1 |
32 |
Agner |
/**************************** elf_forwardcom.h **************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* Date created: 2016-06-25
|
4 |
|
|
* Last modified: 2021-05-28
|
5 |
|
|
* ForwardCom version: 1.11
|
6 |
|
|
* Program version: 1.11
|
7 |
|
|
* Project: ForwardCom binary tools
|
8 |
|
|
* Description: Definition of ELF file format. See below
|
9 |
|
|
*
|
10 |
|
|
* To do: define exception handler and stack unwind information
|
11 |
|
|
* To do: define stack size and heap size information
|
12 |
|
|
* To do: define memory reservation for runtime linking
|
13 |
|
|
* To do: define formats for debug information
|
14 |
|
|
* To do: define access rights of executable file or device driver
|
15 |
|
|
*
|
16 |
|
|
* Copyright 2016-2021 GNU General Public License v. 3
|
17 |
|
|
* http://www.gnu.org/licenses/gpl.html
|
18 |
|
|
*******************************************************************************
|
19 |
|
|
|
20 |
|
|
This C/C++ header file contains the official definition of the ForwardCom
|
21 |
|
|
variant of the ELF file format for object files and executable files.
|
22 |
|
|
The latest version is stored at https://github.com/ForwardCom/bintools
|
23 |
|
|
|
24 |
|
|
An executable file contains the following elements:
|
25 |
|
|
1. ELF file header with the structure ElfFwcEhdr
|
26 |
|
|
2. Any number of program headers with the structure ElfFwcPhdr
|
27 |
|
|
3. Raw data. Each section aligned by 8
|
28 |
|
|
4. Any number of section headers with the structure ElfFwcShdr
|
29 |
|
|
The sections can have different types as defined by sh_type, including
|
30 |
|
|
code, data, symbol tables, string tables, and relocation records.
|
31 |
|
|
|
32 |
|
|
The program headers and section headers may point to the same raw data. The
|
33 |
|
|
program headers are used by the loader and the section headers are used by the
|
34 |
|
|
linker. An object file has the same format, but with no program headers.
|
35 |
|
|
|
36 |
|
|
The program headers in an executable file must come in the following order:
|
37 |
|
|
* const (ip)
|
38 |
|
|
* code (ip)
|
39 |
|
|
* data (datap)
|
40 |
|
|
* bss (datap)
|
41 |
|
|
* data (threadp)
|
42 |
|
|
* bss (threadp)
|
43 |
|
|
There may be any number of headers in each category.
|
44 |
|
|
The raw data in an executable file must come in the same order as the headers
|
45 |
|
|
that point to them.
|
46 |
|
|
These rules are intended to simplify boot loader code in small devices.
|
47 |
|
|
|
48 |
|
|
|
49 |
|
|
ForwardCom library files have the standard UNIX archive format with a sorted
|
50 |
|
|
symbol table. The details are described below. Dynamic link libraries and
|
51 |
|
|
shared objects are not used in the ForwardCom system.
|
52 |
|
|
|
53 |
|
|
******************************************************************************/
|
54 |
|
|
|
55 |
|
|
#ifndef ELF_FORW_H
|
56 |
|
|
#define ELF_FORW_H 111 // version number
|
57 |
|
|
|
58 |
|
|
|
59 |
|
|
//--------------------------------------------------------------------------
|
60 |
|
|
// ELF FILE HEADER
|
61 |
|
|
//--------------------------------------------------------------------------
|
62 |
|
|
|
63 |
|
|
struct ElfFwcEhdr {
|
64 |
|
|
uint8_t e_ident[16]; // Magic number and other info
|
65 |
|
|
// e_ident[EI_CLASS] = ELFCLASS64: file class
|
66 |
|
|
// e_ident[EI_DATA] = ELFDATA2LSB: 2's complement, little endian
|
67 |
|
|
// e_ident[EI_VERSION] = EV_CURRENT: current ELF version
|
68 |
|
|
// e_ident[EI_OSABI] = ELFOSABI_FORWARDCOM
|
69 |
|
|
// e_ident[EI_ABIVERSION] = 0
|
70 |
|
|
// The rest is unused padding
|
71 |
|
|
uint16_t e_type; // Object file type
|
72 |
|
|
uint16_t e_machine; // Architecture
|
73 |
|
|
uint32_t e_version; // Object file version
|
74 |
|
|
uint64_t e_entry; // Entry point virtual address
|
75 |
|
|
uint64_t e_phoff; // Program header table file offset
|
76 |
|
|
uint64_t e_shoff; // Section header table file offset
|
77 |
|
|
uint32_t e_flags; // Processor-specific flags. We may define any values for these flags
|
78 |
|
|
uint16_t e_ehsize; // ELF header size in bytes
|
79 |
|
|
uint16_t e_phentsize; // Program header table entry size
|
80 |
|
|
uint16_t e_phnum; // Program header table entry count
|
81 |
|
|
uint16_t e_shentsize; // Section header table entry size
|
82 |
|
|
uint32_t e_shnum; // Section header table entry count (was uint16_t)
|
83 |
|
|
uint32_t e_shstrndx; // Section header string table index (was uint16_t)
|
84 |
|
|
// additional fields for ForwardCom
|
85 |
|
|
uint32_t e_stackvect; // number of vectors to store on stack. multiply by max vector length and add to stacksize
|
86 |
|
|
uint64_t e_stacksize; // size of stack for main thread
|
87 |
|
|
uint64_t e_ip_base; // __ip_base relative to first ip based segment
|
88 |
|
|
uint64_t e_datap_base; // __datap_base relative to first datap based segment
|
89 |
|
|
uint64_t e_threadp_base;// __threadp_base relative to first threadp based segment
|
90 |
|
|
};
|
91 |
|
|
|
92 |
|
|
|
93 |
|
|
// Fields in the e_ident array. The EI_* macros are indices into the array.
|
94 |
|
|
// The macros under each EI_* macro are the values the byte may have.
|
95 |
|
|
|
96 |
|
|
// Conglomeration of the identification bytes, for easy testing as a word.
