1 |
33 |
Agner |
/**************************** emulator.h **********************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* date created: 2018-02-18
|
4 |
|
|
* Last modified: 2021-04-02
|
5 |
|
|
* Version: 1.11
|
6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
7 |
|
|
* Module: emulator.h
|
8 |
|
|
* Description:
|
9 |
|
|
* Header file for emulator
|
10 |
|
|
*
|
11 |
|
|
* Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses
|
12 |
|
|
*****************************************************************************/
|
13 |
|
|
|
14 |
|
|
// structure for memory map
|
15 |
|
|
struct SMemoryMap {
|
16 |
|
|
uint64_t startAddress; // virtual address boundary (must be divisible by 8)
|
17 |
|
|
uint64_t access_addend; // (access_addend & 7) is access permission: SHF_READ, SHF_WRITE, SHF_EXEC
|
18 |
|
|
// (access_addend & ~7) is added to the virtual address to get physical address
|
19 |
|
|
};
|
20 |
|
|
|
21 |
|
|
// union for an operand value of any type
|
22 |
|
|
union SNum {
|
23 |
|
|
uint64_t q; // 64 bit unsigned integer
|
24 |
|
|
int64_t qs; // 64 bit signed integer
|
25 |
|
|
uint32_t i; // 32 bit unsigned integer
|
26 |
|
|
int32_t is; // 32 bit signed integer
|
27 |
|
|
uint16_t s; // 16 bit unsigned integer
|
28 |
|
|
int16_t ss; // 16 bit signed integer
|
29 |
|
|
uint8_t b; // 8 bit unsigned integer
|
30 |
|
|
int8_t bs; // 8 bit signed integer
|
31 |
|
|
double d; // double precision float
|
32 |
|
|
float f; // single precision float
|
33 |
|
|
};
|
34 |
|
|
|
35 |
|
|
// Indexes into perfCounters array
|
36 |
|
|
const int perf_cpu_clock_cycles = 1;
|
37 |
|
|
const int perf_instructions = 2;
|
38 |
|
|
const int perf_2size_instructions = 3;
|
39 |
|
|
const int perf_3size_instructions = 4;
|
40 |
|
|
const int perf_gp_instructions = 5;
|
41 |
|
|
const int perf_gp_instructions_mask0 = 6;
|
42 |
|
|
const int perf_vector_instructions = 7;
|
43 |
|
|
const int perf_control_transfer_instructions = 8;
|
44 |
|
|
const int perf_direct_jumps = 9;
|
45 |
|
|
const int perf_indirect_jumps = 10;
|
46 |
|
|
const int perf_cond_jumps = 11;
|
47 |
|
|
const int perf_unknown_instruction = 12;
|
48 |
|
|
const int perf_wrong_operands = 13;
|
49 |
|
|
const int perf_array_overflow = 14;
|
50 |
|
|
const int perf_read_violation = 15;
|
51 |
|
|
const int perf_write_violation = 16;
|
52 |
|
|
const int perf_misaligned = 17;
|
53 |
|
|
const int perf_address_of_first_error = 18;
|
54 |
|
|
const int perf_type_of_first_error = 19;
|
55 |
|
|
const int number_of_perf_counters = 20; // number of performance counter registers
|
56 |
|
|
|
57 |
|
|
// Indexes into capabilities registers array
|
58 |
|
|
const int disable_errors_capability_register = 2;// register for disabling errors
|
59 |
|
|
const int number_of_capability_registers = 16; // number of capability registers
|
60 |
|
|
class CEmulator; // preliminary declaration
|
61 |
|
|
|
62 |
|
|
// Class for a thread or CPU core in the emulator
|
63 |
|
|
class CThread {
|
64 |
|
|
public:
|
65 |
|
|
CThread(); // constructor
|
66 |
|
|
~CThread(); // destructor
|
67 |
|
|
void run(); // start running
|
68 |
|
|
void setRegisters(CEmulator * emulator); // initialize registers etc.
