1 |
54 |
Agner |
/**************************** emulator3.cpp ********************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* date created: 2018-02-18
|
4 |
|
|
* Last modified: 2021-06-29
|
5 |
|
|
* Version: 1.11
|
6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
7 |
|
|
* Description:
|
8 |
|
|
* Emulator: Execution functions for multiformat instructions
|
9 |
|
|
*
|
10 |
|
|
* Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses
|
11 |
|
|
*****************************************************************************/
|
12 |
|
|
|
13 |
|
|
#include "stdafx.h"
|
14 |
|
|
|
15 |
|
|
// get intrinsic functions for _mm_getcsr and _mm_setcsr to control floating point rounding and exceptions
|
16 |
|
|
#if defined(_M_X64) || defined(__x86_64__) || defined(__amd64) || defined(__SSE2__)
|
17 |
|
|
#if defined(__FMA__) || defined(__AVX2__)
|
18 |
|
|
#define FMA_AVAILABLE 1
|
19 |
|
|
#else
|
20 |
|
|
#define FMA_AVAILABLE 0
|
21 |
|
|
#endif
|
22 |
|
|
#if defined(_MSC_VER) && !FMA_AVAILABLE
|
23 |
|
|
#include <xmmintrin.h>
|
24 |
|
|
#else
|
25 |
|
|
#include <immintrin.h>
|
26 |
|
|
#endif
|
27 |
|
|
#define MCSCR_AVAILABLE 1
|
28 |
|
|
#else
|
29 |
|
|
#define MCSCR_AVAILABLE 0
|
30 |
|
|
#endif
|
31 |
|
|
|
32 |
|
|
|
33 |
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
34 |
|
|
// functions for detecting exceptions and controlling rounding mode on the CPU that runs the emulator
|
35 |
|
|
// Note: these functions are only available in x86 systems with SSE2 or x64 enabled
|
36 |
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
37 |
|
|
|
38 |
|
|
// Error message if MXCSR not available
|
39 |
|
|
void errorFpControlMissing() {
|
40 |
|
|
static int repeated = 0;
|
41 |
|
|
if (!repeated) {
|
42 |
|
|
fprintf(stderr, "Error: Cannot control floating point exceptions and rounding mode on this platform");
|
43 |
|
|
repeated = 1;
|
44 |
|
|
}
|
45 |
|
|
}
|
46 |
|
|
|
47 |
|
|
void setRoundingMode(uint8_t r) {
|
48 |
|
|
// change rounding mode
|
49 |
|
|
#if MCSCR_AVAILABLE
|
50 |
|
|
uint32_t e = _mm_getcsr();
|
51 |
|
|
e = (e & 0x9FFF) | (r & 3) << 13;
|
52 |
|
|
_mm_setcsr(e);
|
53 |
|
|
#else
|
54 |
|
|
errorFpControlMissing();
|
55 |
|
|
#endif
|
56 |
|
|
}
|
57 |
|
|
|
58 |
|
|
void clearExceptionFlags() {
|
59 |
|
|
// clear exception flags before detecting exceptions
|
60 |
|
|
#if MCSCR_AVAILABLE
|
61 |
|
|
uint32_t e = _mm_getcsr();
|
62 |
|
|
_mm_setcsr(e & 0xFFC0);
|
63 |
|
|
#else
|
64 |
|
|
errorFpControlMissing();
|
65 |
|
|
#endif
|
66 |
|
|
}
|
67 |
|
|
|
68 |
|
|
uint32_t getExceptionFlags() {
|
69 |
|
|
// read exception flags after instructions that may cause exceptions
|
70 |
|
|
// 1: invalid operation
|
71 |
|
|
// 2: denormal
|
72 |
|
|
// 4: divide by zero
|
73 |
|
|
// 8: overflow
|
74 |
|
|
// 0x10: underflow
|
75 |
|
|
// 0x20: precision
|
76 |
|
|
#if MCSCR_AVAILABLE
|
77 |
|
|
return _mm_getcsr() & 0x3F;
|
78 |
|
|
#else
|
79 |
|
|
errorFpControlMissing();
|
80 |
|
|
return 0;
|
81 |
|
|
#endif
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
void enableSubnormals(uint32_t e) {
|
85 |
|
|
// enable or disable subnormal numbers
|
86 |
|
|
#if MCSCR_AVAILABLE
|
87 |
|
|
uint32_t x = _mm_getcsr();
|
88 |
|
|
if (e != 0) {
|
89 |
|
|
_mm_setcsr(x & ~0x8040);
|
90 |
|
|
}
|
91 |
|
|
else {
|
92 |
|
|
_mm_setcsr(x | 0x8040);
|
93 |
|
|
}
|
94 |
|
|
#else
|
95 |
|
|
errorFpControlMissing();
|
96 |
|
|
#endif
|
97 |
|
|
}
|
98 |
|
|
|
99 |
|
|
|
100 |
|
|
/////////////////////////////
|
101 |
|
|
// Multi-format instructions
|
102 |