|
97 |
|
|
//#define ELFMAG "\177ELF"
|
98 |
|
|
#define ELFMAG 0x464C457F // 0x7F 'E' 'L' 'F'
|
99 |
|
|
|
100 |
|
|
// File class
|
101 |
|
|
#define EI_CLASS 4 // File class byte index
|
102 |
|
|
#define ELFCLASSNONE 0 // Invalid class
|
103 |
|
|
#define ELFCLASS32 1 // 32-bit objects
|
104 |
|
|
#define ELFCLASS64 2 // 64-bit objects *
|
105 |
|
|
#define ELFCLASSNUM 3
|
106 |
|
|
|
107 |
|
|
#define EI_DATA 5 // Data encoding byte index
|
108 |
|
|
#define ELFDATANONE 0 // Invalid data encoding
|
109 |
|
|
#define ELFDATA2LSB 1 // 2's complement, little endian *
|
110 |
|
|
#define ELFDATA2MSB 2 // 2's complement, big endian
|
111 |
|
|
#define ELFDATANUM 3
|
112 |
|
|
|
113 |
|
|
#define EI_VERSION 6 // File version byte index
|
114 |
|
|
|
115 |
|
|
#define EI_OSABI 7 // OS ABI identification
|
116 |
|
|
#define ELFOSABI_SYSV 0 // UNIX System V ABI
|
117 |
|
|
#define ELFOSABI_HPUX 1 // HP-UX
|
118 |
|
|
#define ELFOSABI_ARM 97 // ARM
|
119 |
|
|
#define ELFOSABI_STANDALONE 255 // Standalone (embedded) application
|
120 |
|
|
#define ELFOSABI_FORWARDCOM 250 // ForwardCom
|
121 |
|
|
|
122 |
|
|
#define EI_ABIVERSION 8 // x86 ABI version
|
123 |
|
|
#define EI_ABIVERSION_FORWARDCOM 1 // ForwardCom ABI version
|
124 |
|
|
|
125 |
|
|
#define EI_PAD 9 // Byte index of padding bytes
|
126 |
|
|
|
127 |
|
|
// Legal values for e_type (object file type).
|
128 |
|
|
#define ET_NONE 0 // No file type
|
129 |
|
|
#define ET_REL 1 // Relocatable file
|
130 |
|
|
#define ET_EXEC 2 // Executable file
|
131 |
|
|
#define ET_DYN 3 // Shared object file (not used by ForwardCom)
|
132 |
|
|
#define ET_CORE 4 // Core file
|
133 |
|
|
#define ET_NUM 5 // Number of defined types
|
134 |
|
|
#define ET_LOOS 0xfe00 // OS-specific range start
|
135 |
|
|
#define ET_HIOS 0xfeff // OS-specific range end
|
136 |
|
|
#define ET_LOPROC 0xff00 // Processor-specific range start
|
137 |
|
|
#define ET_HIPROC 0xffff // Processor-specific range end
|
138 |
|
|
|
139 |
|
|
// Legal values for e_machine (architecture)
|
140 |
|
|
#define EM_NONE 0 // No machine
|
141 |
|
|
#define EM_M32 1 // AT&T WE 32100
|
142 |
|
|
#define EM_SPARC 2 // SUN SPARC
|
143 |
|
|
#define EM_386 3 // Intel 80386
|
144 |
|
|
#define EM_68K 4 // Motorola m68k family
|
145 |
|
|
#define EM_88K 5 // Motorola m88k family
|
146 |
|
|
#define EM_860 7 // Intel 80860
|
147 |
|
|
#define EM_MIPS 8 // MIPS R3000 big-endian
|
148 |
|
|
#define EM_S370 9 // IBM System/370
|
149 |
|
|
#define EM_MIPS_RS3_LE 10 // MIPS R3000 little-endian
|
150 |
|
|
#define EM_PARISC 15 // HPPA
|
151 |
|
|
#define EM_VPP500 17 // Fujitsu VPP500
|
152 |
|
|
#define EM_SPARC32PLUS 18 // Sun's "v8plus"
|
153 |
|
|
#define EM_960 19 // Intel 80960
|
154 |
|
|
#define EM_PPC 20 // PowerPC
|
155 |
|
|
#define EM_PPC64 21 // PowerPC 64-bit
|
156 |
|
|
#define EM_S390 22 // IBM S390
|
157 |
|
|
#define EM_V800 36 // NEC V800 series
|
158 |
|
|
#define EM_FR20 37 // Fujitsu FR20
|
159 |
|
|
#define EM_RH32 38 // TRW RH-32
|
160 |
|
|
#define EM_RCE 39 // Motorola RCE
|
161 |
|
|
#define EM_ARM 40 // ARM
|
162 |
|
|
#define EM_FAKE_ALPHA 41 // Digital Alpha
|
163 |
|
|
#define EM_SH 42 // Hitachi SH
|
164 |
|
|
#define EM_SPARCV9 43 // SPARC v9 64-bit
|
165 |
|
|
#define EM_TRICORE 44 // Siemens Tricore
|
166 |
|
|
#define EM_ARC 45 // Argonaut RISC Core
|
167 |
|
|
#define EM_H8_300 46 // Hitachi H8/300
|
168 |
|
|
#define EM_H8_300H 47 // Hitachi H8/300H
|
169 |
|
|
#define EM_H8S 48 // Hitachi H8S
|
170 |
|
|
#define EM_H8_500 49 // Hitachi H8/500
|
171 |
|
|
#define EM_IA_64 50 // Intel Merced
|
172 |
|
|
#define EM_MIPS_X 51 // Stanford MIPS-X
|
173 |
|
|
#define EM_COLDFIRE 52 // Motorola Coldfire
|
174 |
|
|
#define EM_68HC12 53 // Motorola M68HC12
|
175 |
|
|
#define EM_MMA 54 // Fujitsu MMA Multimedia Accelerator
|
176 |
|
|
#define EM_PCP 55 // Siemens PCP
|
177 |
|
|
#define EM_NCPU 56 // Sony nCPU embeeded RISC
|
178 |
|
|
#define EM_NDR1 57 // Denso NDR1 microprocessor
|
179 |
|
|
#define EM_STARCORE 58 // Motorola Start*Core processor
|
180 |
|
|
#define EM_ME16 59 // Toyota ME16 processor
|
181 |
|
|
#define EM_ST100 60 // STMicroelectronic ST100 processor
|
182 |
|
|
#define EM_TINYJ 61 // Advanced Logic Corp. Tinyj emb.fam
|
183 |
|
|
#define EM_X86_64 62 // AMD x86-64 architecture
|
184 |
|
|
#define EM_PDSP 63 // Sony DSP Processor
|
185 |
|
|
#define EM_FX66 66 // Siemens FX66 microcontroller
|
186 |
|
|
#define EM_ST9PLUS 67 // STMicroelectronics ST9+ 8/16 mc
|
187 |
|
|
#define EM_ST7 68 // STmicroelectronics ST7 8 bit mc
|
188 |
|
|
#define EM_68HC16 69 // Motorola MC68HC16 microcontroller
|
189 |
|
|
#define EM_68HC11 70 // Motorola MC68HC11 microcontroller
|
190 |
|
|
#define EM_68HC08 71 // Motorola MC68HC08 microcontroller
|
191 |
|
|
#define EM_68HC05 72 // Motorola MC68HC05 microcontroller
|
192 |
|
|
#define EM_SVX 73 // Silicon Graphics SVx
|
193 |
|
|
#define EM_AT19 74 // STMicroelectronics ST19 8 bit mc
|
194 |
|
|
#define EM_VAX 75 // Digital VAX
|
195 |
|
|
#define EM_CRIS 76 // Axis Communications 32-bit embedded processor
|
196 |
|
|
#define EM_JAVELIN 77 // Infineon Technologies 32-bit embedded processor
|
197 |
|
|
#define EM_FIREPATH 78 // Element 14 64-bit DSP Processor
|
198 |
|
|
#define EM_ZSP 79 // LSI Logic 16-bit DSP Processor
|
199 |
|
|
#define EM_MMIX 80 // Donald Knuth's educational 64-bit processor
|
200 |
|
|
#define EM_HUANY 81 // Harvard University machine-independent object files
|
201 |
|
|
#define EM_PRISM 82 // SiTera Prism
|
202 |
|
|
#define EM_AVR 83 // Atmel AVR 8-bit microcontroller
|
203 |
|
|
#define EM_FR30 84 // Fujitsu FR30
|
204 |
|
|
#define EM_D10V 85 // Mitsubishi D10V
|
205 |
|
|
#define EM_D30V 86 // Mitsubishi D30V
|
206 |
|
|
#define EM_V850 87 // NEC v850
|
207 |
|
|
#define EM_M32R 88 // Mitsubishi M32R
|
208 |
|
|
#define EM_MN10300 89 // Matsushita MN10300
|
209 |
|
|
#define EM_MN10200 90 // Matsushita MN10200
|
210 |
|
|
#define EM_PJ 91 // picoJava
|
211 |
|
|
#define EM_OPENRISC 92 // OpenRISC 32-bit embedded processor
|
212 |
|
|
#define EM_RISCV 243 // RISC-V
|
213 |
|
|
#define EM_OR32 0x8472 // Open RISC
|
214 |
|
|
#define EM_ALPHA 0x9026 // Digital Alpha
|
215 |
|
|
#define EM_FORWARDCOM 0x6233 // ForwardCom preliminary value (constructed from F=6, W=23, C=3)
|
216 |
|
|
|
217 |
|
|
// Legal values for e_version (version).