|
69 |
|
|
uint64_t ip; // instruction pointer
|
70 |
|
|
uint64_t ip0; // address base for code and read-only data
|
71 |
|
|
uint64_t datap; // base pointer for writeable data
|
72 |
|
|
uint64_t threadp; // base pointer for thread-local data
|
73 |
|
|
uint64_t ninstructions; // number of instructions executed
|
74 |
|
|
uint32_t numContr; // numeric control register
|
75 |
|
|
uint32_t lastMask; // shows last status of subnormal support
|
76 |
|
|
uint32_t options; // option bits in instruction
|
77 |
|
|
uint32_t exception; // exception or jump caused by current instruction
|
78 |
|
|
STemplate const * pInstr; // current instruction code
|
79 |
|
|
SFormat const * fInstr; // format of current instruction
|
80 |
|
|
SNum parm[6]; // parm[0] = value of first operand if 3 operands
|
81 |
|
|
// parm[1] = value of first operand if 2 operands or second operand if 3 operands
|
82 |
|
|
// parm[2] = value of last operand
|
83 |
|
|
// parm[3] = value of mask register or NUMCONTR
|
84 |
|
|
// parm[4] = value of immediate operand without shift or conversion
|
85 |
|
|
// parm[5] = high part of double size return value
|
86 |
|
|
uint8_t operands[6]; // instruction operands. 0x00-0x1F = register. 0x20 = immediate, 0x40 = memory
|
87 |
|
|
// operands[0] is destination register
|
88 |
|
|
// operands[1] is mask register
|
89 |
|
|
// operands[2] is fallback register
|
90 |
|
|
// two-operand instructions use operands[4-5]
|
91 |
|
|
// three-operand instructions use operands[3-5]
|
92 |
|
|
uint8_t op; // operation code
|
93 |
|
|
uint8_t operandType; // operand type for current instruction
|
94 |
|
|
uint8_t nOperands; // number of source operands for current instruction
|
95 |
|
|
uint8_t vect; // instruction uses vector registers
|
96 |
|
|
uint8_t running; // thread is running. 0 = stop, 1 = save RD, 2 = don't save RD
|
97 |
|
|
bool readonly; // expect memory address to be in read-only section
|
98 |
|
|
bool ignoreMask; // call execution function even if mask is zero
|
99 |
|
|
bool doubleStep; // execution function will process two vector elements at a time
|
100 |
|
|
bool noVectorLength; // RS is not a vector register, or vector length is determined by execution function
|
101 |
|
|
bool dontRead; // don't read source operand before execution
|
102 |
|
|
bool unchangedRd; // store instruction: RD is not destination
|
103 |
|
|
bool terminate; // stop execution
|
104 |
|
|
bool memory_error; // memory address error
|
105 |
|
|
CMemoryBuffer vectors; // vector register i is at offset i*MaxVectorLength
|
106 |
|
|
uint64_t registers[32]; // value of register r0 - r31
|
107 |
|
|
uint32_t vectorLength[32]; // length of vector registers v0 - v31
|
108 |
|
|
uint32_t vectorLengthM; // vector length of memory operand
|
109 |
|
|
uint32_t vectorLengthR; // vector length of result
|
110 |
|
|
uint32_t vectorOffset; // offset to current element within vector
|
111 |
|
|
uint32_t MaxVectorLength; // maximum vector length
|
112 |
|
|
uint32_t returnType; // debug return output. bit 0-3: operand type (8 = half precision). bit 4: register. bit 5: memory. //(bit6: one extra element save_cp)
|
113 |
|
|
// bit 8: vector. bit 12: jump. bit 13: jump taken
|
114 |
|
|