|
|
/////////////////////////////
|
103 |
|
|
|
104 |
|
|
uint64_t f_nop(CThread * t) {
|
105 |
|
|
// No operation
|
106 |
|
|
t->running = 2; // don't save RD
|
107 |
|
|
t->returnType = 0; // debug return output
|
108 |
|
|
return 0;
|
109 |
|
|
}
|
110 |
|
|
|
111 |
|
|
static uint64_t f_store(CThread * t) {
|
112 |
|
|
// Store value RD to memory
|
113 |
|
|
uint8_t rd = t->operands[0];
|
114 |
|
|
uint64_t value = t->registers[rd];
|
115 |
|
|
if (t->vect) {
|
116 |
|
|
value = t->readVectorElement(rd, t->vectorOffset);
|
117 |
|
|
}
|
118 |
|
|
// check mask
|
119 |
|
|
if (t->parm[3].b & 1) {
|
120 |
|
|
uint64_t address = t->memAddress; // memory address
|
121 |
|
|
if (t->vect) address += t->vectorOffset;
|
122 |
|
|
t->writeMemoryOperand(value, address);
|
123 |
|
|
}
|
124 |
|
|
else { // mask is 0. This instruction has no fallback. Don't write
|
125 |
|
|
/*
|
126 |
|
|
uint8_t fallback = t->operands[2]; // mask is 0. get fallback
|
127 |
|
|
if (fallback == 0x1F) value = 0;
|
128 |
|
|
else if (t->vect) value = t->readVectorElement(fallback, t->vectorOffset);
|
129 |
|
|
else value = t->registers[fallback];*/
|
130 |
|
|
}
|
131 |
|
|
t->returnType = (t->returnType & ~0x10) | 0x20; // return type is memory
|
132 |
|
|
t->running = 2; // don't save RD
|
133 |
|
|
return 0;
|
134 |
|
|
}
|
135 |
|
|
|
136 |
|
|
static uint64_t f_move(CThread * t) {
|
137 |
|
|
// copy value
|
138 |
|
|
return t->parm[2].q;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
static uint64_t f_prefetch(CThread * t) {
|
142 |
|
|
// prefetch from address. not emulated
|
143 |
|
|
return f_nop(t);
|
144 |
|
|
}
|
145 |
|
|
|
146 |
|
|
static uint64_t f_sign_extend(CThread * t) {
|
147 |
|
|
// sign-extend integer to 64 bits
|
148 |
|
|
int64_t value = 0;
|
149 |
|
|
switch (t->operandType) {
|
150 |
|
|
case 0:
|
151 |
|
|
value = (int64_t)(int8_t)t->parm[2].b;
|
152 |
|
|
break;
|
153 |
|
|
case 1:
|
154 |
|
|
value = (int64_t)(int16_t)t->parm[2].s;
|
155 |
|
|
break;
|
156 |
|
|
case 2:
|
157 |
|
|
value = (int64_t)(int32_t)t->parm[2].i;
|
158 |
|
|
break;
|
159 |
|
|
case 3:
|
160 |
|
|
value = (int64_t)t->parm[2].q;
|
161 |
|
|
break;
|
162 |
|
|
default:
|
163 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
164 |
|
|
value = 0;
|
165 |
|
|
}
|
166 |
|
|
t->operandType = 3; // change operand size of result
|
167 |
|
|
if (t->vect) {
|
168 |
|
|
t->vectorLength[t->operands[0]] = t->vectorLengthR = 8; // change vector length of result and stop vector loop
|
169 |
|
|
}
|
170 |
|
|
t->returnType = (t->returnType & ~7) | 3; // debug return output
|
171 |
|
|
return (uint64_t)value;
|
172 |
|
|
}
|
173 |
|
|
|
174 |
|
|
static uint64_t f_sign_extend_add(CThread * t) {
|
175 |
|
|
// sign-extend integer to 64 bits and add 64-bit register
|
176 |
|
|
int64_t value = 0;
|
177 |
|
|
uint8_t options = 0;
|
178 |
|
|
if (t->fInstr->tmplate == 0xE) options = t->pInstr->a.im3;
|
179 |
|
|
|
180 |
|
|
switch (t->operandType) {
|
181 |
|
|
case 0:
|
182 |
|
|
value = (int64_t)(int8_t)t->parm[2].b;
|
183 |
|
|
break;
|
184 |
|
|
case 1:
|
185 |
|
|
value = (int64_t)(int16_t)t->parm[2].s;
|
186 |
|
|
break;
|
187 |
|
|
case 2:
|
188 |
|
|
value = (int64_t)(int32_t)t->parm[2].i;
|
189 |
|
|
break;
|
190 |
|
|
case 3:
|
191 |
|
|
value = (int64_t)t->parm[2].q;
|
192 |
|
|
break;
|
193 |
|
|
default:
|
194 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
195 |
|
|
value = 0;
|
196 |
|
|
}
|
197 |
|
|
value <<= options;
|
198 |
|
|
|
199 |
|
|
uint8_t r1 = t->operands[4]; // first operand. g.p. register