|
218 |
|
|
#define EV_NONE 0 // Invalid ELF version
|
219 |
|
|
#define EV_CURRENT 1 // Current version
|
220 |
|
|
#define EV_NUM 2
|
221 |
|
|
|
222 |
|
|
// Values for e_flags (file header flags)
|
223 |
|
|
#define EF_INCOMPLETE 0x01 // Incomplete executable file contains unresolved references
|
224 |
|
|
#define EF_RELINKABLE 0x02 // Relinking of executable file is possible
|
225 |
|
|
#define EF_RELOCATE 0x10 // Relocation needed when program is loaded
|
226 |
|
|
#define EF_POSITION_DEPENDENT 0x20 // Contains position-dependent relocations. Multiple processes cannot share same read-only data and code
|
227 |
|
|
|
228 |
|
|
|
229 |
|
|
//--------------------------------------------------------------------------
|
230 |
|
|
// SECTION HEADER
|
231 |
|
|
//--------------------------------------------------------------------------
|
232 |
|
|
|
233 |
|
|
struct ElfFwcShdr {
|
234 |
|
|
uint32_t sh_name; // Section name (string table index)
|
235 |
|
|
uint32_t sh_flags; // Section flags
|
236 |
|
|
uint64_t sh_addr; // Address relative to section group begin
|
237 |
|
|
uint64_t sh_offset; // Section file offset
|
238 |
|
|
uint64_t sh_size; // Section size in bytes
|
239 |
|
|
uint32_t sh_link; // Link to symbol section or string table
|
240 |
|
|
uint32_t sh_entsize; // Entry size if section holds table
|
241 |
|
|
uint32_t sh_module; // Module name in relinkable executable
|
242 |
|
|
uint32_t sh_library; // Library name in relinkable executable
|
243 |
|
|
uint32_t unused1; // Alignment filler
|
244 |
|
|
uint8_t sh_type; // Section type
|
245 |
|
|
uint8_t sh_align; // Section alignment = 1 << sh_align
|
246 |
|
|
uint8_t sh_relink; // Commands used during relinking. Unused in file
|
247 |
|
|
uint8_t unused2; // Unused filler
|
248 |
|
|
};
|
249 |
|
|
|
250 |
|
|
// Legal values for sh_type (section type)
|
251 |
|
|
#define SHT_NULL 0 // Section header table entry unused
|
252 |
|
|
#define SHT_SYMTAB 2 // Symbol table. There can be only one symbol table
|
253 |
|
|
#define SHT_STRTAB 3 // String table. There are two string tables, one for symbol names and one for section names
|
254 |
|
|
#define SHT_RELA 4 // Relocation entries with addends
|
255 |
|
|
#define SHT_NOTE 7 // Notes
|
256 |
|
|
#define SHT_PROGBITS 0x11 // Program data
|
257 |
|
|
#define SHT_NOBITS 0x12 // Uninitialized data space (bss)
|
258 |
|
|
#define SHT_COMDAT 0x14 // Communal data or code. Duplicate and unreferenced sections are removed
|
259 |
|
|
#define SHT_ALLOCATED 0x10 // Allocated at runtime. This bits indicates SHT_PROGBITS, SHT_NOBITS, SHT_COMDAT
|
260 |
|
|
#define SHT_LIST 0x20 // Other list. Not loaded into memory. (unsorted event list, )
|
261 |
|
|
#define SHT_STACKSIZE 0x41 // Records for calculation of stack size
|
262 |
|
|
#define SHT_ACCESSRIGHTS 0x42 // Records for indicating desired access rights of executable file or device driver
|
263 |
|
|
// obsolete types, not belonging to ForwardCom
|
264 |
|
|
//#define SHT_REL 9 // Relocation entries, no addends
|
265 |
|
|
//#define SHT_HASH 5 // Symbol hash table
|
266 |
|
|
//#define SHT_DYNAMIC 6 // Dynamic linking information
|
267 |
|
|
//#define SHT_DYNSYM 0xB // Dynamic linker symbol table
|
268 |
|
|
//#define SHT_SHLIB 0xA // Reserved
|
269 |
|
|
//#define SHT_GROUP 0x11 // Section group
|
270 |
|
|
|
271 |
|
|
// Legal values for sh_flags (section flags).
