1 |
52 |
Agner |
/**************************** emulator1.cpp ********************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* date created: 2018-02-18
|
4 |
|
|
* Last modified: 2021-07-14
|
5 |
|
|
* Version: 1.11
|
6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
7 |
|
|
* Description:
|
8 |
|
|
* Basic functionality of the emulator
|
9 |
|
|
*
|
10 |
|
|
* Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses
|
11 |
|
|
*****************************************************************************/
|
12 |
|
|
|
13 |
|
|
#include "stdafx.h"
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
///////////////////
|
17 |
|
|
// CEmulator class
|
18 |
|
|
///////////////////
|
19 |
|
|
|
20 |
|
|
// constructor
|
21 |
|
|
CEmulator::CEmulator() {
|
22 |
|
|
memory = 0; // initialize
|
23 |
|
|
memsize = 0;
|
24 |
|
|
stackp = 0;
|
25 |
|
|
// set defaults. may be changed by command line or file header:
|
26 |
|
|
MaxVectorLength = 0x80; // 128 bytes = 1024 bits
|
27 |
|
|
maxNumThreads = 1; // multithreading not supported yet
|
28 |
|
|
stackSize = 0x100000; // 1 MB. data stack size for main thread
|
29 |
|
|
callStackSize = 0x800; // call stack size for main thread
|
30 |
|
|
heapSize = 0; // heap size for main thread
|
31 |
|
|
environmentSize = 0x100; // maximum size of environment and command line data
|
32 |
|
|
}
|
33 |
|
|
|
34 |
|
|
// destructor
|
35 |
|
|
CEmulator::~CEmulator() {
|
36 |
|
|
if (memory) delete[] memory; // free allocated program memory
|
37 |
|
|
}
|
38 |
|
|
|
39 |
|
|
// start
|
40 |
|
|
void CEmulator::go() {
|
41 |
|
|
threads.setSize(maxNumThreads); // initialize threads
|
42 |
|
|
load(); // load executable file
|
43 |
|
|
if (err.number()) return;
|
44 |
|
|
if (fileHeader.e_flags & EF_RELOCATE) relocate();
|
45 |
|
|
if (err.number()) return;
|
46 |
|
|
|
47 |
|
|
// set up disassembler for output list
|
48 |
|
|
if (cmd.outputListFile) disassemble();
|
49 |
|
|
|
50 |
|
|
// prepare main thread
|
51 |
|
|
threads[0].setRegisters(this);
|
52 |
|
|
// run main thread
|
53 |
|
|
threads[0].run();
|
54 |
|
|
}
|
55 |
|
|
|
56 |
|
|
// load executable file into memory
|
57 |
|
|
void CEmulator::load() {
|
58 |
|
|
const char * filename = cmd.getFilename(cmd.inputFile);
|
59 |
|
|
read(filename); // read executable file
|
60 |
|
|
if (err.number()) return;
|
61 |
|
|
split(); // extract components
|
62 |
|
|
if (getFileType() != FILETYPE_FWC || fileHeader.e_type != ET_EXEC) {
|
63 |
|
|
err.submit(ERR_LINK_FILE_TYPE_EXE, filename);
|
64 |
|
|
return;
|
65 |
|
|
}
|
66 |
|
|
// calculate necessary memory size
|
67 |
|
|
uint64_t blocksize = 0; // size of block of segments with same base pointer
|
68 |
|
|
uint32_t ph; // program header index
|
69 |
|
|
uint64_t align; // program header alignment
|
70 |
|
|
uint64_t address; // current address
|
71 |
|
|
uint32_t flags, lastflags; // flags of program header
|
72 |
|
|
bool hasDataSegment = false; // check if there is a data segment header
|
73 |
|
|
const uint32_t dataflags = SHF_READ | SHF_WRITE | SHF_ALLOC | SHF_DATAP; // expected flags for data segment
|
74 |
|
|
|
75 |
|
|
memsize = environmentSize; // reserve space for environment in the beginning
|
76 |
|
|
for (ph = 0; ph < programHeaders.numEntries(); ph++) {
|
77 |
|
|
if (programHeaders[ph].p_vaddr == 0) {
|
78 |
|
|
// start of a new block
|
79 |
|
|
memsize += blocksize;
|
80 |
|
|
|
81 |
|
|
if ((programHeaders[ph].p_flags & SHF_READ) && (ph+1 == programHeaders.numEntries())) {
|
82 |
|
|
// This is the last data section
|
83 |
|
|
// Make space for reading a vector beyond the end
|
84 |
|
|
// Note: we cannot do this after the const section because the space there must have fixed size, provided by the linker
|
85 |
|
|
uint32_t extraSpace = MaxVectorLength;
|
86 |
|
|
if (extraSpace < DATA_EXTRA_SPACE) extraSpace = DATA_EXTRA_SPACE;
|
87 |
|
|
programHeaders[ph].p_memsz += extraSpace;
|
88 |
|
|
}
|
89 |
|
|
align = (uint64_t)1 << programHeaders[ph].p_align;
|
90 |
|
|
memsize = (memsize + align - 1) & -(int64_t)align;
|
91 |
|
|
blocksize = programHeaders[ph].p_memsz;
|
92 |
|
|
}
|
93 |
|
|
else {
|
94 |
|
|
// continuation of previous block
|
95 |
|
|
blocksize += programHeaders[ph].p_vaddr + programHeaders[ph].p_memsz;
|
96 |
|
|
}
|
97 |
|
|
if ((programHeaders[ph].p_flags & dataflags) == dataflags) hasDataSegment = true;
|
98 |
|
|
}
|
99 |
|
|
if (!hasDataSegment) { // there is no data segment. make one for the stack
|
100 |
|
|
ElfFwcPhdr dataSegment;
|
101 |
|
|
zeroAllMembers(dataSegment);
|
102 |
|
|
dataSegment.p_type = PT_LOAD;
|
103 |
|
|
dataSegment.p_flags = dataflags;
|
104 |
|
|
dataSegment.p_align = 3;
|
105 |
|
|
programHeaders.push(dataSegment);
|
106 |
|
|
}
|
107 |
|
|
|
108 |
|
|
// end of last block
|
109 |
|
|
memsize += blocksize;
|
110 |
|
|
align = (uint64_t)1 << MEMORY_MAP_ALIGN;
|
111 |
|
|
memsize = (memsize + align - 1) & -(int64_t)align;
|
112 |
|
|
// add stack and heap
|
113 |
|
|
memsize += stackSize + heapSize;
|
114 |
|
|
// allocate memory
|
115 |
|
|
memory = new int8_t[size_t(memsize)];
|
116 |
|
|
if (!memory) {
|
117 |
|
|
err.submit(ERR_MEMORY_ALLOCATION);
|
118 |
|
|
return;
|
119 |
|
|
}
|
120 |
|
|
memset(memory, 0, size_t(memsize));
|
121 |
|
|
// start making memory map
|
122 |
|
|
address = 0;
|
123 |
|
|
flags = SHF_READ | SHF_IP; lastflags = flags;
|
124 |
|
|
SMemoryMap mapentry = {address, flags};
|
125 |
|
|
memoryMap.push(mapentry);
|
126 |
|
|
// make space for environment
|
127 |
|
|
address = environmentSize;
|
128 |
|
|
for (ph = 0; ph < programHeaders.numEntries(); ph++) {
|
129 |
|
|
flags = programHeaders[ph].p_flags & (SHF_PERMISSIONS | SHF_BASEPOINTER);
|
130 |
|
|
if (flags != lastflags && (lastflags & SHF_IP) && (!(flags & SHF_IP))) {
|
131 |
|
|
// insert stack here
|
132 |
|
|
align = 8;
|
133 |
|
|
address = (address + align - 1) & -(int64_t)align;
|
134 |
|
|
flags = SHF_DATAP | SHF_READ | SHF_WRITE;
|
135 |
|
|
mapentry.startAddress = address;
|
136 |
|
|
mapentry.access_addend = flags;
|
137 |
|
|
memoryMap.push(mapentry);
|
138 |
|
|
address += stackSize;
|
139 |
|
|
stackp = address;
|
140 |
|
|
lastflags = flags;
|
141 |
|
|
flags = programHeaders[ph].p_flags & (SHF_PERMISSIONS | SHF_BASEPOINTER);
|
142 |
|
|
}
|
143 |
|
|
if ((flags & SHF_PERMISSIONS) != (lastflags & SHF_PERMISSIONS)) {
|
144 |
|
|
// start new map entry
|
145 |
|
|
align = (uint64_t)1 << programHeaders[ph].p_align;
|
146 |
|
|
address = (address + align - 1) & -(int64_t)align;
|
147 |
|
|
mapentry.startAddress = address;
|
148 |
|
|
mapentry.access_addend = flags;
|
149 |