|
200 |
|
|
value += t->registers[r1]; // read register with full size
|
201 |
|
|
t->operandType = 3; // change operand size of result
|
202 |
|
|
t->returnType = (t->returnType & ~7) | 3; // debug return output
|
203 |
|
|
if (t->vect) t->interrupt(INT_WRONG_PARAMETERS);
|
204 |
|
|
return (uint64_t)value;
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
static uint64_t f_compare(CThread * t) {
|
208 |
|
|
// compare two source operands and generate a boolean result
|
209 |
|
|
// get condition code
|
210 |
|
|
uint8_t cond = 0;
|
211 |
|
|
uint32_t mask = t->parm[3].i; // mask register value or NUMCONTR
|
212 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) {
|
213 |
|
|
cond = t->pInstr->a.im3; // E template. get condition from IM3
|
214 |
|
|
}
|
215 |
|
|
// get operands
|
216 |
|
|
SNum a = t->parm[1];
|
217 |
|
|
SNum b = t->parm[2];
|
218 |
|
|
if ((t->fInstr->imm2 & 4) && t->operandType < 5) {
|
219 |
|
|
b = t->parm[4]; // avoid immediate operand shifted by imm3
|
220 |
|
|
}
|
221 |
|
|
uint64_t result = 0;
|
222 |
|
|
uint8_t cond1 = cond >> 1 & 3; // bit 1 - 2 of condition
|
223 |
|
|
bool isnan = false;
|
224 |
|
|
// select operand type
|
225 |
|
|
if (t->operandType < 5) { // integer types
|
226 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
227 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
228 |
|
|
a.q &= sizeMask; b.q &= sizeMask; // mask to desired size
|
229 |
|
|
if (cond1 != 3 && !(cond & 8)) { // signed
|
230 |
|
|
a.q ^= signBit; b.q ^= signBit; // flip sign bit to use unsigned compare
|
231 |
|
|
}
|
232 |
|
|
switch (cond1) { // select condition
|
233 |
|
|
case 0: // a == b
|
234 |
|
|
result = a.q == b.q;
|
235 |
|
|
break;
|
236 |
|
|
case 1: // a < b
|
237 |
|
|
result = a.q < b.q;
|
238 |
|
|
break;
|
239 |
|
|
case 2: // a > b
|
240 |
|
|
result = a.q > b.q;
|
241 |
|
|
break;
|
242 |
|
|
case 3: // abs(a) < abs(b). Not officially supported in version 1.11
|
243 |
|
|
if (a.q & signBit) a.q = (~a.q + 1) & sizeMask; // change sign. overflow allowed
|
244 |
|
|
if (b.q & signBit) b.q = (~b.q + 1) & sizeMask; // change sign. overflow allowed
|
245 |
|
|
result = a.q < b.q;
|
246 |
|
|
break;
|
247 |
|
|
}
|
248 |
|
|
}
|
249 |
|
|
else if (t->operandType == 5) { // float
|
250 |
|
|
isnan = isnan_f(a.i) || isnan_f(b.i); // check for NAN
|
251 |
|
|
if (!isnan) {
|
252 |
|
|
switch (cond1) { // select condition
|
253 |
|
|
case 0: // a == b
|
254 |
|
|
result = a.f == b.f;
|
255 |
|
|
break;
|
256 |
|
|
case 1: // a < b
|
257 |
|
|
result = a.f < b.f;
|
258 |
|
|
break;
|
259 |
|
|
case 2: // a > b
|
260 |
|
|
result = a.f > b.f;
|
261 |
|
|
break;
|
262 |
|
|
case 3: // abs(a) < abs(b)
|
263 |
|
|
result = fabsf(a.f) < fabsf(b.f);
|
264 |
|
|
break;
|
265 |
|
|
}
|
266 |
|
|
}
|
267 |
|
|
}
|
268 |
|
|
else if (t->operandType == 6) { // double
|
269 |
|
|
isnan = isnan_d(a.q) || isnan_d(b.q);
|
270 |
|
|
if (!isnan) {
|
271 |
|
|
switch (cond1) { // select condition
|
272 |
|
|
case 0: // a == b
|
273 |
|
|
result = a.d == b.d;
|
274 |
|
|
break;
|
275 |
|
|
case 1: // a < b
|
276 |
|
|
result = a.d < b.d;
|
277 |
|
|
break;
|
278 |
|
|
case 2: // a > b
|
279 |
|
|
result = a.d > b.d;
|
280 |
|
|
break;
|
281 |
|
|
case 3: // abs(a) < abs(b)
|
282 |
|
|
result = fabs(a.d) < fabs(b.d);
|
283 |
|
|
break;
|
284 |
|
|
}
|
285 |
|
|
}
|
286 |
|
|
}
|
287 |
|
|
else t->interrupt(INT_WRONG_PARAMETERS); // unsupported type
|
288 |
|
|
// invert result
|
289 |
|
|
if (cond & 1) result ^= 1;
|
290 |
|
|
|
291 |
|
|
// check for NAN
|