|
272 |
|
|
#define SHF_EXEC 0x1 // Executable
|
273 |
|
|
#define SHF_WRITE 0x2 // Writable
|
274 |
|
|
#define SHF_READ 0x4 // Readable
|
275 |
|
|
#define SHF_PERMISSIONS (SHF_EXEC | SHF_WRITE | SHF_READ) // access permissions mask
|
276 |
|
|
#define SHF_MERGE 0x10 // Elements with same value might be merged
|
277 |
|
|
#define SHF_STRINGS 0x20 // Contains nul-terminated strings
|
278 |
|
|
#define SHF_INFO_LINK 0x40 // sh_info contains section header index
|
279 |
|
|
#define SHF_ALLOC 0x100 // Occupies memory during execution
|
280 |
|
|
#define SHF_IP 0x1000 // Addressed relative to IP (executable and read-only sections)
|
281 |
|
|
#define SHF_DATAP 0x2000 // Addressed relative to DATAP (writeable data sections)
|
282 |
|
|
#define SHF_THREADP 0x4000 // Addressed relative to THREADP (thread-local data sections)
|
283 |
|
|
#define SHF_BASEPOINTER (SHF_IP | SHF_DATAP | SHF_THREADP) // mask to detect base pointer
|
284 |
|
|
#define SHF_EVENT_HND 0x100000 // Event handler list, contains ElfFwcEvent structures
|
285 |
|
|
#define SHF_EXCEPTION_HND 0x200000 // Exception handler and stack unroll information
|
286 |
|
|
#define SHF_DEBUG_INFO 0x400000 // Debug information
|
287 |
|
|
#define SHF_COMMENT 0x800000 // Comments, including copyright and required libraries
|
288 |
|
|
#define SHF_RELINK 0x1000000 // Section in executable file can be relinked
|
289 |
|
|
#define SHF_FIXED 0x2000000 // Non-relinkable section in relinkable file has fixed address relative to base pointers
|
290 |
|
|
#define SHF_AUTOGEN 0x4000000 // Section is generated by the linker. remake when relinking
|
291 |
|
|
|
292 |
|
|
|
293 |
|
|
//--------------------------------------------------------------------------
|
294 |
|
|
// SYMBOL TABLES
|
295 |
|
|
//--------------------------------------------------------------------------
|
296 |
|
|
|
297 |
|
|
// Symbol table entry, x64
|
298 |
|
|
struct Elf64_Sym {
|
299 |
|
|
uint32_t st_name; // Symbol name (string tbl index)
|
300 |
|
|
uint8_t st_type: 4, // Symbol type
|
301 |
|
|
st_bind: 4; // Symbol binding
|
302 |
|
|
uint8_t st_other; // Symbol visibility
|
303 |
|
|
uint16_t st_section; // Section index
|
304 |
|
|
uint64_t st_value; // Symbol value
|
305 |
|
|
uint64_t st_size; // Symbol size
|
306 |
|
|
};
|
307 |
|
|
|
308 |
|
|
// Symbol table entry, ForwardCom
|
309 |
|
|
struct ElfFwcSym {
|
310 |
|
|
uint32_t st_name; // Symbol name (string table index)
|
311 |
|
|
uint8_t st_type; // Symbol type
|
312 |
|
|
uint8_t st_bind; // Symbol binding
|
313 |
|
|
uint8_t unused1, unused2;// Alignment fillers
|
314 |
|
|
uint32_t st_other; // Symbol visibility and additional type information
|
315 |
|
|
uint32_t st_section; // Section header index (zero for external symbols)
|
316 |
|
|
uint64_t st_value; // Symbol value
|
317 |
|
|
uint32_t st_unitsize; // Size of array elements or data unit. Data type is given by st_unitsize and STV_FLOAT
|
318 |
|
|
// st_unitsize is 4 or more for executable code
|
319 |
|
|
uint32_t st_unitnum; // Symbol size = st_unitsize * st_unitnum
|
320 |
|
|
uint32_t st_reguse1; // Register use. bit 0-31 = r0-r31
|
321 |
|
|
uint32_t st_reguse2; // Register use. bit 0-31 = v0-v31
|
322 |
|
|
};
|
323 |
|
|
|
324 |
|
|
// Values for st_bind: symbol binding
|
325 |
|
|
#define STB_LOCAL 0 // Local symbol
|
326 |
|
|
#define STB_GLOBAL 1 // Global symbol
|
327 |
|
|
#define STB_WEAK 2 // Weak symbol
|
328 |
|
|
#define STB_WEAK2 6 // Weak public symbol with local reference is both import and export
|
329 |
|
|
#define STB_UNRESOLVED 0x0A // Symbol is unresolved. Treat as weak
|
330 |
|
|
#define STB_IGNORE 0x10 // This value is used only internally in the linker (ignore weak/strong during search; ignore overridden weak symbol)
|
331 |
|
|
#define STB_EXE 0x80 // This value is used only internally in the linker (copy to executable file)
|
332 |
|
|
|
333 |
|
|
// Values for st_type: symbol type
|
334 |
|
|
#define STT_NOTYPE 0 // Symbol type is unspecified
|
335 |
|
|
#define STT_OBJECT 1 // Symbol is a data object
|
336 |
|
|
#define STT_FUNC 2 // Symbol is a code object
|
337 |
|
|
#define STT_SECTION 3 // Symbol is a section begin
|
338 |
|
|
#define STT_FILE 4 // Symbol's name is file name
|
339 |
|
|
#define STT_COMMON 5 // Symbol is a common data object. Use STV_COMMON instead!
|
340 |
|
|
//#define STT_TLS 6 // Thread local data object. Use STV_THREADP instead!
|
341 |
|
|
#define STT_CONSTANT 0x10 // Symbol is a constant with no address
|
342 |
|
|
#define STT_VARIABLE 0x11 // Symbol is a variable used during assembly. Should not occur in object file
|
343 |
|
|
#define STT_EXPRESSION 0x12 // Symbol is an expression used during assembly. Should not occur in object file
|
344 |
|
|
#define STT_TYPENAME 0x14 // Symbol is a type name used during assembly. Should not occur in object file
|
345 |
|
|
|
346 |
|
|
// Symbol visibility specification encoded in the st_other field.
|
347 |
|
|
#define STV_DEFAULT 0 // Default symbol visibility rules
|
348 |
|
|
//#define STV_INTERNAL 1 // Processor specific hidden class
|
349 |
|
|
#define STV_HIDDEN 0x20 // Symbol unavailable in other modules
|
350 |
|
|
//#define STV_PROTECTED 3 // Not preemptible, not exported
|
351 |
|
|
// st_other types added for ForwardCom:
|
352 |
|
|
#define STV_EXEC SHF_EXEC // = 0x1. Executable code
|
353 |
|
|
#define STV_WRITE SHF_WRITE // = 0x2. Writable data
|
354 |
|
|
#define STV_READ SHF_READ // = 0x4. Readable data
|
355 |
|
|
#define STV_IP SHF_IP // = 0x1000. Addressed relative to IP (in executable and read-only sections)
|
356 |
|
|
#define STV_DATAP SHF_DATAP // = 0x2000. Addressed relative to DATAP (in writeable data sections)
|
357 |
|
|
#define STV_THREADP SHF_THREADP // = 0x4000. Addressed relative to THREADP (in thrad local data sections)
|
358 |
|
|
#define STV_REGUSE 0x10000 // st_reguse field contains register use information
|
359 |
|
|
#define STV_FLOAT 0x20000 // st_value is a double precision floating point (with STT_CONSTANT)
|
360 |
|
|
#define STV_STRING 0x40000 // st_value is an assemble-time string. Should not occur in object file
|
361 |
|
|
#define STV_COMMON 0x100000 // Symbol is communal. Multiple identical instances can be joined. Unreferenced instances can be removed
|
362 |
|
|
#define STV_UNWIND 0x400000 // Symbol is a table with exception handling and stack unwind information
|
363 |
|
|
#define STV_DEBUG 0x800000 // Symbol is a table with debug information
|
364 |
|
|
#define STV_RELINK SHF_RELINK // Symbol in executable file can be relinked
|
365 |
|
|
#define STV_AUTOGEN SHF_AUTOGEN // Symbol is generated by the linker. remake when relinking
|
366 |
|
|
#define STV_MAIN 0x10000000 // Main entry point in executable file
|
367 |
|
|
#define STV_EXPORTED 0x20000000 // Exported from executable file
|
368 |
|
|
#define STV_THREAD 0x40000000 // Thread function. Requires own stack
|
369 |
|
|
#define STV_SECT_ATTR (SHF_EXEC | SHF_READ | SHF_WRITE | SHF_IP | SHF_DATAP | SHF_THREADP | SHF_RELINK | SHF_AUTOGEN) // section attributes to copy to symbol
|
370 |
|
|
|
371 |
|
|
|
372 |
|
|
/* Definition of absolute symbols:
|
373 |
|
|
x86 ELF uses symbols with st_section = SHN_ABS_X86 to indicate a public absolute symbol.