|
|
memoryMap.push(mapentry);
|
150 |
|
|
}
|
151 |
|
|
if (programHeaders[ph].p_vaddr == 0) {
|
152 |
|
|
switch (flags & SHF_BASEPOINTER) {
|
153 |
|
|
case SHF_IP:
|
154 |
|
|
ip0 = address; break;
|
155 |
|
|
case SHF_DATAP:
|
156 |
|
|
datap0 = address; break;
|
157 |
|
|
case SHF_THREADP:
|
158 |
|
|
threadp0 = address; break;
|
159 |
|
|
}
|
160 |
|
|
}
|
161 |
|
|
// check integrity before copying data
|
162 |
|
|
if (address + programHeaders[ph].p_filesz > memsize
|
163 |
|
|
|| programHeaders[ph].p_filesz > programHeaders[ph].p_memsz
|
164 |
|
|
|| programHeaders[ph].p_offset + programHeaders[ph].p_filesz > dataSize()) {
|
165 |
|
|
err.submit(ERR_ELF_INDEX_RANGE);
|
166 |
|
|
return;
|
167 |
|
|
}
|
168 |
|
|
// store address in program header
|
169 |
|
|
programHeaders[ph].p_vaddr = address;
|
170 |
|
|
// copy data
|
171 |
|
|
memcpy(memory + address, dataBuffer.buf() + programHeaders[ph].p_offset, size_t(programHeaders[ph].p_filesz));
|
172 |
|
|
address += programHeaders[ph].p_memsz;
|
173 |
|
|
lastflags = flags;
|
174 |
|
|
}
|
175 |
|
|
// make terminating entry
|
176 |
|
|
mapentry.startAddress = address;
|
177 |
|
|
mapentry.access_addend = 0;
|
178 |
|
|
memoryMap.push(mapentry);
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
// relocate any absolute addresses and system function id's
|
182 |
|
|
void CEmulator::relocate() {
|
183 |
|
|
uint32_t r; // relocation index
|
184 |
|
|
uint32_t ph; // program header index
|
185 |
|
|
uint32_t rsection; // relocated section
|
186 |
|
|
uint32_t phFistSection; // first section covered by program header
|
187 |
|
|
uint32_t phNumSections; // number of sections covered by program header
|
188 |
|
|
uint64_t sourceAddress; // address of relocation source
|
189 |
|
|
uint64_t targetAddress; // address of relocation target
|
190 |
|
|
const char * symbolname; // name of target symbol
|
191 |
|
|
bool found; // program header found
|
192 |
|
|
for (r = 0; r < relocations.numEntries(); r++) {
|
193 |
|
|
// loadtime relocations are listed first. stop at first non-loadtime record
|
194 |
|
|
if (!(relocations[r].r_type & R_FORW_LOADTIME)) break;
|
195 |
|
|
// find program header containing relocated section
|
196 |
|
|
rsection = relocations[r].r_section;
|
197 |
|
|
found = false;
|
198 |
|
|
for (ph = 0; ph < programHeaders.numEntries(); ph++) {
|
199 |
|
|
phFistSection = (uint32_t)programHeaders[ph].p_paddr;
|
200 |
|
|
phNumSections = (uint32_t)(programHeaders[ph].p_paddr >> 32);
|
201 |
|
|
if (rsection >= phFistSection && rsection < phFistSection + phNumSections) {
|
202 |
|
|
found = true; break;
|
203 |
|
|
}
|
204 |
|
|
}
|
205 |
|
|
if (!found) {
|
206 |
|
|
err.submit(ERR_REL_SYMBOL_NOT_FOUND); continue;
|
207 |
|
|
}
|
208 |
|
|
// calculate address of relocation source
|
209 |
|
|
sourceAddress = programHeaders[ph].p_vaddr + sectionHeaders[rsection].sh_addr - sectionHeaders[phFistSection].sh_addr + relocations[r].r_offset;
|
210 |
|
|
if (sourceAddress >= memsize) {
|
211 |
|
|
err.submit(ERR_ELF_INDEX_RANGE); continue;
|
212 |
|
|
}
|
213 |
|
|
if ((relocations[r].r_type & R_FORW_RELTYPEMASK) == R_FORW_ABS) {
|
214 |
|
|
// needs absolute address of target
|
215 |
|
|
uint32_t symi = relocations[r].r_sym;
|
216 |
|
|
if (symi >= symbols.numEntries()) {
|
217 |
|
|
err.submit(ERR_ELF_INDEX_RANGE); return;
|
218 |
|
|
}
|
219 |
|
|
ElfFwcSym & targetSym = symbols[symi];
|
220 |
|
|
uint32_t tsec = targetSym.st_section; // section of target symbol
|
221 |
|
|
// find program header containing target section
|
222 |
|
|
found = false;
|
223 |
|
|
for (ph = 0; ph < programHeaders.numEntries(); ph++) {
|
224 |
|
|
phFistSection = (uint32_t)programHeaders[ph].p_paddr;
|
225 |
|
|
phNumSections = (uint32_t)(programHeaders[ph].p_paddr >> 32);
|
226 |
|
|
if (tsec >= phFistSection && tsec < phFistSection + phNumSections) {
|
227 |
|
|
found = true; break;
|
228 |
|
|
}
|
229 |
|
|
}
|
230 |
|
|
if (!found) {
|
231 |
|
|
err.submit(ERR_REL_SYMBOL_NOT_FOUND); continue;
|
232 |
|
|
}
|
233 |
|
|
// calculate target address
|
234 |
|
|
targetAddress = programHeaders[ph].p_vaddr + sectionHeaders[rsection].sh_addr - sectionHeaders[phFistSection].sh_addr + targetSym.st_value;
|
235 |
|
|
if (targetAddress >= memsize) {
|
236 |
|
|
err.submit(ERR_ELF_INDEX_RANGE); continue;
|
237 |
|
|
}
|
238 |
|
|
// scale (scaling of absolute addresses is rarely used, but allowed)
|
239 |
|
|
targetAddress >>= (relocations[r].r_type & R_FORW_RELSCALEMASK);
|
240 |
|
|
// insert relocation of desired size
|
241 |
|
|
switch (relocations[r].r_type & R_FORW_RELSIZEMASK) {
|
242 |
|
|
case R_FORW_8: // 8 bit relocation size
|
243 |
|
|
if (targetAddress >> 8) goto OVERFLW;
|
244 |
|
|
*(memory + sourceAddress) = int8_t(targetAddress);
|
245 |
|
|
break;
|
246 |
|
|
case R_FORW_16: // 16 bit relocation size
|
247 |
|
|
if (targetAddress >> 16) goto OVERFLW;
|
248 |
|
|
*(uint16_t*)(memory + sourceAddress) = uint16_t(targetAddress);
|
249 |
|
|
break;
|
250 |
|
|
case R_FORW_32: // 32 bit relocation size
|
251 |
|
|
if (targetAddress >> 32) goto OVERFLW;
|
252 |
|
|
*(uint32_t*)(memory + sourceAddress) = uint32_t(targetAddress);
|
253 |
|
|
break;
|
254 |
|
|
case R_FORW_32LO: // Low 16 of 32 bits relocation
|
255 |
|
|
*(uint16_t*)(memory + sourceAddress) = uint16_t(targetAddress);
|
256 |
|
|
break;
|
257 |
|
|
case R_FORW_32HI: // High 16 of 32 bits relocation
|
258 |
|
|
if (targetAddress >> 32) goto OVERFLW;
|
259 |
|
|
*(uint16_t*)(memory + sourceAddress) = uint16_t(targetAddress >> 16);
|
260 |
|
|
break;
|
261 |
|
|
case R_FORW_64: // 64 bit relocation size
|
262 |
|
|
*(uint64_t*)(memory + sourceAddress) = uint64_t(targetAddress);
|
263 |
|
|
break;
|
264 |
|
|
case R_FORW_64LO: // Low 32 of 64 bits relocation
|
265 |
|
|
*(uint32_t*)(memory + sourceAddress) = uint32_t(targetAddress);
|
266 |
|
|
break;
|
267 |
|
|
case R_FORW_64HI: // High 32 of 64 bits relocation
|
268 |
|
|
*(uint32_t*)(memory + sourceAddress) = uint32_t(targetAddress >> 32);
|
269 |
|
|
break;
|
270 |
|
|
default:
|
271 |
|
|
OVERFLW:
|
272 |
|
|
symbolname = symbolNameBuffer.getString(targetSym.st_name);
|
273 |
|
|
err.submit(ERR_LINK_RELOCATION_OVERFLOW, symbolname);
|
274 |
|
|
}
|
275 |
|
|
}
|
276 |
|
|
else {
|
277 |
|
|
// to do: get system function id from name
|
278 |
|
|
}
|
279 |
|
|
}
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
void CEmulator::disassemble() { // make disassembly listing for debug output
|
283 |
|
|
disassembler.copy(*this); // copy ELF file
|
284 |
|
|
disassembler.getComponents1(); // set up instruction list, etc.