292 |
|
|
if (isnan) {
|
293 |
|
|
result = (cond >> 3) & 1; // bit 3 tells what to get if unordered
|
294 |
|
|
//if (t->parm[3].i & MSK_FLOAT_NAN_LOSS) t->interrupt(INT_FLOAT_NAN_LOSS); // mask bit 29: trap if NAN loss
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
// mask and fallback
|
298 |
|
|
uint8_t fallbackreg = t->operands[2];
|
299 |
|
|
uint64_t fallback = (fallbackreg & 0x1F) != 0x1F ? t->readRegister(fallbackreg) : 0;
|
300 |
|
|
switch (cond >> 4) {
|
301 |
|
|
case 0: // normal fallback
|
302 |
|
|
if (!(mask & 1)) result = fallback;
|
303 |
|
|
break;
|
304 |
|
|
case 1: // mask & result & fallback
|
305 |
|
|
result &= mask & fallback;
|
306 |
|
|
break;
|
307 |
|
|
case 2: // mask & (result | fallback)
|
308 |
|
|
result = mask & (result | fallback);
|
309 |
|
|
break;
|
310 |
|
|
case 3: // mask & (result ^ fallback)
|
311 |
|
|
result = mask & (result ^ fallback);
|
312 |
|
|
break;
|
313 |
|
|
}
|
314 |
|
|
if ((t->returnType & 7) >= 5) t->returnType -= 3; // debug return output must be integer
|
315 |
|
|
|
316 |
|
|
result &= 1; // use only bit 0 of result
|
317 |
|
|
if ((t->operands[1] & 0x1F) < 7) {
|
318 |
|
|
// There is a mask. get remaining bits from mask
|
319 |
|
|
result |= (t->parm[3].q & ~(uint64_t)1);
|
320 |
|
|
}
|
321 |
|
|
t->parm[3].b = 1; // prevent normal mask operation
|
322 |
|
|
return result;
|
323 |
|
|
}
|
324 |
|
|
|
325 |
|
|
uint64_t f_add(CThread * t) {
|
326 |
|
|
// add two numbers
|
327 |
|
|
SNum a = t->parm[1];
|
328 |
|
|
SNum b = t->parm[2];
|
329 |
|
|
uint32_t mask = t->parm[3].i;
|
330 |
|
|
SNum result;
|
331 |
|
|
bool roundingMode = (mask & (3 << MSKI_ROUNDING)) != 0; // non-standard rounding mode
|
332 |
|
|
bool detectExceptions = (mask & (0xF << MSKI_EXCEPTIONS)) != 0; // make NAN if exceptions
|
333 |
|
|
uint8_t operandType = t->operandType;
|
334 |
|
|
|
335 |
|
|
if (((mask ^ t->lastMask) & (1<<MSK_SUBNORMAL)) != 0) {
|
336 |
|
|
// subnormal status changed
|
337 |
|
|
enableSubnormals (mask & (1<<MSK_SUBNORMAL));
|
338 |
|
|
t->lastMask = mask;
|
339 |
|
|
}
|
340 |
|
|
// operand type
|
341 |
|
|
if (operandType < 4) { // integer
|
342 |
|
|
// uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
343 |
|
|
result.q = a.q + b.q;
|
344 |
|
|
}
|
345 |
|
|
else if (operandType == 5) { // float
|
346 |
|
|
bool nana = isnan_f(a.i); // check for NAN input
|
347 |
|
|
bool nanb = isnan_f(b.i);
|
348 |
|
|
if (nana && nanb) { // both are NAN
|
349 |
|
|
return (a.i << 1) > (b.i << 1) ? a.i : b.i; // return the biggest payload
|
350 |
|
|
}
|
351 |
|
|
else if (nana) return a.q;
|
352 |
|
|
else if (nanb) return b.q;
|
353 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
354 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
355 |
|
|
result.f = a.f + b.f; // this is the actual addition
|
356 |
|
|
if (isnan_f(result.i)) {
|
357 |
|
|
// the result is NAN but neither input is NAN. This must be INF-INF
|
358 |
|
|
result.q = t->makeNan(nan_invalid_sub, operandType);
|
359 |
|
|
}
|
360 |
|
|
if (detectExceptions) {
|
361 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
362 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_add, operandType);
|
363 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
364 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
365 |
|
|
}
|
366 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
else if (operandType == 6) { // double
|
370 |
|
|
bool nana = isnan_d(a.q); // check for NAN input
|
371 |
|
|
bool nanb = isnan_d(b.q);
|
372 |
|
|
if (nana && nanb) { // both are NAN