int8_t * memory; // program memory
|
115 |
|
|
int8_t * tempBuffer; // temporary buffer for vector operand
|
116 |
|
|
uint64_t memAddress; // address of memory operand
|
117 |
|
|
int64_t addrOperand; // relative address of memory operand or jump target
|
118 |
|
|
uint64_t readVectorElement(uint32_t v, uint32_t vectorOffset); // read vector element
|
119 |
|
|
void writeVectorElement(uint32_t v, uint64_t value, uint32_t vectorOffset); // write vector element
|
120 |
|
|
uint64_t getMemoryAddress(); // get address of a memory operand
|
121 |
|
|
uint64_t readMemoryOperand(uint64_t address);// read a memory operand
|
122 |
|
|
void writeMemoryOperand(uint64_t val, uint64_t address); // write a memory operand
|
123 |
|
|
void interrupt(uint32_t n); // interrupt or trap
|
124 |
|
|
uint64_t checkSysMemAccess(uint64_t address, uint64_t size, uint8_t rd, uint8_t rs, uint8_t mode);
|
125 |
|
|
int fprintfEmulated(FILE * stream, const char * format, uint64_t * argumentList); // emulate fprintf with ForwardCom argument list
|
126 |
|
|
// check if system function has access to a particular address
|
127 |
|
|
void systemCall(uint32_t mod, uint32_t funcid, uint8_t rd, uint8_t rs); // entry for system calls
|
128 |
|
|
uint64_t makeNan(uint32_t code, uint32_t operandType);// make a NAN with exception code and address in payload
|
129 |
|
|
CDynamicArray<uint64_t> callStack; // stack of return addresses
|
130 |
|
|
uint32_t callDept; // maximum number of entries observed in callStack
|
131 |
|
|
uint64_t entry_point; // program entry point
|
132 |
|
|
uint64_t perfCounters[number_of_perf_counters];// performance counters
|
133 |
|
|
uint64_t capabilyReg[number_of_capability_registers];// capability registers
|
134 |
|
|
protected:
|
135 |
|
|
uint32_t mapIndex1; // last memory map index for code
|
136 |
|
|
uint32_t mapIndex2; // last memory map index for read-only data
|
137 |
|
|
uint32_t mapIndex3; // last memory map index for writeable data
|
138 |
|
|
CEmulator * emulator; // pointer to owner
|
139 |
|
|
CDynamicArray<SMemoryMap> memoryMap; // memory map
|
140 |
|
|
CTextFileBuffer listOut; // output debug listing
|
141 |
|
|
uint32_t listFileName; // file name for listOut (index into cmd.fileNameBuffer)
|
142 |
|
|
uint32_t listLines; // line counter
|
143 |
|
|
void fetch(); // fetch next instruction
|
144 |
|
|
void decode(); // decode current instruction
|
145 |
|
|
void execute(); // execute current instruction
|
146 |
|
|
void listStart(); // start writing debug list
|
147 |
|
|
void listInstruction(uint64_t address); // write current instruction to debug list
|
148 |
|
|
public:
|
149 |
|
|
void listResult(uint64_t result); // write result of current instruction to debug list
|
150 |
|
|
void performanceCounters(); // update performance counters
|
151 |
|
|
uint64_t readRegister(uint8_t reg) { // read register value
|
152 |
|
|
if (vect) { // this function is inlined for performance reasons
|
153 |
|
|
uint64_t val = vectors.get<uint64_t>(reg*MaxVectorLength);
|
154 |
|
|
if (vectorLength[reg] < 8) {
|
155 |
|
|
// vector is less than 8 bytes. zero-extend to 8 bytes
|
156 |
|
|
val &= ((uint64_t)1 << vectorLength[reg]) - 1;
|
157 |
|
|
}
|
158 |
|
|
return val;
|
159 |
|