|
285 |
|
|
if (err.number()) return;
|
286 |
|
|
//disassembler.outputFile = cmd.fileNameBuffer.pushString("ddd.txt");
|
287 |
|
|
disassembler.debugMode = 1; // produce disassembly for debug display/list
|
288 |
|
|
disassembler.go(); // disassemble
|
289 |
|
|
if (err.number()) return;
|
290 |
|
|
disassembler.getLineList(lineList); // get cross reference list from address to disassembly output file
|
291 |
|
|
lineList.sort(); // only needed if multiple segments in lineList
|
292 |
|
|
disassembler.getOutFile(disassemOut); // get disassembly output file
|
293 |
|
|
// replace all linefeeds by end of string
|
294 |
|
|
for (uint32_t i = 0; i < disassemOut.dataSize(); i++) {
|
295 |
|
|
if ((uint8_t)disassemOut.buf()[i] < ' ') disassemOut.buf()[i] = 0;
|
296 |
|
|
}
|
297 |
|
|
}
|
298 |
|
|
|
299 |
|
|
|
300 |
|
|
/////////////////
|
301 |
|
|
// CThread class
|
302 |
|
|
/////////////////
|
303 |
|
|
|
304 |
|
|
// constructor
|
305 |
|
|
CThread::CThread() {
|
306 |
|
|
numContr = 1 | (1<<MSK_SUBNORMAL); // default numContr. Bit 0 must be 1;
|
307 |
|
|
enableSubnormals (numContr & (1<<MSK_SUBNORMAL)); // enable or disable subnormal numbers
|
308 |
|
|
lastMask = numContr;
|
309 |
|
|
ninstructions = 0;
|
310 |
|
|
mapIndex1 = mapIndex2 = mapIndex3 = 0; // indexes into memory map
|
311 |
|
|
callDept = 0;
|
312 |
|
|
listLines = 0;
|
313 |
|
|
tempBuffer = 0;
|
314 |
|
|
}
|
315 |
|
|
|
316 |
|
|
// destructor
|
317 |
|
|
CThread::~CThread() {
|
318 |
|
|
if (tempBuffer != 0) {
|
319 |
|
|
delete[] tempBuffer; // free temporary buffer
|
320 |
|
|
}
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
// initialize registers etc. from values in emulator
|
324 |
|
|
void CThread::setRegisters(CEmulator * emulator) {
|
325 |
|
|
this->emulator = emulator;
|
326 |
|
|
this->memory = emulator->memory; // program memory
|
327 |
|
|
memoryMap.copy(emulator->memoryMap); // memory map
|
328 |
|
|
// ip_base = emulator->ip_base; // reference point for code and read-only data
|
329 |
|
|
ip0 = emulator->ip0; // reference point for code and read-only data
|
330 |
|
|
datap = emulator->datap0 + emulator->fileHeader.e_datap_base; // base pointer for writeable data
|
331 |
|
|
threadp = emulator->threadp0 + emulator->fileHeader.e_threadp_base; // base pointer for thread-local data
|
332 |
|
|
ip = entry_point = emulator->fileHeader.e_entry + ip0; // start value of instruction pointer
|
333 |
|
|
MaxVectorLength = emulator->MaxVectorLength;
|
334 |
|
|
tempBuffer = new int8_t[MaxVectorLength * 2]; // temporary buffer for vector operands
|
335 |
|
|
memset(registers, 0, sizeof(registers)); // clear all registers
|
336 |
|
|
memset(vectorLength, 0, sizeof(vectorLength));
|
337 |
|
|
vectors.setDataSize(32*MaxVectorLength);
|
338 |
|
|
registers[31] = emulator->stackp; // stack pointer
|
339 |
|
|
memset(perfCounters, 0, sizeof(perfCounters)); // reset performance counters
|
340 |
|
|
// initialize capability registers
|
341 |
|
|
memset(capabilyReg, 0, sizeof(capabilyReg)); // reset capability registers
|
342 |
|
|
capabilyReg[0] = 'E'; // brand ID. E = emulator
|
343 |
|
|
capabilyReg[1] = FORWARDCOM_VERSION * 0x10000 + FORWARDCOM_SUBVERSION * 0x100; // ForwardCom version
|
344 |
|
|
capabilyReg[8] = 0b1111; // support for operand sizes in g.p. registers
|
345 |
|
|
capabilyReg[9] = 0b101101111; // support for operand sizes in vector registers
|
346 |
|
|
capabilyReg[12] = MaxVectorLength; // maximum vector length
|
347 |
|
|
capabilyReg[13] = MaxVectorLength; // maximum vector length for permute
|
348 |
|
|
capabilyReg[14] = MaxVectorLength; // maximum block size for permute??
|
349 |
|
|
capabilyReg[15] = MaxVectorLength; // maximum vector length compress_sparse and expand_sparse
|
350 |
|
|
listFileName = cmd.outputListFile; // name for output list file. to do: add thread number to list file name if multiple threads
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
// start running
|
354 |
|
|
void CThread::run() {
|
355 |
|
|
listStart(); // start writing debug output list
|
356 |
|
|
running = 1; terminate = false;
|
357 |
|
|
while (running && !terminate) {
|
358 |
|
|
|
359 |
|
|
fetch(); // fetch next instruction
|
360 |
|
|
if (terminate) break;
|
361 |
|
|
decode(); // decode instruction
|
362 |
|
|
if (terminate) break;
|
363 |
|
|
execute(); // execute instruction
|
364 |
|
|
}
|
365 |
|
|
// write debug output
|
366 |
|
|
if (listFileName) {
|
367 |
|
|
listOut.write(cmd.getFilename(listFileName));
|
368 |
|
|
}
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
// fetch next instruction
|
372 |
|
|
void CThread::fetch() {
|
373 |
|
|
// find memory map entry
|
374 |
|
|
while (ip < memoryMap[mapIndex1].startAddress) {
|
375 |
|
|
if (mapIndex1 > 0) mapIndex1--;
|
376 |
|
|
else {
|
377 |
|
|
interrupt(INT_ACCESS_EXE); return;
|
378 |
|
|
}
|
379 |
|
|
}
|
380 |
|
|
while (ip >= memoryMap[mapIndex1 + 1].startAddress) {
|
381 |
|
|
if (mapIndex1 + 2 < memoryMap.numEntries()) mapIndex1++;
|
382 |
|
|
else {
|
383 |
|
|
interrupt(INT_ACCESS_EXE); return;
|
384 |
|
|
}
|
385 |
|
|
}
|
386 |
|
|
// check execute permission
|
387 |
|
|
if (!(memoryMap[mapIndex1].access_addend & SHF_EXEC)) interrupt(INT_ACCESS_EXE);
|
388 |
|
|
// get instruction
|
389 |
|
|
pInstr = (STemplate const *)(memory + ip);
|
390 |
|
|
}
|
391 |
|
|
|
392 |
|
|
// List of instructionlengths, used in decode()
|
393 |
|
|
static const uint8_t lengthList[8] = {1,1,1,1,2,2,3,4};
|
394 |
|
|
|
395 |
|
|
// decode current instruction
|
396 |
|
|
void CThread::decode() {
|
397 |
|
|
|
398 |
|
|
listInstruction(ip - ip0); // make debug listing
|
399 |
|
|
// decoding similar to CDisassembler::parseInstruction()
|
400 |
|
|
op = pInstr->a.op1;
|
401 |
|
|
//rs = pInstr->a.rs;
|
402 |
|
|
|
403 |
|
|
// Get format
|
404 |
|
|
uint32_t format = (pInstr->a.il << 8) + (pInstr->a.mode << 4); // Construct format = (il,mode,submode)
|
405 |
|
|
|
406 |
|
|
// Get submode
|
407 |
|
|
switch (format) {
|
408 |
|
|
case 0x200: case 0x220: case 0x300: case 0x320: // submode in mode2
|
409 |
|
|
format += pInstr->a.mode2;
|
410 |
|
|
break;
|
411 |
|
|
case 0x250: case 0x310: // Submode for jump instructions etc.
|
412 |
|
|
if (op < 8) {
|
413 |
|
|
format += op; // op1 defines sub-format
|
414 |
|
|
op = pInstr->b[0] & 0x3F; // OPJ is in IM1 (other positions for opj fixed below
|
415 |
|
|
}
|
416 |
|
|
else {
|
417 |
|
|
format += 8;
|
418 |
|
|
}
|
419 |
|
|
break;
|
420 |
|
|
}
|
421 |
|
|
// Look up format details (lookupFormat() is in emulator2.cpp)
|
422 |
|
|
fInstr = &formatList[lookupFormat(pInstr->q)];
|
423 |
|
|
format = fInstr->format2; // Include subformat depending on op1
|
424 |
|
|
|
425 |
|
|
if (fInstr->imm2 & 0x80) { // alternative position of opj
|
426 |
|
|
if (fInstr->imm2 & 0x40) { // no opj
|
427 |
|
|
op = 63;
|
428 |
|
|
}
|
429 |
|
|
else if (fInstr->imm2 & 0x10) {
|
430 |
|
|
op = pInstr->b[7] & 0x3F; // OPJ is in high part of IM2 in format A2
|
431 |
|
|
}
|
432 |
|
|
}
|
433 |
|
|
if (fInstr->tmplate == 0xE && pInstr->a.op2 && !(fInstr->imm2 & 0x100)) {
|
434 |
|
|
// Single format instruction if op2 != 0 in E template and op2 not used as immediate operand
|
435 |
|
|
static SFormat form; // don't initialize static object.