|
373 |
|
|
return (a.q << 1) > (b.q << 1) ? a.q : b.q; // return the biggest payload
|
374 |
|
|
}
|
375 |
|
|
else if (nana) return a.q;
|
376 |
|
|
else if (nanb) return b.q;
|
377 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
378 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
379 |
|
|
result.d = a.d + b.d; // this is the actual addition
|
380 |
|
|
if (isnan_d(result.q)) {
|
381 |
|
|
// the result is NAN but neither input is NAN. This must be INF-INF
|
382 |
|
|
result.q = t->makeNan(nan_invalid_sub, operandType);
|
383 |
|
|
}
|
384 |
|
|
if (detectExceptions) {
|
385 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
386 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_add, operandType);
|
387 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
388 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
389 |
|
|
}
|
390 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
391 |
|
|
}
|
392 |
|
|
else {
|
393 |
|
|
// unsupported operand type
|
394 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
395 |
|
|
result.i = 0;
|
396 |
|
|
}
|
397 |
|
|
return result.q;
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
uint64_t f_sub(CThread * t) {
|
401 |
|
|
// subtract two numbers
|
402 |
|
|
SNum a = t->parm[1];
|
403 |
|
|
SNum b = t->parm[2];
|
404 |
|
|
uint32_t mask = t->parm[3].i;
|
405 |
|
|
SNum result;
|
406 |
|
|
bool roundingMode = (mask & (3 << MSKI_ROUNDING)) != 0; // non-standard rounding mode
|
407 |
|
|
bool detectExceptions = (mask & (0xF << MSKI_EXCEPTIONS)) != 0; // make NAN if exceptions
|
408 |
|
|
uint8_t operandType = t->operandType;
|
409 |
|
|
if (((mask ^ t->lastMask) & (1<<MSK_SUBNORMAL)) != 0) {
|
410 |
|
|
// subnormal status changed
|
411 |
|
|
enableSubnormals (mask & (1<<MSK_SUBNORMAL));
|
412 |
|
|
t->lastMask = mask;
|
413 |
|
|
}
|
414 |
|
|
if (operandType < 4) { // integer
|
415 |
|
|
result.q = a.q - b.q; // subtract
|
416 |
|
|
}
|
417 |
|
|
else if (operandType == 5) { // float
|
418 |
|
|
bool nana = isnan_f(a.i); // check for NAN input
|
419 |
|
|
bool nanb = isnan_f(b.i);
|
420 |
|
|
if (nana && nanb) { // both are NAN
|
421 |
|
|
return (a.i << 1) > (b.i << 1) ? a.i : b.i; // return the biggest payload
|
422 |
|
|
}
|
423 |
|
|
else if (nana) return a.q;
|
424 |
|
|
else if (nanb) return b.q;
|
425 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
426 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
427 |
|
|
result.f = a.f - b.f; // this is the actual subtraction
|
428 |
|
|
if (isnan_f(result.i)) {
|
429 |
|
|
// the result is NAN but neither input is NAN. This must be INF-INF
|
430 |
|
|
result.q = t->makeNan(nan_invalid_sub, operandType);
|
431 |
|
|
}
|
432 |
|
|
if (detectExceptions) {
|
433 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
434 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_add, operandType);
|
435 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
436 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
437 |
|
|
}
|
438 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
439 |
|
|
}
|
440 |
|
|
else if (operandType == 6) {// double
|
441 |
|
|
bool nana = isnan_d(a.q); // check for NAN input
|
442 |
|
|
bool nanb = isnan_d(b.q);
|
443 |
|
|
if (nana && nanb) { // both are NAN
|
444 |
|
|
return (a.q << 1) > (b.q << 1) ? a.q : b.q; // return the biggest payload
|
445 |
|
|
}
|
446 |
|
|
else if (nana) return a.q;
|
447 |
|
|
else if (nanb) return b.q;
|
448 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
449 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