|
}
|
160 |
|
|
else {
|
161 |
|
|
return registers[reg];
|
162 |
|
|
}
|
163 |
|
|
}
|
164 |
|
|
};
|
165 |
|
|
|
166 |
|
|
// Class for the whole emulator
|
167 |
|
|
class CEmulator : public CELF {
|
168 |
|
|
public:
|
169 |
|
|
CEmulator(); // constructor
|
170 |
|
|
~CEmulator(); // destructor
|
171 |
|
|
void go(); // start
|
172 |
|
|
protected:
|
173 |
|
|
void load(); // load executable file into memory
|
174 |
|
|
void relocate(); // relocate any absolute addresses and system function id's
|
175 |
|
|
void disassemble(); // make disassembly listing for debug output
|
176 |
|
|
uint32_t MaxVectorLength; // maximum vector length
|
177 |
|
|
int8_t * memory; // program memory
|
178 |
|
|
uint64_t memsize; // total allocated memory size
|
179 |
|
|
uint32_t maxNumThreads; // maximum number of threads
|
180 |
|
|
uint64_t ip0; // address base for code and read-only data
|
181 |
|
|
uint64_t datap0; // address base for writeable data
|
182 |
|
|
uint64_t threadp0; // address base for thread data of main thread
|
183 |
|
|
uint64_t stackp; // pointer to stack
|
184 |
|
|
uint64_t stackSize; // data stack size for main thread
|
185 |
|
|
uint64_t callStackSize; // call stack size for main thread
|
186 |
|
|
uint64_t heapSize; // heap size for main thread
|
187 |
|
|
uint32_t environmentSize; // maximum size of environment and command line data
|
188 |
|
|
CMetaBuffer<CThread> threads; // one or more threads
|
189 |
|
|
CDynamicArray<SMemoryMap> memoryMap; // main memory map
|
190 |
|
|
CDynamicArray<SLineRef> lineList; // Cross reference of code addresses to lines in dissassembler output
|
191 |
|
|
CTextFileBuffer disassemOut; // Output file from disassembler
|
192 |
|
|
CDisassembler disassembler; // disassembler for producing output list
|
193 |
|
|
friend class CThread;
|
194 |
|
|
};
|
195 |
|
|
|
196 |
|
|
// Functions for floating point exception and rounding control
|
197 |
|
|
void setRoundingMode(uint8_t r);
|
198 |
|
|
void clearExceptionFlags();
|
199 |
|
|
uint32_t getExceptionFlags();
|
200 |
|
|
void enableSubnormals(uint32_t e);
|
201 |
|
|
|
202 |
|
|
// universal function type for execution function
|
203 |
|
|
// all operands and option bits are accessed via *thread
|
204 |
|
|
typedef uint64_t (*PFunc)(CThread * thread);
|
205 |
|
|
|
206 |
|
|
// Tables of execution functions
|
207 |
|
|
extern PFunc funcTab1[64]; // multiformat instructions
|
208 |
|
|
extern PFunc funcTab2[64]; // jump instructions
|
209 |
|
|
extern PFunc funcTab3[16]; // jump instructions with 24 bit offset
|
210 |
|
|
// single format instructions:
|
211 |
|
|
extern PFunc funcTab4[64]; // format 1.0
|
212 |
|
|
extern PFunc funcTab5[64]; // format 1.1
|
213 |
|
|
extern PFunc funcTab6[64]; // format 1.2
|
214 |
|
|
extern PFunc funcTab7[64]; // format 1.3
|
215 |
|
|
extern PFunc funcTab8[64]; // format 1.4
|
216 |
|
|
extern PFunc funcTab9[64]; // format 1.8
|
217 |
|
|
extern PFunc funcTab10[64]; // format 2.5
|
218 |
|
|
extern PFunc funcTab11[64]; // format 2.6
|
219 |
|
|
extern PFunc funcTab12[64]; // format 2.9
|
220 |
|
|
extern PFunc funcTab13[64]; // format 3.1
|
221 |
|
|
|
222 |
|
|
// Table of execution function tables, indexed by fInstr->exeTable
|
223 |