|
436 |
|
|
form = *fInstr; // copy format record
|
437 |
|
|
form.category = 1; // change category
|
438 |
|
|
fInstr = &form; // point to static object
|
439 |
|
|
// operand tables for single-format instructions
|
440 |
|
|
if (format == 0x207 && pInstr->a.op2 == 1) nOperands = numOperands2071[op]; // table for format 2.0.7
|
441 |
|
|
else if (format == 0x226 && pInstr->a.op2 == 1) nOperands = numOperands2261[op]; // table for format 2.2.6
|
442 |
|
|
else if (format == 0x227 && pInstr->a.op2 == 1) nOperands = numOperands2271[op]; // table for format 2.2.7
|
443 |
|
|
else nOperands = 0xB; // default value when there is no table
|
444 |
|
|
}
|
445 |
|
|
else {
|
446 |
|
|
// operand tables for multi-format instructions
|
447 |
|
|
nOperands = numOperands[fInstr->exeTable][op]; // number of source operands (see bit definitions in format_tables.cpp)
|
448 |
|
|
}
|
449 |
|
|
|
450 |
|
|
ignoreMask = (nOperands & 0x08) != 0; // bit 3: ignore mask
|
451 |
|
|
noVectorLength = (nOperands & 0x10) != 0; // bit 4: vector length determined by execution function
|
452 |
|
|
doubleStep = (nOperands & 0x20) != 0; // bit 5: take double steps
|
453 |
|
|
dontRead = (nOperands & 0x40) != 0; // bit 6: don't read source operand
|
454 |
|
|
unchangedRd = (nOperands & 0x80) != 0; // bit 7: RD is unchanged, not destination
|
455 |
|
|
nOperands &= 0x7; // bit 0-2: number of operands
|
456 |
|
|
|
457 |
|
|
// Get operand type
|
458 |
|
|
if (fInstr->ot == 0) { // Operand type determined by OT field
|
459 |
|
|
operandType = pInstr->a.ot; // Operand type
|
460 |
|
|
if (!(pInstr->a.mode & 6) && !(fInstr->vect & 0x11)) {
|
461 |
|
|
// Check use of M bit
|
462 |
|
|
format |= (operandType & 4) << 5; // Add M bit to format
|
463 |
|
|
operandType &= ~4; // Remove M bit from operand type
|
464 |
|
|
}
|
465 |
|
|
}
|
466 |
|
|
else if ((fInstr->ot & 0xF0) == 0x10) { // Operand type fixed. Value in formatList
|
467 |
|
|
operandType = fInstr->ot & 7;
|
468 |
|
|
}
|
469 |
|
|
else if (fInstr->ot == 0x32) { // int32 for even op1, int64 for odd op1
|
470 |
|
|
operandType = 2 + (pInstr->a.op1 & 1);
|
471 |
|
|
}
|
472 |
|
|
else if (fInstr->ot == 0x35) { // Float for even op1, double for odd op1
|
473 |
|
|
operandType = 5 + (pInstr->a.op1 & 1);
|
474 |
|
|
}
|
475 |
|
|
else {
|
476 |
|
|
operandType = 0; // Error in formatList. Should not occur
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
// Find instruction length
|
480 |
|
|
uint8_t instrLength = lengthList[pInstr->i[0] >> 29]; // Length up to 3 determined by il. Length 4 by upper bit of mode
|
481 |
|
|
ip += instrLength * 4; // next ip
|
482 |
|
|
|
483 |
|
|
// get address of memory operand
|
484 |
|
|
if (fInstr->mem) memAddress = getMemoryAddress();
|
485 |
|
|
|
486 |
|
|
// find operands
|
487 |
|
|
if (fInstr->category == 4 && fInstr->jumpSize) {
|
488 |
|
|
// jump instruction with self-relative jump address
|
489 |
|
|
// check if it uses vector registers
|
490 |
|
|
vect = (fInstr->vect & 0x10) && fInstr->tmplate != 0xC && (pInstr->a.ot & 4);
|
491 |
|
|
// pointer to address field
|
492 |
|
|
const uint8_t * pa = &pInstr->b[0] + fInstr->jumpPos;
|
493 |
|
|
// store relative address in addrOperand
|
494 |
|
|
switch (fInstr->jumpSize) {
|
495 |
|
|
case 1: // sign extend 8-bit offset
|
496 |
|
|
addrOperand = *(int8_t*)pa;
|
497 |
|
|
break;
|
498 |
|
|
case 2: // sign extend 16-bit offset
|
499 |
|
|
addrOperand = *(int16_t*)pa;
|
500 |
|
|
break;
|
501 |
|
|
case 3: // sign extend 24-bit offset
|
502 |
|
|
addrOperand = *(int32_t*)pa << 8 >> 8;
|
503 |
|
|
break;
|
504 |
|
|
case 4: // sign extend 32-bit offset
|
505 |
|
|
addrOperand = *(int32_t*)pa;
|
506 |
|
|
break;
|
507 |
|
|
case 8: // 64-bit offset
|
508 |
|
|
addrOperand = *(int64_t*)pa;
|
509 |
|
|
break;
|
510 |
|
|
default:
|
511 |
|
|
addrOperand = 0;
|
512 |
|
|
err.submit(ERR_INTERNAL);
|
513 |
|
|
}
|
514 |
|
|
// pointer to immediate field
|
515 |
|
|
const uint8_t * pi = &pInstr->b[0] + fInstr->immPos;
|
516 |
|
|
// get immediate operand or last register operand
|
517 |
|
|
if (fInstr->opAvail & 1) {
|
518 |
|
|
// last operand is immediate. sign extend or convert it into parm[2]
|
519 |
|
|
switch (fInstr->immSize) {
|
520 |
|
|
case 1:
|
521 |
|
|
parm[2].qs = parm[4].qs = *(int8_t*)pi; // sign extend
|
522 |
|
|
if (pInstr->a.ot == 5) parm[2].f = parm[4].bs; // convert to float
|
523 |
|
|
if (pInstr->a.ot == 6) parm[2].d = parm[4].bs; // convert to double
|
524 |
|
|
break;
|
525 |
|
|
case 2:
|
526 |
|
|
parm[2].qs = parm[4].qs = *(int16_t*)pi; // sign extend
|
527 |
|
|
if (pInstr->a.ot == 5) parm[2].f = half2float(*(uint16_t*)pi); // convert from half precision
|
528 |
|
|
if (pInstr->a.ot == 6) parm[2].d = half2float(*(uint16_t*)pi); // convert from half precision
|
529 |
|
|
break;
|
530 |
|
|
case 4:
|
531 |
|
|
parm[2].qs = parm[4].qs = *(int32_t*)pi; // sign extend
|
532 |
|
|
if (pInstr->a.ot == 6) parm[2].d = *(float*)pi; // convert to double
|
533 |
|
|
break;
|
534 |
|
|
case 8:
|
535 |
|
|
parm[2].qs = parm[4].qs = *(int64_t*)pi; break; // just copy
|
536 |
|
|
default:
|
537 |
|
|
err.submit(ERR_INTERNAL);
|
538 |
|
|
}
|
539 |
|
|
operands[5] = 0x20;
|
540 |
|
|
// first source operand
|
541 |
|
|
if (fInstr->opAvail & 0x20) operands[4] = pInstr->a.rs;
|
542 |
|
|
else operands[4] = pInstr->a.rd;
|
543 |
|
|
}
|
544 |
|
|
else if (fInstr->opAvail & 2) {
|
545 |
|
|
// last operand is memory
|
546 |
|
|
parm[2].q = readMemoryOperand(memAddress);
|
547 |
|
|
operands[5] = 0x40;
|
548 |
|
|
// first source operand
|
549 |
|
|
if (fInstr->opAvail & 0x20) operands[4] = pInstr->a.rs;
|
550 |
|
|
else operands[4] = pInstr->a.rd;
|
551 |
|
|
}
|
552 |
|
|
else {
|
553 |
|
|
// last source operand is a register
|
554 |
|
|
operands[4] = pInstr->a.rd;
|
555 |
|
|
if ((fInstr->opAvail & 0x30) == 0x30) {
|
556 |
|
|
// three registers
|
557 |
|
|
operands[4] = pInstr->a.rs;
|
558 |
|
|
operands[5] = pInstr->a.rt;
|
559 |
|
|
}
|
560 |
|
|
else if (fInstr->opAvail & 0x20) operands[5] = pInstr->a.rs;
|
561 |
|
|
else operands[5] = pInstr->a.rd;
|
562 |
|
|
// read register containing last operand
|
563 |
|
|
parm[2].q = readRegister(operands[5]);
|
564 |
|
|
}
|
565 |
|
|
operands[0] = pInstr->a.rd; // destination
|
566 |
|
|
operands[1] = 0xFF; // no mask
|
567 |
|
|
// read register containing first source operand
|
568 |
|
|
parm[1].q = readRegister(operands[4]);
|
569 |
|
|
// return type for debug output. may be changed by execution function
|
570 |
|
|
returnType = operandType | 0x1010;
|
571 |
|
|
return;
|
572 |
|
|
}
|
573 |
|
|
|
574 |
|
|
// single format, multi-format, and indirect jump instructions:
|
575 |
|
|
|
576 |
|
|
// Make list of operands from available operands.