450 |
|
|
result.d = a.d - b.d; // this is the actual subtraction
|
451 |
|
|
if (isnan_d(result.q)) {
|
452 |
|
|
// the result is NAN but neither input is NAN. This must be INF-INF
|
453 |
|
|
result.q = t->makeNan(nan_invalid_sub, operandType);
|
454 |
|
|
}
|
455 |
|
|
if (detectExceptions) {
|
456 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
457 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_add, operandType);
|
458 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
459 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
460 |
|
|
}
|
461 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
462 |
|
|
}
|
463 |
|
|
else {
|
464 |
|
|
// unsupported operand type
|
465 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
466 |
|
|
result.i = 0;
|
467 |
|
|
}
|
468 |
|
|
return result.q;
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
extern uint64_t f_sub_rev(CThread * t) {
|
472 |
|
|
// subtract two numbers, b-a
|
473 |
|
|
uint64_t temp = t->parm[2].q; // swap operands
|
474 |
|
|
t->parm[2].q = t->parm[1].q;
|
475 |
|
|
t->parm[1].q = temp;
|
476 |
|
|
uint64_t retval = f_sub(t);
|
477 |
|
|
t->parm[2].q = temp; // restore parm[2] in case it is a constant
|
478 |
|
|
return retval;
|
479 |
|
|
}
|
480 |
|
|
|
481 |
|
|
uint64_t f_mul(CThread * t) {
|
482 |
|
|
// multiply two numbers
|
483 |
|
|
SNum a = t->parm[1];
|
484 |
|
|
SNum b = t->parm[2];
|
485 |
|
|
uint32_t mask = t->parm[3].i;
|
486 |
|
|
SNum result;
|
487 |
|
|
bool roundingMode = (mask & (3 << MSKI_ROUNDING)) != 0; // non-standard rounding mode
|
488 |
|
|
bool detectExceptions = (mask & (0xF << MSKI_EXCEPTIONS)) != 0; // make NAN if exceptions
|
489 |
|
|
uint8_t operandType = t->operandType;
|
490 |
|
|
if (((mask ^ t->lastMask) & (1<<MSK_SUBNORMAL)) != 0) {
|
491 |
|
|
// subnormal status changed
|
492 |
|
|
enableSubnormals (mask & (1<<MSK_SUBNORMAL));
|
493 |
|
|
t->lastMask = mask;
|
494 |
|
|
}
|
495 |
|
|
if (operandType < 4) {
|
496 |
|
|
// integer
|
497 |
|
|
result.q = a.q * b.q;
|
498 |
|
|
}
|
499 |
|
|
else if (operandType == 5) { // float
|
500 |
|
|
bool nana = isnan_f(a.i); // check for NAN input
|
501 |
|
|
bool nanb = isnan_f(b.i);
|
502 |
|
|
if (nana && nanb) { // both are NAN
|
503 |
|
|
return (a.i << 1) > (b.i << 1) ? a.i : b.i; // return the biggest payload
|
504 |
|
|
}
|
505 |
|
|
else if (nana) return a.q;
|
506 |
|
|
else if (nanb) return b.q;
|
507 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
508 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
509 |
|
|
result.f = a.f * b.f; // this is the actual multiplication
|
510 |
|
|
if (isnan_f(result.i)) {
|
511 |
|
|
// the result is NAN but neither input is NAN. This must be 0*INF
|
512 |
|
|
result.q = t->makeNan(nan_invalid_0mulinf, operandType);
|
513 |
|
|
}
|
514 |
|
|
if (detectExceptions) {
|
515 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
516 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_mul, operandType);
|
517 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
518 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
519 |
|
|
}
|
520 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
521 |
|
|
}
|
522 |
|
|
|
523 |
|
|
else if (operandType == 6) { // double
|
524 |
|
|
bool nana = isnan_d(a.q); // check for NAN input
|
525 |
|
|
bool nanb = isnan_d(b.q);
|
526 |
|
|
if (nana && nanb) { // both are NAN
|
527 |
|
|
return (a.q << 1) > (b.q << 1) ? a.q : b.q; // return the biggest payload
|
528 |
|
|
}
|
529 |
|
|
else if (nana) return a.q;
|