|
374 |
|
|
ForwardCom uses st_type = STT_CONSTANT and sets st_section to the index of an arbitrary
|
375 |
|
|
section in the same module as the absolute symbol. This is necessary for indicating which
|
376 |
|
|
module an absolute symbol belongs to in a relinkable executable file. An object file
|
377 |
|
|
defining absolute symbols must have at least one section, even if it is empty.
|
378 |
|
|
*/
|
379 |
|
|
// Special section indices. not used in ForwardCom
|
380 |
|
|
#define SHN_UNDEF 0 // Undefined section. external symbol
|
381 |
|
|
//#define SHN_LORESERVE ((int16_t)0xff00) // Start of reserved indices
|
382 |
|
|
//#define SHN_LOPROC ((int16_t)0xff00) // Start of processor-specific
|
383 |
|
|
//#define SHN_HIPROC ((int16_t)0xff1f) // End of processor-specific
|
384 |
|
|
//#define SHN_LOOS ((int16_t)0xff20) // Start of OS-specific
|
385 |
|
|
//#define SHN_HIOS ((int16_t)0xff3f) // End of OS-specific
|
386 |
|
|
#define SHN_ABS_X86 ((int16_t)0xfff1) // Associated symbol is absolute (x86 ELF)
|
387 |
|
|
//#define SHN_COMMON ((int16_t)0xfff2) // Associated symbol is common (x86 ELF)
|
388 |
|
|
//#define SHN_XINDEX ((int16_t)0xffff) // Index is in extra table
|
389 |
|
|
//#define SHN_HIRESERVE ((int16_t)0xffff) // End of reserved indices
|
390 |
|
|
|
391 |
|
|
|
392 |
|
|
//--------------------------------------------------------------------------
|
393 |
|
|
// RELOCATION TABLES
|
394 |
|
|
//--------------------------------------------------------------------------
|
395 |
|
|
|
396 |
|
|
// Relocation table entry with addend, x86-64 in section of type SHT_RELA. Not used in ForwardCom
|
397 |
|
|
struct Elf64_Rela {
|
398 |
|
|
uint64_t r_offset; // Address
|
399 |
|
|
uint32_t r_type; // Relocation type
|
400 |
|
|
uint32_t r_sym; // Symbol index
|
401 |
|
|
int64_t r_addend; // Addend
|
402 |
|
|
};
|
403 |
|
|
|
404 |
|
|
// Relocation table entry for ForwardCom (in section of type SHT_RELA).
|
405 |
|
|
struct ElfFwcReloc {
|
406 |
|
|
uint64_t r_offset; // Address relative to section
|
407 |
|
|
uint32_t r_section; // Section index
|
408 |
|
|
uint32_t r_type; // Relocation type
|
409 |
|
|
uint32_t r_sym; // Symbol index
|
410 |
|
|
int32_t r_addend; // Addend
|
411 |
|
|
uint32_t r_refsym; // Reference symbol
|
412 |
|
|
};
|
413 |
|
|
|
414 |
|
|
|
415 |
|
|
// AMD x86-64 relocation types
|
416 |
|
|
#define R_X86_64_NONE 0 // No reloc
|
417 |
|
|
#define R_X86_64_64 1 // Direct 64 bit
|
418 |
|
|
#define R_X86_64_PC32 2 // Self relative 32 bit signed (not RIP relative in the sense used in COFF files)
|
419 |
|
|
#define R_X86_64_GOT32 3 // 32 bit GOT entry
|
420 |
|
|
#define R_X86_64_PLT32 4 // 32 bit PLT address
|
421 |
|
|
#define R_X86_64_COPY 5 // Copy symbol at runtime
|
422 |
|
|
#define R_X86_64_GLOB_DAT 6 // Create GOT entry
|
423 |
|
|
#define R_X86_64_JUMP_SLOT 7 // Create PLT entry
|
424 |
|
|
#define R_X86_64_RELATIVE 8 // Adjust by program base
|
425 |
|
|
#define R_X86_64_GOTPCREL 9 // 32 bit signed self relative offset to GOT
|
426 |
|
|
#define R_X86_64_32 10 // Direct 32 bit zero extended
|
427 |
|
|
#define R_X86_64_32S 11 // Direct 32 bit sign extended
|
428 |
|
|
#define R_X86_64_16 12 // Direct 16 bit zero extended
|
429 |
|
|
#define R_X86_64_PC16 13 // 16 bit sign extended self relative
|
430 |
|
|
#define R_X86_64_8 14 // Direct 8 bit sign extended
|
431 |
|
|
#define R_X86_64_PC8 15 // 8 bit sign extended self relative
|
432 |
|
|
#define R_X86_64_IRELATIVE 37 // Reference to PLT entry of indirect function (STT_GNU_IFUNC)
|
433 |
|
|
|
434 |
|
|
|
435 |
|
|
// ForwardCom relocation types are composed of these three fields:
|
436 |
|
|
// Relocation type in bit 16-31
|
437 |
|
|
// Relocation size in bit 8-15
|
438 |
|
|
// Scale factor in bit 0-7.
|
439 |
|
|
// The r_type field is composed by OR'ing these three.
|
440 |
|
|
// The value in the relocation field of the specified size will be multiplied by the scale factor.
|
441 |
|
|
// All relative relocations use signed values.
|
442 |
|
|
// Instructions with self-relative (IP-relative) addressing are using the END of the instruction
|
443 |
|
|
// as reference point. The r_addend field must compensate for the distance between
|
444 |
|
|
// the end of the instruction and the beginning of the address field. This will be -7 for
|
445 |
|
|
// instructions with format 2.5.3 and -4 for all other jump and call instructions.