|
577 |
|
|
// The operands[] array must have 6 elements to avoid overflow here,
|
578 |
|
|
// even if some elements are later overwritten and used for other purposes
|
579 |
|
|
uint8_t opAvail = fInstr->opAvail; // Bit index of available operands
|
580 |
|
|
// opAvail bits: 1 = immediate, 2 = memory,
|
581 |
|
|
// 0x10 = RT, 0x20 = RS, 0x40 = RU, 0x80 = RD
|
582 |
|
|
int j = 5;
|
583 |
|
|
if (opAvail & 0x01) operands[j--] = 0x20; // immediate operand
|
584 |
|
|
if (opAvail & 0x02) operands[j--] = 0x40; // memory operand
|
585 |
|
|
if (opAvail & 0x10) operands[j--] = pInstr->a.rt; // register RT
|
586 |
|
|
if (opAvail & 0x20) operands[j--] = pInstr->a.rs; // register RS
|
587 |
|
|
if (opAvail & 0x40) operands[j--] = pInstr->a.ru; // register RU
|
588 |
|
|
if (opAvail & 0x80) operands[j--] = pInstr->a.rd; // register RD
|
589 |
|
|
operands[0] = pInstr->a.rd; // destination
|
590 |
|
|
|
591 |
|
|
// find mask register
|
592 |
|
|
if (fInstr->tmplate == 0xA || fInstr->tmplate == 0xE) {
|
593 |
|
|
operands[1] = pInstr->a.mask;
|
594 |
|
|
// find fallback register
|
595 |
|
|
uint8_t fb = findFallback(fInstr, pInstr, nOperands);
|
596 |
|
|
operands[2] = fb; // fallback register, or 0xFF if zero fallback
|
597 |
|
|
}
|
598 |
|
|
else {
|
599 |
|
|
operands[1] = operands[2] = 0xFF; // no mask, no fallback
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
// determine if vector registers are used
|
603 |
|
|
vect = (fInstr->vect & 1) || ((fInstr->vect & 0x10) && (pInstr->a.ot & 4));
|
604 |
|
|
|
605 |
|
|
// return type for debug output. may be changed by execution function
|
606 |
|
|
returnType = operandType | 0x10 | vect << 8;
|
607 |
|
|
|
608 |
|
|
// get value of last operand if not a vector
|
609 |
|
|
if (opAvail & 0x01) {
|
610 |
|
|
// pointer to immediate field
|
611 |
|
|
const uint8_t * pi = &pInstr->b[0] + fInstr->immPos;
|
612 |
|
|
// get value, sign extended
|
613 |
|
|
switch (fInstr->immSize) {
|
614 |
|
|
case 1:
|
615 |
|
|
parm[2].qs = *(int8_t*)pi;
|
616 |
|
|
break;
|
617 |
|
|
case 2:
|
618 |
|
|
parm[2].qs = *(int16_t*)pi;
|
619 |
|
|
break;
|
620 |
|
|
case 4:
|
621 |
|
|
parm[2].qs = *(int32_t*)pi;
|
622 |
|
|
break;
|
623 |
|
|
case 8:
|
624 |
|
|
parm[2].qs = *(uint64_t*)pi;
|
625 |
|
|
break;
|
626 |
|
|
case 14: // 4 bits
|
627 |
|
|
parm[2].q = *(uint8_t*)pi & 0xF;
|
628 |
|
|
break;
|
629 |
|
|
default:
|
630 |
|
|
err.submit(ERR_INTERNAL);
|
631 |
|
|
}
|
632 |
|
|
// extend, shift, or convert
|
633 |
|
|
parm[4].q = parm[2].q; // preserve original value
|
634 |
|
|
switch (operandType) {
|
635 |
|
|
case 5: // float
|
636 |
|
|
if (fInstr->immSize == 1) { // convert integer
|
637 |
|
|
parm[2].f = (float)(int8_t)parm[2].b;
|
638 |
|
|
}
|
639 |
|
|
else if (fInstr->immSize == 2) { // convert half precision
|
640 |
|
|
parm[2].f = half2float(parm[2].i);
|
641 |
|
|
}
|
642 |
|
|
break;
|
643 |
|
|
case 6: // double precision
|
644 |
|
|
if (fInstr->immSize == 1) { // convert integer
|
645 |
|
|
parm[2].d = (double)(int8_t)parm[2].b;
|
646 |
|
|
}
|
647 |
|
|
else if (fInstr->immSize == 2) { // convert half precision
|
648 |
|
|
parm[2].d = half2float(parm[2].i);
|
649 |
|
|
}
|
650 |
|
|
else if (fInstr->immSize == 4) { // convert single precision
|
651 |
|
|
parm[2].d = parm[2].f;
|
652 |
|
|
}
|
653 |
|
|
break;
|
654 |
|
|
case 7: // quadruple precision
|
655 |
|
|
// to do
|
656 |
|
|
break;
|
657 |
|
|
default: // all integer types. shift value if needed
|
658 |
|
|
if (fInstr->imm2 & 4) parm[2].q <<= pInstr->a.im3;
|
659 |
|
|
else if (fInstr->imm2 & 8) parm[2].q <<= pInstr->a.im2;
|
660 |
|
|
}
|
661 |
|
|
if (opAvail & 2) {
|
662 |
|
|
// both memory and immediate operand
|
663 |
|
|
if ((!vect || (fInstr->vect & 4)) && !dontRead) {
|
664 |
|
|
// scalar or broadcast memory operand
|
665 |
|
|
parm[1].q = readMemoryOperand(memAddress);
|
666 |
|
|
}
|
667 |
|
|
if (nOperands > 2) parm[0].q = readRegister(operands[3] & 0x1F);
|
668 |
|
|
return;
|
669 |
|
|
}
|
670 |
|
|
}
|
671 |
|
|
else if ((!vect || (fInstr->vect & 4)) && (opAvail & 0x02) && !dontRead) {
|
672 |
|
|
// scalar or broadcast memory operand and no immediate operand
|
673 |
|
|
parm[2].q = readMemoryOperand(memAddress);
|
674 |
|
|
}
|
675 |
|
|
else if (!vect) {
|
676 |
|
|
// general purpose register
|
677 |
|
|
parm[2].q = readRegister(operands[5] & 0x1F);
|
678 |
|
|
}
|
679 |
|
|
// get values of remaining operands
|
680 |
|
|
if (nOperands > 1) parm[1].q = readRegister(operands[4] & 0x1F);
|
681 |
|
|
if (nOperands > 2) parm[0].q = readRegister(operands[3] & 0x1F);
|
682 |
|
|
}
|
683 |
|
|
|
684 |
|
|
|
685 |
|
|
// execute current instruction
|
686 |
|
|
void CThread::execute() {
|
687 |
|
|
uint64_t result = 0; // destination value
|
688 |
|
|
PFunc functionPointer = 0; // pointer to execution function
|
689 |
|
|
running = 1;
|
690 |
|
|
|
691 |
|
|
// find function pionter
|
692 |
|
|
if (fInstr->exeTable == 0) {
|
693 |
|
|
interrupt(INT_UNKNOWN_INST); return;
|
694 |
|
|
}
|
695 |
|
|
if (fInstr->tmplate == 0xE && pInstr->a.op2 != 0 && !(fInstr->imm2 & 0x100)) {
|
696 |
|
|
// single format instruction with E template
|
697 |
|
|
uint8_t index; // index into EDispatchTable
|
698 |
|
|
// bit 0-2 = mode2
|
699 |
|
|
// bit 3 = mode bit 1
|
700 |
|
|
// bit 4 = il bit 0
|
701 |
|
|
// bit 5-6 = op2 - 1
|
702 |
|
|
index = pInstr->a.mode2 | (pInstr->a.mode << 2 & 8) | (pInstr->a.il << 4 & 0x10) | (pInstr->a.op2 - 1) << 5;
|
703 |
|
|
functionPointer = EDispatchTable[index];
|
704 |
|
|
}
|
705 |
|
|
else { // all other instructions. fInstr->exeTable indicates which function table to look into
|
706 |
|
|
functionPointer = metaFunctionTable[fInstr->exeTable][op];
|
707 |
|
|
}
|
708 |
|
|
if (!functionPointer || !fInstr->exeTable) {
|
709 |
|
|
interrupt(INT_UNKNOWN_INST);
|
710 |
|
|
return;
|
711 |
|
|
}
|
712 |
|
|
if (vect) { // vector instruction
|
713 |
|
|
// length of each element
|
714 |
|
|
uint32_t elementSize = dataSizeTable[operandType];
|
715 |
|
|
// get vector length
|
716 |
|
|
// vector length of result = length of first source operand register
|
717 |
|
|
switch (nOperands) {
|
718 |
|
|
case 0: // no source operands. vector length will be set by instruction
|
719 |
|
|
vectorLengthR = 8; break;
|
720 |
|
|
case 1: // one source operand
|
721 |
|
|
if (operands[5] & 0x20) { // source operand is immediate.
|
722 |
|
|
vectorLengthR = dataSizeTable[operandType]; // vector length may be modified by instruction
|
723 |
|
|
}
|
724 |
|
|
else if (operands[5] & 0x40) { // source operand is memory
|
725 |
|
|
vectorLengthR = vectorLengthM;
|
726 |
|
|
}
|
727 |
|
|
else { // source operand is register
|
728 |
|
|
vectorLengthR = vectorLength[operands[5]];
|
729 |
|
|
}
|
730 |
|
|
break;
|
731 |
|
|
case 2: // two source operands
|
732 |
|
|
if (operands[4] & 0x40) { // first source operand is memory
|
733 |
|
|
vectorLengthR = vectorLengthM;
|
734 |
|
|
}
|
735 |
|
|
else { // first source operand is register
|
736 |
|
|
vectorLengthR = vectorLength[operands[4]];
|
737 |
|
|
}
|
738 |
|
|
break;
|
739 |
|
|
case 3: default: // three source operands. first source operand must be register
|
740 |
|
|
vectorLengthR = vectorLength[operands[3]];
|
741 |
|
|
break;
|
742 |
|
|
}
|
743 |
|
|
if (noVectorLength // vector length determined by execution function
|
744 |
|
|
|| fInstr->category == 4) { // call compare/jump function even if vector is empty
|
745 |
|
|