530 |
|
|
else if (nanb) return b.q;
|
531 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
532 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
533 |
|
|
result.d = a.d * b.d; // this is the actual multiplication
|
534 |
|
|
if (isnan_d(result.q)) {
|
535 |
|
|
// the result is NAN but neither input is NAN. This must be 0*INF
|
536 |
|
|
result.q = t->makeNan(nan_invalid_0mulinf, operandType);
|
537 |
|
|
}
|
538 |
|
|
if (detectExceptions) {
|
539 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
540 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_mul, operandType);
|
541 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
542 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
543 |
|
|
}
|
544 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
545 |
|
|
}
|
546 |
|
|
else {
|
547 |
|
|
// unsupported operand type
|
548 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
549 |
|
|
result.i = 0;
|
550 |
|
|
}
|
551 |
|
|
return result.q;
|
552 |
|
|
}
|
553 |
|
|
|
554 |
|
|
|
555 |
|
|
uint64_t f_div(CThread * t) {
|
556 |
|
|
// divide two floating point numbers or signed integers
|
557 |
|
|
SNum a = t->parm[1];
|
558 |
|
|
SNum b = t->parm[2];
|
559 |
|
|
uint32_t mask = t->parm[3].i;
|
560 |
|
|
SNum result;
|
561 |
|
|
bool overflow = false;
|
562 |
|
|
bool roundingMode = (mask & (3 << MSKI_ROUNDING))!=0; // non-standard floating point rounding mode
|
563 |
|
|
bool detectExceptions = (mask & (0xF << MSKI_EXCEPTIONS)) != 0; // make NAN if exceptions
|
564 |
|
|
bool nana, nanb; // inputs are NAN
|
565 |
|
|
uint8_t operandType = t->operandType;
|
566 |
|
|
uint32_t intRounding = 0; // integer rounding mode
|
567 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) {
|
568 |
|
|
intRounding = t->pInstr->a.im3; // E template. get integer rounding mode from IM3
|
569 |
|
|
}
|
570 |
|
|
if (((mask ^ t->lastMask) & (1<<MSK_SUBNORMAL)) != 0) {
|
571 |
|
|
// subnormal status changed
|
572 |
|
|
enableSubnormals (mask & (1<<MSK_SUBNORMAL));
|
573 |
|
|
t->lastMask = mask;
|
574 |
|
|
}
|
575 |
|
|
switch (operandType) {
|
576 |
|
|
case 0: // int8
|
577 |
|
|
if (b.b == 0 || (a.b == 0x80 && b.bs == -1)) {
|
578 |
|
|
result.i = 0x80; overflow = true;
|
579 |
|
|
}
|
580 |
|
|
else {
|
581 |
|
|
result.i = a.bs / b.bs;
|
582 |
|
|
if (intRounding != 0 && intRounding != 7 && abs(b.bs) != 1) {
|
583 |
|
|
int rem = a.bs % b.bs;
|
584 |
|
|
switch (intRounding) {
|
585 |
|
|
case 4: { // nearest or even
|
586 |
|
|
uint32_t r2 = 2*abs(rem);
|
587 |
|
|
uint32_t b2 = abs(b.bs);
|
588 |
|
|
int s = int8_t(a.i ^ b.i) < 0 ? -1 : 1; // one with sign of result
|
589 |
|
|
if (r2 > b2 || (r2 == b2 && (result.b & 1))) result.i += s;
|
590 |
|
|
break;}
|
591 |
|
|
case 5: // down
|
592 |
|
|
if (rem != 0 && int8_t(a.i ^ b.i) < 0 && result.b != 0x80u) result.i--;
|
593 |
|
|
break;
|
594 |
|
|
case 6: // up
|
595 |
|
|
if (rem != 0 && int8_t(a.i ^ b.i) >= 0) result.i++;
|
596 |
|
|
break;
|
597 |
|
|
}
|
598 |
|
|
}
|
599 |
|
|
}
|
600 |
|
|
break;
|
601 |
|
|
case 1: // int16
|
602 |
|
|
if (b.s == 0 || (a.s == 0x8000u && b.ss == -1)) {
|
603 |
|
|
result.i = 0x8000; overflow = true;
|
604 |
|
|
}
|
605 |
|
|
else {
|
606 |
|
|
result.i = a.ss / b.ss;
|
607 |
|
|
if (intRounding != 0 && intRounding != 7 && abs(b.ss) != 1) {
|
608 |
|
|
int16_t rem = a.ss % b.ss;
|
609 |
|
|
switch (intRounding) {
|
610 |
|
|
case 4: { // nearest or even
|
611 |
|
|
uint16_t r2 = 2*abs(rem);
|
612 |
|
|
uint16_t b2 = abs(b.is);
|
613 |
|
|
int16_t s = int16_t(a.s ^ b.s) < 0 ? -1 : 1; // one with sign of result