|
|
extern PFunc * metaFunctionTable[];
|
224 |
|
|
// Table of dispatch functions for single format instructions with E template
|
225 |
|
|
extern PFunc EDispatchTable[];
|
226 |
|
|
|
227 |
|
|
// Table of number of operands for each instruction
|
228 |
|
|
extern uint8_t numOperands[15][64];
|
229 |
|
|
extern uint8_t numOperands2071[64];
|
230 |
|
|
extern uint8_t numOperands2261[64];
|
231 |
|
|
extern uint8_t numOperands2271[64];
|
232 |
|
|
|
233 |
|
|
// Execution functions shared between multiple cpp files
|
234 |
|
|
uint64_t f_nop(CThread * thread);
|
235 |
|
|
uint64_t f_add(CThread * thread);
|
236 |
|
|
uint64_t f_sub(CThread * thread);
|
237 |
|
|
uint64_t f_mul(CThread * thread);
|
238 |
|
|
uint64_t f_div(CThread * thread);
|
239 |
|
|
uint64_t f_mul_add(CThread * thread);
|
240 |
|
|
uint64_t f_add_h(CThread * thread);
|
241 |
|
|
uint64_t f_mul_h(CThread * thread);
|
242 |
|
|
uint64_t insert_(CThread * t);
|
243 |
|
|
uint64_t extract_(CThread * t);
|
244 |
|
|
uint64_t bitscan_(CThread * t);
|
245 |
|
|
uint64_t popcount_(CThread * t);
|
246 |
|
|
int64_t mul64_128s(uint64_t * low, int64_t a, int64_t b);
|
247 |
|
|
uint64_t mul64_128u(uint64_t * low, uint64_t a, uint64_t b);
|
248 |
|
|
|
249 |
|
|
// constants and functions for detecting NAN and infinity
|
250 |
|
|
const uint16_t inf_h = 0x7C00; // float16 infinity
|
251 |
|
|
const uint16_t inf2h = inf_h*2; // for detecting infinity when sign bit has been shifted out
|
252 |
|
|
const uint32_t inf_f = 0x7F800000; // float infinity
|
253 |
|
|
const uint32_t inf2f = inf_f*2; // for detecting infinity when sign bit has been shifted out
|
254 |
|
|
const uint32_t nan_f = 0x7FC00000; // float nan
|
255 |
|
|
const uint32_t sign_f = 0x80000000; // float sign bit
|
256 |
|
|
const uint32_t nsign_f = 0x7FFFFFFF; // float not sign bit
|
257 |
|
|
const uint64_t inf_d = 0x7FF0000000000000; // double infinity
|
258 |
|
|
const uint64_t inf2d = inf_d*2; // for detecting infinity when sign bit has been shifted out
|
259 |
|
|
const uint64_t nan_d = 0x7FF8000000000000; // double nan
|
260 |
|
|
const uint64_t nsign_d = 0x7FFFFFFFFFFFFFFF; // double not sign bit
|
261 |
|
|
const uint64_t sign_d = 0x8000000000000000; // double sign bit
|
262 |
|
|
|
263 |
|
|
// functions applied to the bit representations of floating point numbers to detect NAN and infinity:
|
264 |
|
|
static inline bool isnan_h(uint16_t x) {return uint16_t(x << 1) > inf2h;}
|
265 |
|
|
static inline bool isnan_f(uint32_t x) {return (x << 1) > inf2f;}
|
266 |
|
|
static inline bool isnan_d(uint64_t x) {return (x << 1) > inf2d;}
|
267 |
|
|
static inline bool isinf_h(uint16_t x) {return uint16_t(x << 1) == inf2h;}
|
268 |
|
|
static inline bool isinf_f(uint32_t x) {return (x << 1) == inf2f;}
|
269 |
|
|
static inline bool isinf_d(uint64_t x) {return (x << 1) == inf2d;}
|
270 |
|
|
static inline bool isnan_or_inf_h(uint16_t x) {return uint16_t(x << 1) >= inf2h;}
|
271 |
|
|
static inline bool isnan_or_inf_f(uint32_t x) {return (x << 1) >= inf2f;}
|
272 |
|
|
static inline bool isnan_or_inf_d(uint64_t x) {return (x << 1) >= inf2d;}
|
273 |
|
|
static inline bool is_zero_or_subnormal_h(uint16_t x) {return (x & 0x7C00) == 0;}
|
274 |
|
|
|