vectorLengthR = elementSize; // make sure it is called at least once
|
746 |
|
|
}
|
747 |
|
|
// set vector length of destination
|
748 |
|
|
if (!noVectorLength && !unchangedRd) {
|
749 |
|
|
vectorLength[operands[0]] = vectorLengthR;
|
750 |
|
|
}
|
751 |
|
|
|
752 |
|
|
// loop through vector
|
753 |
|
|
vect = 1;
|
754 |
|
|
for (vectorOffset = 0; vectorOffset < vectorLengthR; vectorOffset += elementSize) {
|
755 |
|
|
if (vect & 4) break; // stop loop
|
756 |
|
|
|
757 |
|
|
// read nOperands operands
|
758 |
|
|
for (int iOp = 3 - nOperands; iOp <= 2; iOp++) {
|
759 |
|
|
if (operands[iOp+3] & 0x20) { // immediate
|
760 |
|
|
// has already been read into parm[2]
|
761 |
|
|
}
|
762 |
|
|
else if (operands[iOp+3] & 0x40) { // memory
|
763 |
|
|
if (fInstr->vect & 4) { // broadcast memory operand
|
764 |
|
|
if (vectorOffset + elementSize > vectorLengthM) {
|
765 |
|
|
parm[iOp].q = 0; // beyond broadcast length
|
766 |
|
|
}
|
767 |
|
|
else { // read broadcast memory operand
|
768 |
|
|
parm[iOp].q = readMemoryOperand(memAddress);
|
769 |
|
|
}
|
770 |
|
|
}
|
771 |
|
|
else { // memory vector
|
772 |
|
|
if (!dontRead) {
|
773 |
|
|
if (vectorOffset + elementSize > vectorLengthM) {
|
774 |
|
|
parm[iOp].q = 0; // beyond memory operand length
|
775 |
|
|
}
|
776 |
|
|
else { // read memory vector
|
777 |
|
|
parm[iOp].q = readMemoryOperand(memAddress + vectorOffset);
|
778 |
|
|
}
|
779 |
|
|
}
|
780 |
|
|
}
|
781 |
|
|
}
|
782 |
|
|
else { // vector register
|
783 |
|
|
parm[iOp].q = readVectorElement(operands[iOp+3], vectorOffset);
|
784 |
|
|
}
|
785 |
|
|
}
|
786 |
|
|
|
787 |
|
|
// get mask
|
788 |
|
|
if ((operands[1] & 7) != 7) {
|
789 |
|
|
parm[3].q = readVectorElement(operands[1], vectorOffset);
|
790 |
|
|
}
|
791 |
|
|
else {
|
792 |
|
|
parm[3].q = numContr;
|
793 |
|
|
}
|
794 |
|
|
// skip instruction if mask = 0, except for certain instructions
|
795 |
|
|
if ((parm[3].q & 1) == 0 && !ignoreMask) {
|
796 |
|
|
// result is masked off. find fallback
|
797 |
|
|
if (operands[2] == 0xFF) result = 0; // fallback = 0
|
798 |
|
|
else result = readVectorElement(operands[2], vectorOffset); // fallback register
|
799 |
|
|
if (doubleStep) {
|
800 |
|
|
if (operands[2] == 0xFF) result = 0;
|
801 |
|
|
else result = readVectorElement(operands[2], vectorOffset + elementSize);
|
802 |
|
|
}
|
803 |
|
|
}
|
804 |
|
|
else {
|
805 |
|
|
// normal operation. execute instruction
|
806 |
|
|
result = (*functionPointer)(this);
|
807 |
|
|
}
|
808 |
|
|
// store in destination register
|
809 |
|
|
if ((running & 1) && !(returnType & 0x20)) {
|
810 |
|
|
vectorLength[operands[0]] = vectorLengthR;
|
811 |
|
|
// get mask for operand size (operandType may have been changed by function)
|
812 |
|
|
//uint64_t opmask = dataSizeMask[operandType];
|
813 |
|
|
// write result to vector
|
814 |
|
|
writeVectorElement(operands[0], result, vectorOffset);
|
815 |
|
|
if (dataSizeTable[operandType] >= 16) { // 128 bits
|
816 |
|
|
writeVectorElement(operands[0], parm[5].q, vectorOffset + (elementSize>>1)); // high part of double size result
|
817 |
|
|
}
|
818 |
|
|
if (doubleStep) { // double step
|
819 |
|
|
writeVectorElement(operands[0], parm[5].q, vectorOffset + elementSize); // high part of double size result
|
820 |
|
|
}
|
821 |
|
|
}
|
822 |
|
|
vect ^= 3; // toggle between 1 for even elements, 2 for odd
|
823 |
|
|
if (doubleStep) vectorOffset += elementSize; // skip next element if instruction takes two elements at a time
|
824 |
|
|
}
|
825 |
|
|
listResult(result); // debug output
|
826 |
|
|
}
|
827 |
|
|
else {
|
828 |
|
|
// general purpose registers
|
829 |
|
|
// get mask
|
830 |
|
|
if ((operands[1] & 7) != 7) {
|
831 |
|
|
parm[3].q = readRegister(operands[1]);
|
832 |
|
|
}
|
833 |
|
|
else {
|
834 |
|
|
parm[3].q = numContr;
|
835 |
|
|
}
|
836 |
|
|
// skip instruction if mask = 0, except for certain instructions
|
837 |
|
|
if ((parm[3].q & 1) == 0 && !ignoreMask) {
|
838 |
|
|
// result is masked off. find fallback
|
839 |
|
|
if (operands[2] == 0xFF) result = 0;
|
840 |
|
|
else result = readRegister(operands[2]);
|
841 |
|
|
}
|
842 |
|
|
else {
|
843 |
|
|
// normal operation.
|
844 |
|
|
// execute instruction
|
845 |
|
|
result = (*functionPointer)(this);
|
846 |
|
|
}
|
847 |
|
|
// get mask for operand size (operandType may have been changed by function)
|
848 |
|
|
// store in destination register, zero extended from operand size
|
849 |
|
|
if (running & 1) registers[operands[0]] = result & dataSizeMask[operandType];
|
850 |
|
|
listResult(result); // debug output
|
851 |
|
|
}
|
852 |
|
|
performanceCounters(); // update performance counters
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
// update performance counters
|
856 |
|
|
void CThread::performanceCounters() {
|
857 |
|
|
perfCounters[perf_cpu_clock_cycles]++; // clock cycles
|
858 |
|
|
perfCounters[perf_instructions]++; // instructions
|
859 |
|
|
if ((fInstr->format2 & 0xF00) == 0x200) perfCounters[perf_2size_instructions]++; // double size instructions
|
860 |
|
|
if ((fInstr->format2 & 0xF00) == 0x300) perfCounters[perf_3size_instructions]++; // triple size instructions
|
861 |
|
|
if (vect) {
|
862 |
|
|
perfCounters[perf_vector_instructions]++; // vector instructions
|
863 |
|
|
}
|
864 |
|
|
else {
|
865 |
|
|
perfCounters[perf_gp_instructions]++; // g.p. instructions
|
866 |
|
|
if ((parm[3].q & 1) == 0 && !ignoreMask) perfCounters[perf_gp_instructions_mask0]++; // g.p. instructions masked off
|
867 |
|
|
}
|
868 |
|
|
if (fInstr->category == 4) { // jump instructions
|
869 |
|
|
perfCounters[perf_control_transfer_instructions]++; // all jumps, calls, returns
|
870 |
|
|
if (fInstr->tmplate == 0xD) { // direct jump/call
|
871 |
|
|
perfCounters[perf_direct_jumps]++; // g.p. instructions
|
872 |
|
|
}
|
873 |
|
|
else if (fInstr->exeTable == 2) {
|
874 |
|
|
if (op == 62 && fInstr->format2 >> 4 == 0x16) {
|
875 |
|
|
perfCounters[perf_direct_jumps]++; // simple return
|
876 |
|
|
}
|
877 |
|
|
else if (op >= 56) perfCounters[perf_indirect_jumps]++; // indirect jumps and calls
|
878 |
|
|
else perfCounters[perf_cond_jumps]++; // conditional jumps
|
879 |
|
|
}
|
880 |
|
|
}
|
881 |
|
|
}
|
882 |
|
|
|
883 |
|
|
// read vector element
|
884 |
|
|
uint64_t CThread::readVectorElement(uint32_t v, uint32_t vectorOffset) {
|
885 |
|
|
uint32_t size; // element size
|
886 |
|
|
uint64_t returnval = 0;
|
887 |
|
|
if (operandType == 8) size = 2;
|
888 |
|
|
else size = dataSizeTableMax8[operandType];
|
889 |
|
|
v &= 0x1F; // protect against array overflow
|
890 |
|
|
//if (vectorOffset < vectorLength[v]) {
|
891 |
|
|
if (vectorOffset + size <= vectorLength[v]) {
|
892 |
|
|
switch (size) { // zero-extend from element size
|
893 |
|
|
case 1:
|
894 |
|
|
returnval = *(uint8_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset);
|
895 |
|
|
break;
|
896 |
|
|
case 2:
|
897 |
|
|
returnval = *(uint16_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset);
|
898 |
|
|
break;
|
899 |
|
|
case 4:
|
900 |
|
|
returnval = *(uint32_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset);
|
901 |
|
|
break;
|
902 |
|
|
case 8:
|
903 |
|
|
returnval = *(uint64_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset);
|
904 |
|
|
break;
|
905 |
|
|
}
|
906 |
|
|
uint32_t sizemax = vectorLength[v] - vectorOffset;
|
907 |
|
|
if (size > sizemax) { // reading beyond end of vector. cut off element to max size
|
908 |
|
|
returnval &= (uint64_t(1) << sizemax*8) - 1;
