798 |
|
|
}
|
1799 |
|
|
if (debugMode) outFile.put(" ");
|
1800 |
|
|
else outFile.put(" _ "); // Space after address
|
1801 |
|
|
}
|
1802 |
|
|
|
1803 |
|
|
void CDisassembler::setTabStops() {
|
1804 |
|
|
// set tab stops for output
|
1805 |
|
|
if (debugMode) {
|
1806 |
|
|
asmTab0 = 18; // Column for operand type
|
1807 |
|
|
asmTab1 = 26; // Column for opcode
|
1808 |
|
|
asmTab2 = 40; // Column for first operand
|
1809 |
|
|
asmTab3 = 64; // Column for destination value
|
1810 |
|
|
}
|
1811 |
|
|
else {
|
1812 |
|
|
asmTab0 = 0; // unused
|
1813 |
|
|
asmTab1 = 8; // Column for opcode
|
1814 |
|
|
asmTab2 = 16; // Column for first operand
|
1815 |
|
|
asmTab3 = 56; // Column for comment
|
1816 |
|
|
}
|
1817 |
|
|
}
|