|
446 |
|
|
// Any offset of the target may be added to r_addend. The value of r_addend is not scaled.
|
447 |
|
|
// Relocations relative to an arbitrary reference point can be used in jump tables.
|
448 |
|
|
// The reference point is indicated by a symbol index in r_refsym.
|
449 |
|
|
// The system function ID relocations are done by the loader, where r_sym indicates the name
|
450 |
|
|
// of the function in the string table, and r_addend indicates the name of the module or
|
451 |
|
|
// device driver.
|
452 |
|
|
// The value at r_offset is not used in the calculation but overwritten with the calculated
|
453 |
|
|
// target address.
|
454 |
|
|
|
455 |
|
|
// ForwardCom relocation types
|
456 |
|
|
#define R_FORW_ABS 0x000000 // Absolute address. Scaling is possible, but rarely used
|
457 |
|
|
#define R_FORW_SELFREL 0x010000 // Self relative. Scale by 4 for code address
|
458 |
|
|
#define R_FORW_IP_BASE 0x040000 // Relative to __ip_base. Any scale
|
459 |
|
|
#define R_FORW_DATAP 0x050000 // Relative to __datap_base. Any scale
|
460 |
|
|
#define R_FORW_THREADP 0x060000 // Relative to __threadp_base. Any scale
|
461 |
|
|
#define R_FORW_REFP 0x080000 // Relative to arbitrary reference point. Reference symbol index in high 32 bits of r_addend. Any scale
|
462 |
|
|
#define R_FORW_SYSFUNC 0x100000 // System function ID for system_call, 16 or 32 bit
|
463 |
|
|
#define R_FORW_SYSMODUL 0x110000 // System module ID for system_call, 16 or 32 bit
|
464 |
|
|
#define R_FORW_SYSCALL 0x120000 // Combined system module and function ID for system_call, 32 or 64 bit
|
465 |
|
|
#define R_FORW_DATASTACK 0x200000 // Calculated size of data stack for function, 32 or 64 bit. Scale by 1 or 8
|
466 |
|
|
#define R_FORW_CALLSTACK 0x210000 // Calculated size of call stack for function, 32 bit. Scale by 1 or 8
|
467 |
|
|
#define R_FORW_REGUSE 0x400000 // Register use of function, 64 bit
|
468 |
|
|
#define R_FORW_RELTYPEMASK 0xFF0000 // Mask for isolating relocation type
|
469 |
|
|
|
470 |
|
|
// Relocation sizes
|
471 |
|
|
#define R_FORW_NONE 0x000000 // No relocation
|
472 |
|
|
#define R_FORW_8 0x000100 // 8 bit relocation size
|
473 |
|
|
#define R_FORW_16 0x000200 // 16 bit relocation size
|
474 |
|
|
#define R_FORW_24 0x000300 // 24 bit relocation size
|
475 |
|
|
#define R_FORW_32 0x000400 // 32 bit relocation size
|
476 |
|
|
#define R_FORW_32LO 0x000500 // Low 16 of 32 bits relocation
|
477 |
|
|
#define R_FORW_32HI 0x000600 // High 16 of 32 bits relocation
|
478 |
|
|
#define R_FORW_64 0x000800 // 64 bit relocation size
|
479 |
|
|
#define R_FORW_64LO 0x000900 // Low 32 of 64 bits relocation
|
480 |
|
|
#define R_FORW_64HI 0x000A00 // High 32 of 64 bits relocation
|
481 |
|
|
#define R_FORW_RELSIZEMASK 0x00FF00 // Mask for isolating relocation size
|
482 |
|
|
|
483 |
|
|
// Relocation scale factors
|
484 |
|
|
#define R_FORW_SCALE1 0x000000 // Scale factor 1
|
485 |
|
|
#define R_FORW_SCALE2 0x000001 // Scale factor 2
|
486 |
|
|
#define R_FORW_SCALE4 0x000002 // Scale factor 4
|
487 |
|
|
#define R_FORW_SCALE8 0x000003 // Scale factor 8
|
488 |
|
|
#define R_FORW_SCALE16 0x000004 // Scale factor 16
|
489 |
|
|
#define R_FORW_RELSCALEMASK 0x0000FF // Mask for isolating relocation scale factor
|
490 |
|
|
|
491 |
|
|
// Relocation options
|
492 |
|
|
#define R_FORW_RELINK 0x01000000 // Refers to relinkable symbol in executable file
|
493 |
|
|
#define R_FORW_LOADTIME 0x02000000 // Must be relocated at load time. Records with this bit must come first
|
494 |
|
|
|
495 |
|
|
|
496 |
|
|
//--------------------------------------------------------------------------
|
497 |
|
|
// PROGRAM HEADER
|
498 |
|
|
//--------------------------------------------------------------------------
|
499 |
|
|
|
500 |
|
|
// Program header
|
501 |
|
|
struct ElfFwcPhdr {
|
502 |
|
|
uint32_t p_type; // Segment type
|
503 |
|
|
uint32_t p_flags; // Segment flags
|
504 |
|
|
uint64_t p_offset; // Segment file offset
|
505 |
|
|
uint64_t p_vaddr; // Segment virtual address
|
506 |
|
|
uint64_t p_paddr; // Segment physical address (not used. indicates first section instead)
|
507 |
|
|
uint64_t p_filesz; // Segment size in file
|
508 |
|
|
uint64_t p_memsz; // Segment size in memory
|
509 |
|
|
uint8_t p_align; // Segment alignment
|
510 |
|
|
uint8_t unused[7];
|
511 |
|
|
};
|
512 |
|
|
|
513 |
|
|
// Legal values for p_type (segment type).
|
514 |
|
|
|
515 |
|
|
#define PT_NULL 0 // Program header table entry unused
|
516 |
|
|
#define PT_LOAD 1 // Loadable program segment
|
517 |
|
|
#define PT_DYNAMIC 2 // Dynamic linking information
|
518 |
|
|
#define PT_INTERP 3 // Program interpreter
|
519 |
|
|
#define PT_NOTE 4 // Auxiliary information
|
520 |
|
|
#define PT_SHLIB 5 // Reserved
|
521 |
|
|
#define PT_PHDR 6 // Entry for header table itself
|
522 |
|
|
//#define PT_NUM 7 // Number of defined types
|
523 |
|
|
#define PT_LOOS 0x60000000 // Start of OS-specific
|
524 |
|
|
#define PT_HIOS 0x6fffffff // End of OS-specific
|
525 |
|
|
#define PT_LOPROC 0x10 // Start of processor-specific
|
526 |
|
|
#define PT_HIPROC 0x5fffffff // End of processor-specific
|
527 |
|
|
|
528 |
|
|
// Legal values for p_flags (segment flags) are the same as section flags,
|
529 |
|
|
// see sh_flags above
|
530 |
|
|
|
531 |
|
|
/*
|
532 |
|
|
// Legal values for note segment descriptor types for core files.