|
909 |
|
|
}
|
910 |
|
|
}
|
911 |
|
|
return returnval;
|
912 |
|
|
}
|
913 |
|
|
|
914 |
|
|
// write vector element
|
915 |
|
|
void CThread::writeVectorElement(uint32_t v, uint64_t value, uint32_t vectorOffset) {
|
916 |
|
|
uint32_t size = dataSizeTableMax8[operandType];
|
917 |
|
|
v &= 0x1F; // protect against array overflow
|
918 |
|
|
if (vectorOffset + size <= vectorLength[v]) {
|
919 |
|
|
switch (size) { // zero-extend from element size
|
920 |
|
|
case 1:
|
921 |
|
|
*(uint8_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset) = (uint8_t)value;
|
922 |
|
|
break;
|
923 |
|
|
case 2:
|
924 |
|
|
*(uint16_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset) = (uint16_t)value;
|
925 |
|
|
break;
|
926 |
|
|
case 4:
|
927 |
|
|
*(uint32_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset) = (uint32_t)value;
|
928 |
|
|
break;
|
929 |
|
|
case 8:
|
930 |
|
|
*(uint64_t*)(vectors.buf() + MaxVectorLength*v + vectorOffset) = value;
|
931 |
|
|
break;
|
932 |
|
|
}
|
933 |
|
|
}
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
// get address of a memory operand
|
937 |
|
|
uint64_t CThread::getMemoryAddress() {
|
938 |
|
|
// find base register
|
939 |
|
|
if ((fInstr->mem & 3) == 0) err.submit(ERR_INTERNAL);
|
940 |
|
|
//uint8_t basereg = (fInstr->mem & 1) ? pInstr->a.rt : pInstr->a.rs;
|
941 |
|
|
uint8_t basereg = pInstr->a.rs;
|
942 |
|
|
readonly = false;
|
943 |
|
|
memory_error = false;
|
944 |
|
|
// base register value
|
945 |
|
|
uint64_t baseval = registers[basereg];
|
946 |
|
|
if (fInstr->addrSize > 1 && !(fInstr->mem & 0x20)) {
|
947 |
|
|
// special registers
|
948 |
|
|
switch (basereg) {
|
949 |
|
|
case 28: // threadp
|
950 |
|
|
baseval = threadp; break;
|
951 |
|
|
case 29: // datap
|
952 |
|
|
baseval = datap; break;
|
953 |
|
|
case 30: // ip
|
954 |
|
|
baseval = ip; readonly = true;
|
955 |
|
|
break;
|
956 |
|
|
}
|
957 |
|
|
}
|
958 |
|
|
// pointer to memory field
|
959 |
|
|
const uint8_t * pa = &pInstr->b[0] + fInstr->addrPos;
|
960 |
|
|
|
961 |
|
|
// find index register
|
962 |
|
|
uint64_t indexval = 0;
|
963 |
|
|
if ((fInstr->mem & 4) && (pInstr->a.rt != 0x1F)) {
|
964 |
|
|
// rt is index register
|
965 |
|
|
indexval = registers[pInstr->a.rt & 0x1F];
|
966 |
|
|
// check limit
|
967 |
|
|
if (fInstr->mem & 0x20) {
|
968 |
|
|
const uint8_t * pi = &pInstr->b[0] + fInstr->addrPos; // pointer to immediate field
|
969 |
|
|
uint64_t limit = *(uint64_t*)pi;
|
970 |
|
|
limit &= (uint64_t(1) << (fInstr->addrSize * 8)) - 1;
|
971 |
|
|
if (indexval > limit) {
|
972 |
|
|
interrupt(INT_ARRAY_BOUNDS);
|
973 |
|
|
memory_error = true;
|
974 |
|
|
//return 0;
|
975 |
|
|
}
|
976 |
|
|
}
|
977 |
|
|
}
|
978 |
|
|
// get offset, sign-extended
|
979 |
|
|
int64_t offset = 0;
|
980 |
|
|
if (fInstr->mem & 0x10) {
|
981 |
|
|
switch (fInstr->addrSize) {
|
982 |
|
|
case 0:
|
983 |
|
|
break;
|
984 |
|
|
case 1:
|
985 |
|
|
offset = *(int8_t*)pa;
|
986 |
|
|
break;
|
987 |
|
|
case 2:
|
988 |
|
|
offset = *(int16_t*)pa;
|
989 |
|
|
break;
|
990 |
|
|
case 4:
|
991 |
|
|
offset = *(int32_t*)pa;
|
992 |
|
|
break;
|
993 |
|
|
case 8:
|
994 |
|
|
offset = *(int64_t*)pa;
|
995 |
|
|
break;
|
996 |
|
|
default:
|
997 |
|
|
err.submit(ERR_INTERNAL);
|
998 |
|
|
}
|
999 |
|
|
}
|
1000 |
|
|
// scale
|
1001 |
|
|
switch (fInstr->scale) {
|
1002 |
|
|
case 1: // offset is scaled
|
1003 |
|
|
offset <<= dataSizeTableLog[operandType];
|
1004 |
|
|
break;
|
1005 |
|
|
case 2: // index is scaled by OS
|
1006 |
|
|
indexval <<= dataSizeTableLog[operandType];
|
1007 |
|
|
break;
|
1008 |
|
|
case 4: // 4 = scale factor is -1
|
1009 |
|
|
indexval = uint64_t(-(int64_t)indexval);
|
1010 |
|
|
break;
|
1011 |
|
|
}
|
1012 |
|
|
// get length
|
1013 |
|
|
if ((fInstr->vect & 6) && pInstr->a.rt < 0x1F) { // vector length or broadcast length is in RT
|
1014 |
|
|
if (registers[pInstr->a.rt] > MaxVectorLength) vectorLengthM = MaxVectorLength;
|
1015 |
|
|
else vectorLengthM = (uint32_t)registers[pInstr->a.rt];
|
1016 |
|
|
}
|
1017 |
|
|
else { // scalar
|
1018 |
|
|
vectorLengthM = dataSizeTable[operandType & 7];
|
1019 |
|
|
}
|
1020 |
|
|
// offset and index may be negative, but the result must be positive
|
1021 |
|
|
return baseval + indexval + (uint64_t)offset;
|
1022 |
|
|
}
|
1023 |
|
|
|
1024 |
|
|
// read a memory operand
|
1025 |
|
|
uint64_t CThread::readMemoryOperand(uint64_t address) {
|
1026 |
|
|
// get most likely memory map index
|
1027 |
|
|
uint32_t * indexp = readonly ? &mapIndex2 : &mapIndex3;
|
1028 |
|
|
uint32_t index = * indexp;
|
1029 |
|
|
|
1030 |
|
|
// find memory map entry
|
1031 |
|
|
while (address < memoryMap[index].startAddress) {
|
1032 |
|
|
if (index > 0) index--;
|
1033 |
|
|
else {
|
1034 |
|
|
interrupt(INT_ACCESS_READ); return 0;
|
1035 |
|
|
}
|
1036 |
|
|
}
|
1037 |
|
|
while (address >= memoryMap[index + 1].startAddress) {
|
1038 |
|
|
if (index + 2 < memoryMap.numEntries()) index++;
|
1039 |
|
|
else {
|
1040 |
|
|
interrupt(INT_ACCESS_READ); return 0;
|
1041 |
|
|
}
|
1042 |
|
|
}
|
1043 |
|
|
// check read permission
|
1044 |
|
|
if (!(memoryMap[index].access_addend & SHF_READ)) {
|
1045 |
|
|
interrupt(INT_ACCESS_READ); return 0;
|
1046 |
|
|
}
|
1047 |
|
|
|
1048 |
|
|
// check if map boundary crossed
|
1049 |
|
|
if (address + dataSizeTable[operandType] > memoryMap[index+1].startAddress
|
1050 |
|
|
&& !(memoryMap[index+1].access_addend & SHF_READ)) {
|
1051 |
|
|
interrupt(INT_ACCESS_READ);
|
1052 |
|
|
}
|
1053 |
|
|
|
1054 |
|
|
// check alignment
|
1055 |
|
|
|
1056 |
|
|
|
1057 |
|
|
// return zero if any kind of error
|
1058 |
|
|
if (memory_error) return 0;
|
1059 |
|
|
|
1060 |
|
|
// save index for next time
|
1061 |
|
|
*indexp = index;
|
1062 |
|
|
|
1063 |
|
|
// get value, zero extended
|
1064 |
|
|
const int8_t * p = memory + address; // pointer to data
|
1065 |
|
|
switch (dataSizeTableMax8[operandType]) {
|
1066 |
|
|
case 0:
|
1067 |
|
|
break;
|
1068 |
|
|
case 1:
|
1069 |
|
|
return *(uint8_t*)p;
|
1070 |
|
|
case 2:
|
1071 |
|
|
if (address & 1) interrupt(INT_MISALIGNED_MEM);
|
1072 |
|
|
return *(uint16_t*)p;
|
1073 |
|
|
case 4:
|
1074 |
|
|
if (address & 3) interrupt(INT_MISALIGNED_MEM);
|
1075 |
|
|
return *(uint32_t*)p;
|
1076 |
|
|
case 8:
|
1077 |
|
|
if (address & 7) interrupt(INT_MISALIGNED_MEM);
|
1078 |
|
|
return *(uint64_t*)p;
|
1079 |
|
|
}
|
1080 |
|
|
return 0;
|
1081 |
|
|
}
|
1082 |
|
|
|
1083 |
|
|
// write a memory operand
|
1084 |
|
|
void CThread::writeMemoryOperand(uint64_t val, uint64_t address) {
|
1085 |
|
|
// most likely memory map index is saved in mapIndex3
|
1086 |
|
|
// find memory map entry
|
1087 |
|
|
while (address < memoryMap[mapIndex3].startAddress) {
|
1088 |
|
|
if (mapIndex3 > 0) mapIndex3--;
|
1089 |
|
|
else {
|
1090 |
|
|
interrupt(INT_ACCESS_WRITE); return;
|
1091 |
|
|
}
|
1092 |
|
|
}
|
1093 |
|
|
while (address >= memoryMap[mapIndex3+1].startAddress) {
|
1094 |
|
|
if (mapIndex3 + 2 < memoryMap.numEntries()) mapIndex3++;
|
1095 |
|
|
else {
|
1096 |
|
|
interrupt(INT_ACCESS_WRITE); return;
|
1097 |
|
|
}
|
1098 |
|
|
}
|
1099 |
|
|
// check write permission
|
1100 |
|
|
if (!(memoryMap[mapIndex3].access_addend & SHF_WRITE)) {
|
1101 |
|
|
interrupt(INT_ACCESS_WRITE); return;
|
1102 |
|
|
}
|
1103 |
|
|
|
1104 |
|
|
// check if map boundary crossed
|
1105 |
|
|
if (address + dataSizeTable[operandType] > memoryMap[mapIndex3+1].startAddress
|
1106 |
|
|