|
533 |
|
|
#define NT_PRSTATUS 1 // Contains copy of prstatus struct
|
534 |
|
|
#define NT_FPREGSET 2 // Contains copy of fpregset struct
|
535 |
|
|
#define NT_PRPSINFO 3 // Contains copy of prpsinfo struct
|
536 |
|
|
#define NT_PRXREG 4 // Contains copy of prxregset struct
|
537 |
|
|
#define NT_PLATFORM 5 // String from sysinfo(SI_PLATFORM)
|
538 |
|
|
#define NT_AUXV 6 // Contains copy of auxv array
|
539 |
|
|
#define NT_GWINDOWS 7 // Contains copy of gwindows struct
|
540 |
|
|
#define NT_PSTATUS 10 // Contains copy of pstatus struct
|
541 |
|
|
#define NT_PSINFO 13 // Contains copy of psinfo struct
|
542 |
|
|
#define NT_PRCRED 14 // Contains copy of prcred struct
|
543 |
|
|
#define NT_UTSNAME 15 // Contains copy of utsname struct
|
544 |
|
|
#define NT_LWPSTATUS 16 // Contains copy of lwpstatus struct
|
545 |
|
|
#define NT_LWPSINFO 17 // Contains copy of lwpinfo struct
|
546 |
|
|
#define NT_PRFPXREG 20 // Contains copy of fprxregset struct
|
547 |
|
|
*/
|
548 |
|
|
// Legal values for the note segment descriptor types for object files.
|
549 |
|
|
#define NT_VERSION 1 // Contains a version string.
|
550 |
|
|
|
551 |
|
|
|
552 |
|
|
// Note section contents. Each entry in the note section begins with a header of a fixed form.
|
553 |
|
|
|
554 |
|
|
struct Elf64_Nhdr {
|
555 |
|
|
uint32_t n_namesz; // Length of the note's name
|
556 |
|
|
uint32_t n_descsz; // Length of the note's descriptor
|
557 |
|
|
uint32_t n_type; // Type of the note
|
558 |
|
|
};
|
559 |
|
|
|
560 |
|
|
/* Defined note types for GNU systems. */
|
561 |
|
|
|
562 |
|
|
/* ABI information. The descriptor consists of words:
|
563 |
|
|
word 0: OS descriptor
|
564 |
|
|
word 1: major version of the ABI
|
565 |
|
|
word 2: minor version of the ABI
|
566 |
|
|
word 3: subminor version of the ABI
|
567 |
|
|
*/
|
568 |
|
|
#define ELF_NOTE_ABI 1
|
569 |
|
|
|
570 |
|
|
/* Known OSes. These value can appear in word 0 of an ELF_NOTE_ABI
|
571 |
|
|
note section entry. */
|
572 |
|
|
#define ELF_NOTE_OS_LINUX 0
|
573 |
|
|
#define ELF_NOTE_OS_GNU 1
|
574 |
|
|
#define ELF_NOTE_OS_SOLARIS2 2
|
575 |
|
|
|
576 |
|
|
#define FILE_DATA_ALIGN 3 // section data must be aligned by (1 << FILE_DATA_ALIGN) in ELF file
|
577 |
|
|
|
578 |
|
|
// Memory map definitions
|
579 |
|
|
#define MEMORY_MAP_ALIGN 3 // align memory map entries by (1 << MEMORY_MAP_ALIGN)
|
580 |
|
|
#define DATA_EXTRA_SPACE 0x10 // extra space after const data section and last data section
|
581 |
|
|
|
582 |
|
|
|
583 |
|
|
//--------------------------------------------------------------------------
|
584 |
|
|
// EVENT HANDLER SYSTEM
|
585 |
|
|
//--------------------------------------------------------------------------
|
586 |
|
|
/*
|
587 |
|
|
|
588 |
|
|
A program module may contain a table of event handler records in a read-only
|
589 |
|
|
section with the attribute SHF_EVENT_HND. The event handler system may be used
|
590 |
|
|
for handling events, commands, and messages. It is also used for initialization
|
591 |
|
|
and clean-up. This replaces the constructors and destructors sections of other
|
592 |
|
|
systems.
|
593 |
|
|
|
594 |
|
|
The linker will sort the event records of all modules according to event id, key,
|
595 |
|
|
and priority. If there is more than one event handler for a particular event,
|
596 |
|
|
then all the event handlers will be called in the order of priority.
|
597 |
|
|
*/
|
598 |
|
|
|
599 |
|
|
// event record
|
600 |
|
|
struct ElfFwcEvent {
|
601 |
|
|
int32_t functionPtr; // scaled relative pointer to event handler function = (function_address - __ip_base) / 4
|
602 |
|
|
uint32_t priority; // priority. Highest values are called first. Normal priority = 0x1000
|
603 |
|
|
uint32_t key; // keyboard hotkey, menu item, or icon id for user command events
|
604 |
|
|
uint32_t event; // event ID
|
605 |
|
|
};
|
606 |
|
|
|
607 |
|
|
|
608 |
|
|
//--------------------------------------------------------------------------
|
609 |
|
|
// STACK SIZE TABLES
|
610 |
|
|
//--------------------------------------------------------------------------
|
611 |
|
|
|
612 |
|
|
// SHT_STACKSIZE stack table entry
|
613 |
|
|
struct ElfFwcStacksize {
|
614 |
|
|
uint32_t ss_syma; // Public symbol index
|
615 |
|
|
uint32_t ss_symb; // External symbol index. Zero for frame function or to indicate own stack use
|
616 |
|
|
uint64_t ss_framesize; // Size of data stack frame in syma when calling symb
|
617 |
|
|
uint32_t ss_numvectors; // Additional data stack frame size for vectors. Multiply by maximum vector length
|
618 |
|
|
uint32_t ss_calls; // Size of call stack when syma calls symb (typically 1). Multiply by stack word size = 8
|
619 |
|
|
};
|
620 |
|
|
|
621 |
|
|
|
622 |
|
|
//--------------------------------------------------------------------------
|
623 |
|
|
// MASK BITS
|
624 |
|
|
//--------------------------------------------------------------------------
|
625 |
|
|
// Masks are used for conditional execution and for setting options
|
626 |
|
|
|
627 |
|
|
// Mask bit numbers. These bits are used in instruction masks and NUMCONTR to specify various options
|
628 |
|
|
|
629 |
|
|
#define MSK_ENABLE 0 // the instruction is not executed if bit number 0 is 0
|
630 |
|
|
#define MSKI_OPTIONS 18 // bit number 18-23 contain instruction-specific options. currently unused
|
631 |
|
|
#define MSKI_ROUNDING 10 // bit number 10-11 indicate rounding mode:
|
632 |
|
|
// 00: round to nearest or even
|
633 |
|
|
// 01: round down
|
634 |
|
|
// 10: round up
|
635 |
|
|
// 11: truncate towards zero
|
636 |
|
|
#define MSKI_EXCEPTIONS 2 // bit number 2-5 enable exceptions for division by zero, overflow, underflow, inexact
|
637 |
|
|
#define MSK_DIVZERO 2 // enable NAN exception for floating point division by zero
|
638 |
|
|
#define MSK_OVERFLOW 3 // enable NAN exception for floating point overflow
|
639 |
|
|
#define MSK_UNDERFLOW 4 // enable NAN exception for floating point underflow
|
640 |
|
|
#define MSK_INEXACT 5 // enable NAN exception for floating point inexact
|
641 |
|
|
#define MSK_SUBNORMAL 13 // enable subnormal numbers for float32 and float64
|
642 |
|
|
#define MSK_CONST_TIME 31 // constant execution time, independent of data (for cryptographic security)
|
643 |
|
|
|
644 |
|
|
|
645 |
|
|
//--------------------------------------------------------------------------
|
646 |
|
|
// EXCEPTION INDICATORS (preliminary list)
|
647 |
|
|
//--------------------------------------------------------------------------
|
648 |
|
|
|
649 |
|
|
// NAN payloads are used for indicating that floating point exceptions have occurred.
|
650 |
|
|
// These values are generated in the lower 8 bits of NAN payloads.
|
651 |
|
|
// The remaining payload bits may contain information about the code address where the exception occurred.
|
652 |
|
|
|
653 |
|
|
// The nan exception indicators are generated only when the corresponding exceptions are enabled in mask bits:
|
654 |
|
|
const uint32_t nan_inexact = 0x01; // inexact result
|
655 |
|
|
const uint32_t nan_underflow = 0x02; // underflow
|
656 |
|
|
const uint32_t nan_div0 = 0x03; // division by 0
|
657 |
|
|
const uint32_t nan_overflow_div = 0x04; // division overflow
|
658 |
|
|
const uint32_t nan_overflow_mul = 0x05; // multiplication overflow
|
659 |
|
|
const uint32_t nan_overflow_add = 0x06; // addition and subtraction overflow
|
660 |
|
|
const uint32_t nan_overflow_conv = 0x07; // conversion overflow
|
661 |
|
|
const uint32_t nan_overflow_other = 0x08; // other overflow
|
662 |
|
|
|
663 |
|
|
// The nan_invalid indicators are generated in case of invalid operations,
|
664 |
|
|
// regardless of whether exceptions are enabled or not:
|
665 |
|
|
const uint32_t nan_invalid_sub = 0x20; // inf-inf
|
666 |
|
|
const uint32_t nan_invalid_0div0 = 0x21; // 0/0
|
667 |
|
|
const uint32_t nan_invalid_divinf = 0x22; // inf/inf
|
668 |
|
|
const uint32_t nan_invalid_0mulinf = 0x23; // 0*inf
|
669 |
|
|
const uint32_t nan_invalid_rem = 0x24; // inf rem 1, 1 rem 0
|
670 |
|
|
const uint32_t nan_invalid_sqrt = 0x25; // sqrt(-1)
|
671 |
|
|
const uint32_t nan_invalid_pow = 0x28; // pow(-1, 2.3)
|
672 |
|
|
const uint32_t nan_invalid_log = 0x29; // log(-1)
|
673 |
|
|
|
674 |
|
|
|
675 |
|
|
//--------------------------------------------------------------------------
|
676 |
|
|
// FORMAT FOR LIBRARY FILES
|
677 |
|
|
//--------------------------------------------------------------------------
|
678 |
|
|
/*
|
679 |
|
|
ForwardCom libraries use the standard Unix archive format.
|
680 |
|
|
The preferred filename extension is .li
|
681 |
|
|
|
682 |
|
|
The first archive member is a sorted symbol list, using the same format as used
|
683 |
|
|
by Apple/Mac named "/SYMDEF SORTED/". It contains a sorted list of public symbols.
|
684 |
|
|
The sort order is determined by the unsigned bytes of the ASCII/UTF-8 string.
|
685 |
|
|
This format is chosen because it provides the fastest symbol search.
|
686 |
|
|
|
687 |
|
|
The obsolete archive members with the name "/" containing symbol lists in less
|
688 |
|
|
efficient formats are not included.
|
689 |
|
|
|
690 |
|
|
The second archive member is a longnames record named "//" as used in Linux
|
691 |
|
|
and Windows systems. It contains module names longer than 15 characters.
|
692 |
|
|
Module names are stored without path so that they can be extracted on another
|
693 |
|
|
computer that does not have the same file structure.
|
694 |
|
|
|
695 |
|
|
The remaining modules contain object files in the format described above.
|
696 |
|
|
--------------------------------------------------------------------------------*/
|
697 |
|
|
|
698 |
|
|
// Signature defining the start of an archive file
|
699 |
|
|
#define archiveSignature "!<arch>\n"
|
700 |
|
|
|
701 |
|
|
// Each library member starts with a UNIX archive member header:
|
702 |
|
|
struct SUNIXLibraryHeader {
|
703 |
|
|
char name[16]; // member name, terminated by '/'
|
704 |
|
|
char date[12]; // member date, seconds, decimal ASCII
|
705 |
|
|
char userID[6]; // member User ID, decimal ASCII
|
706 |
|
|
char groupID[6]; // member Group ID, decimal ASCII
|
707 |
|
|
char fileMode[8]; // member file mode, octal ASCII
|
708 |
|
|
char fileSize[10]; // member file size not including header, decimal ASCII
|
709 |
|
|
char headerEnd[2]; // "`\n"
|
710 |
|
|
};
|
711 |
|
|
|
712 |
|
|
// Member names no longer than 15 characters are stored in the name field and
|
713 |
|
|
// terminated by '/'. Longer names are stored in the longnames record. The name
|
714 |
|
|
// field contains '/' followed by an index into the longnames string table.
|
715 |
|
|
// This index is in decimal ASCII.
|
716 |
|
|
|
717 |
|
|
// The "/SYMDEF SORTED/" record contains the following:
|
718 |
|
|
// 1. The size of the symbol list = 8 * n, where n = number of exported symbols
|
719 |
|
|
// in the library.
|
720 |
|
|
// 2. For each symbol: the name as an index into the string table (relative to
|
721 |
|
|
// the start of the sting table), followed by:
|
722 |
|
|
// an offset to the module containing this symbol relative to file begin.
|
723 |
|
|
// 3. The length of the string table.
|
724 |
|
|
// 4. The string table as a sequence of zero-terminated strings.
|
725 |
|
|
// 5. Zero-padding to a size divisible by 4.
|
726 |
|
|
|
727 |
|
|
// All numbers in "/SYMDEF SORTED/" are 32-bit unsigned integers (little endian).
|
728 |
|
|
|
729 |
|
|
// The longnames record has the name "//". It contains member names as zero-terminated strings.
|
730 |
|
|
|
731 |
|
|
// All archive members are aligned by 8
|
732 |
|
|
|
733 |
|
|
#endif // ELF_FORW_H
|