&& !(memoryMap[mapIndex3+1].access_addend & SHF_WRITE)) {
|
1107 |
|
|
interrupt(INT_ACCESS_WRITE);
|
1108 |
|
|
}
|
1109 |
|
|
|
1110 |
|
|
// write value
|
1111 |
|
|
// get value, zero extended
|
1112 |
|
|
int8_t * p = memory + address; // pointer to data
|
1113 |
|
|
switch (dataSizeTableMax8[operandType]) {
|
1114 |
|
|
case 0:
|
1115 |
|
|
break;
|
1116 |
|
|
case 1:
|
1117 |
|
|
*(uint8_t*)p = (uint8_t)val;
|
1118 |
|
|
break;
|
1119 |
|
|
case 2:
|
1120 |
|
|
if (address & 1) interrupt(INT_MISALIGNED_MEM);
|
1121 |
|
|
*(uint16_t*)p = (uint16_t)val;
|
1122 |
|
|
break;
|
1123 |
|
|
case 4:
|
1124 |
|
|
if (address & 3) interrupt(INT_MISALIGNED_MEM);
|
1125 |
|
|
*(uint32_t*)p = (uint32_t)val;
|
1126 |
|
|
break;
|
1127 |
|
|
case 8:
|
1128 |
|
|
if (address & 7) interrupt(INT_MISALIGNED_MEM);
|
1129 |
|
|
*(uint64_t*)p = val;
|
1130 |
|
|
break;
|
1131 |
|
|
}
|
1132 |
|
|
}
|
1133 |
|
|
|
1134 |
|
|
// start writing debug list
|
1135 |
|
|
void CThread::listStart() {
|
1136 |
|
|
if (!listFileName) return; // nothing if no list file
|
1137 |
|
|
listOut.put("Debug listing of ");
|
1138 |
|
|
listOut.put(cmd.getFilename(cmd.inputFile));
|
1139 |
|
|
listOut.newLine();
|
1140 |
|
|
// Date and time. (Will fail after year 2038 on computers that use 32-bit time_t)
|
1141 |
|
|
time_t time1 = time(0);
|
1142 |
|
|
char * timestring = ctime(&time1);
|
1143 |
|
|
if (timestring) {
|
1144 |
|
|
for (char *c = timestring; *c; c++) { // Remove terminating '\n' in timestring
|
1145 |
|
|
if (*c < ' ') *c = 0;
|
1146 |
|
|
}
|
1147 |
|
|
listOut.put(timestring);
|
1148 |
|
|
listOut.newLine(); listOut.newLine();
|
1149 |
|
|
}
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
static uint32_t listIndex = 0; // index into lineList
|
1153 |
|
|
// write current instruction to debug list
|
1154 |
|
|
void CThread::listInstruction(uint64_t address) {
|
1155 |
|
|
if (listFileName == 0 || cmd.maxLines == 0) return; // stop listing
|
1156 |
|
|
SLineRef rec = {address, 1, 0};
|
1157 |
|
|
const char * text = 0;
|
1158 |
|
|
if (listIndex + 1 < emulator->lineList.numEntries() && emulator->lineList[listIndex+1] == rec) {
|
1159 |
|
|
// just the next record. no need to search
|
1160 |
|
|
listIndex = listIndex+1;
|
1161 |
|
|
}
|
1162 |
|
|
else { // we may have jumped. Find address in list
|
1163 |
|
|
listIndex = (uint32_t)emulator->lineList.findFirst(rec);
|
1164 |
|
|
}
|
1165 |
|
|
if (listIndex < emulator->lineList.numEntries()) {
|
1166 |
|
|
text = emulator->disassemOut.getString(emulator->lineList[listIndex].textPos); // get line from disassembly
|
1167 |
|
|
listOut.put(text);
|
1168 |
|
|
}
|
1169 |
|
|
else { // corresponding disassembly not found
|
1170 |
|
|
listOut.putHex((uint32_t)address, 2);
|
1171 |
|
|
listOut.tabulate(emulator->disassembler.asmTab0);
|
1172 |
|
|
listOut.put("???");
|
1173 |
|
|
}
|
1174 |
|
|
listOut.newLine();
|
1175 |
|
|
}
|
1176 |
|
|
|
1177 |
|
|
// write result of current instruction to debug list
|
1178 |
|
|
void CThread::listResult(uint64_t result) {
|
1179 |
|
|
if (++listLines >= cmd.maxLines) cmd.maxLines = 0; // stop listing
|
1180 |
|
|
if (listFileName == 0 || returnType == 0 || cmd.maxLines == 0) return; // nothing if no list file or no return value
|
1181 |
|
|
listOut.tabulate(emulator->disassembler.asmTab0);
|
1182 |
|
|
if (!(returnType & 0x100)) { // general purpose register
|
1183 |
|
|
if (returnType & 0x20) { // memory destination
|
1184 |
|
|
result = readMemoryOperand(getMemoryAddress());
|
1185 |
|
|
}
|
1186 |
|
|
if (returnType & 0x30) { // register or memory
|
1187 |
|
|
switch (returnType & 0xF) {
|
1188 |
|
|
case 0: // int8
|
1189 |
|
|
listOut.putHex((uint8_t)result); break;
|
1190 |
|
|
case 1: // int16
|
1191 |
|
|
listOut.putHex((uint16_t)result); break;
|
1192 |
|
|
case 2: case 5: // int32
|
1193 |
|
|
listOut.putHex((uint32_t)result); break;
|
1194 |
|
|
case 3: case 6: // int64
|
1195 |
|
|
listOut.putHex(result); break;
|
1196 |
|
|
case 4: // int128
|
1197 |
|
|
listOut.putHex(parm[5].q, 2); listOut.putHex(result, 2); break;
|
1198 |
|
|
default:
|
1199 |
|
|
listOut.put("?");
|
1200 |
|
|
}
|
1201 |
|
|
}
|
1202 |
|
|
}
|
1203 |
|
|
else if (returnType & 0x30) { // vector
|
1204 |
|
|
uint8_t destinationReg = operands[0] & 0x1F;
|
1205 |
|
|
//uint32_t vectorLengthR = vectorLength[destinationReg];
|
1206 |
|
|
if (!(returnType & 0x20)) vectorLengthR = vectorLength[destinationReg];
|
1207 |
|
|
uint8_t type = returnType & 0xF;
|
1208 |
|
|
operandType = type;
|
1209 |
|
|
uint32_t elementSize = dataSizeTable[type & 7];
|
1210 |
|
|
if (type == 8) elementSize = 2; // half precision
|
1211 |
|
|
if (elementSize > 8) elementSize = 8; // int128 and float128 listed as two int64
|
1212 |
|
|
union { // union to convert types
|
1213 |
|
|
uint64_t q;
|
1214 |
|
|
double d;
|
1215 |
|
|
float f;
|
1216 |
|
|
} u;
|
1217 |
|
|
if (vectorLengthR == 0) listOut.put("Empty");
|
1218 |
|
|
//if (returnType & 0x40) vectorLengthR += elementSize; // one extra element (save_cp instruction)
|
1219 |
|
|
for (uint32_t vectorOffset = 0; vectorOffset < vectorLengthR; vectorOffset += elementSize) {
|
1220 |
|
|
if (returnType & 0x20) { // memory destination
|
1221 |
|
|
result = readMemoryOperand(getMemoryAddress() + vectorOffset);
|
1222 |
|
|
}
|
1223 |
|
|
else {
|
1224 |
|
|
result = readVectorElement(destinationReg, vectorOffset);
|
1225 |
|
|
}
|
1226 |
|
|
switch (returnType & 0xF) {
|
1227 |
|
|
case 0: // int8
|
1228 |
|
|
listOut.putHex((uint8_t)result); break;
|
1229 |
|
|
case 1: // int16
|
1230 |
|
|
listOut.putHex((uint16_t)result); break;
|
1231 |
|
|
case 2: // int32
|
1232 |
|
|
listOut.putHex((uint32_t)result); break;
|
1233 |
|
|
case 3: case 4: case 7: // int64
|
1234 |
|
|
listOut.putHex(result); break;
|
1235 |
|
|
case 5: // float
|
1236 |
|
|
u.q = result;
|
1237 |
|
|
listOut.putFloat(u.f); break;
|
1238 |
|
|
case 6: // double
|
1239 |
|
|
u.q = result;
|
1240 |
|
|
listOut.putFloat(u.d); break;
|
1241 |
|
|
case 8: // float16
|
1242 |
|
|
listOut.putFloat16((uint16_t)result); break;
|
1243 |
|
|
default:
|
1244 |
|
|
listOut.put("???");
|
1245 |
|
|
}
|
1246 |
|
|
listOut.put(' ');
|
1247 |
|
|
}
|
1248 |
|
|
}
|
1249 |
|
|
if (returnType & 0x3000) {
|
1250 |
|
|
// conditional jump instruction
|
1251 |
|
|
if (returnType & 0x30) listOut.put(", "); // space after value
|
1252 |
|
|
listOut.put((returnType & 0x2000) ? "jump" : "no jump"); // tell if jump or not
|
1253 |
|
|
}
|
1254 |
|
|
listOut.newLine();
|
1255 |
|
|
}
|
1256 |
|
|
|
1257 |
|
|
// make a NAN with exception code and address in payload
|
1258 |
|
|
uint64_t CThread::makeNan(uint32_t code, uint32_t operandTyp) {
|
1259 |
|
|
uint64_t retval = 0;
|
1260 |
|
|
uint8_t instrLength = lengthList[pInstr->a.il]; // instruction length
|
1261 |
|
|
uint64_t iaddress = ((ip - ip0) >> 2) - instrLength; // instruction address
|
1262 |
|
|
iaddress = ~iaddress; // invert bits
|
1263 |
|
|
switch (operandTyp) {
|
1264 |
|
|
case 1: // half precision
|
1265 |
|
|
retval = (uint8_t)code | 0x7E00 | (iaddress & 1) << 8;
|
1266 |
|
|
break;
|
1267 |
|
|
case 5: // single precision
|
1268 |
|
|
retval = (uint8_t)code | 0x7FC00000 | uint32_t(iaddress & ((1 << 14) - 1)) << 8;
|
1269 |
|
|
break;
|
1270 |
|
|
case 6: // double precision
|
1271 |
|
|
retval = (uint8_t)code | 0x7FF8000000000000 | (iaddress & (((uint64_t)1 << 43) - 1)) << 8;
|
1272 |
|
|
break;
|
1273 |
|
|
}
|
1274 |
|
|
return retval;
|
1275 |
|
|
}
|