|
614 |
|
|
if (r2 > b2 || (r2 == b2 && (result.s & 1))) result.s += s;
|
615 |
|
|
break;}
|
616 |
|
|
case 5: // down
|
617 |
|
|
if (rem != 0 && int16_t(a.s ^ b.s) < 0 && result.s != 0x8000u) result.s--;
|
618 |
|
|
break;
|
619 |
|
|
case 6: // up
|
620 |
|
|
if (rem != 0 && int16_t(a.s ^ b.s) >= 0) result.s++;
|
621 |
|
|
break;
|
622 |
|
|
}
|
623 |
|
|
}
|
624 |
|
|
}
|
625 |
|
|
break;
|
626 |
|
|
case 2: // int32
|
627 |
|
|
if (b.i == 0 || (a.i == sign_f && b.is == -1)) {
|
628 |
|
|
result.i = sign_f; overflow = true;
|
629 |
|
|
}
|
630 |
|
|
else {
|
631 |
|
|
result.i = a.is / b.is;
|
632 |
|
|
if (intRounding != 0 && intRounding != 7 && abs(b.is) != 1) {
|
633 |
|
|
int rem = a.is % b.is;
|
634 |
|
|
switch (intRounding) {
|
635 |
|
|
case 4: { // nearest or even
|
636 |
|
|
uint32_t r2 = 2*abs(rem);
|
637 |
|
|
uint32_t b2 = abs(b.is);
|
638 |
|
|
int s = int32_t(a.i ^ b.i) < 0 ? -1 : 1; // one with sign of result
|
639 |
|
|
if (r2 > b2 || (r2 == b2 && (result.i & 1))) result.i += s;
|
640 |
|
|
break;}
|
641 |
|
|
case 5: // down
|
642 |
|
|
if (rem != 0 && int32_t(a.i ^ b.i) < 0 && result.i != 0x80000000u) result.i--;
|
643 |
|
|
break;
|
644 |
|
|
case 6: // up
|
645 |
|
|
if (rem != 0 && int32_t(a.i ^ b.i) >= 0) result.i++;
|
646 |
|
|
break;
|
647 |
|
|
}
|
648 |
|
|
}
|
649 |
|
|
}
|
650 |
|
|
break;
|
651 |
|
|
case 3: // int64
|
652 |
|
|
if (b.q == 0 || (a.q == sign_d && b.qs == int64_t(-1))) {
|
653 |
|
|
result.q = sign_d; overflow = true;
|
654 |
|
|
}
|
655 |
|
|
else {
|
656 |
|
|
result.qs = a.qs / b.qs;
|
657 |
|
|
if (intRounding != 0 && intRounding != 7 && abs(b.qs) != 1) {
|
658 |
|
|
int64_t rem = a.qs % b.qs;
|
659 |
|
|
switch (intRounding) {
|
660 |
|
|
case 4: { // nearest or even
|
661 |
|
|
uint64_t r2 = 2*abs(rem);
|
662 |
|
|
uint64_t b2 = abs(b.qs);
|
663 |
|
|
int64_t s = int64_t(a.q ^ b.q) < 0 ? -1 : 1; // one with sign of result
|
664 |
|
|
if (r2 > b2 || (r2 == b2 && (result.i & 1))) result.q += s;
|
665 |
|
|
break;}
|
666 |
|
|
case 5: // down
|
667 |
|
|
if (rem != 0 && int64_t(a.q ^ b.q) < 0 && result.q != 0x8000000000000000u) result.q--;
|
668 |
|
|
break;
|
669 |
|
|
case 6: // up
|
670 |
|
|
if (rem != 0 && int64_t(a.q ^ b.q) >= 0) result.q++;
|
671 |
|
|
break;
|
672 |
|
|
}
|
673 |
|
|
}
|
674 |
|
|
}
|
675 |
|
|
break;
|
676 |
|
|
case 5: // float
|
677 |
|
|
nana = isnan_f(a.i); // check for NAN input
|
678 |
|
|
nanb = isnan_f(b.i);
|
679 |
|
|
if (nana && nanb) { // both are NAN
|
680 |
|
|
result.i = (a.i << 1) > (b.i << 1) ? a.i : b.i; // return the biggest payload
|
681 |
|
|
}
|
682 |
|
|
else if (nana) result.i = a.i;
|
683 |
|
|
else if (nanb) result.i = b.i;
|
684 |
|
|
else if (b.i << 1 == 0) { // division by zero
|
685 |
|
|
if (a.i << 1 == 0) { // 0./0. = nan
|
686 |
|
|
result.q = t->makeNan(nan_invalid_0div0, operandType);
|
687 |
|
|
}
|
688 |
|
|
else {
|
689 |
|
|
// a / 0. = infinity
|
690 |
|
|
if (mask & (1<<MSK_DIVZERO)) result.q = t->makeNan(nan_div0, operandType);
|
691 |
|
|
else result.i = inf_f;
|
692 |
|
|
}
|
693 |
|
|
result.i |= (a.i ^ b.i) & sign_f; // sign bit
|
694 |
|
|
}
|
695 |
|
|
else if (isinf_f(a.i) && isinf_f(b.i)) {
|
696 |
|
|
result.i = (uint32_t)t->makeNan(nan_invalid_divinf, operandType); // INF/INF
|
697 |
|
|
result.i |= (a.i ^ b.i) & sign_f; // sign bit
|
698 |
|
|
}
|
699 |
|
|
else {
|
700 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
701 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
702 |
|
|
result.f = a.f / b.f; // normal division
|
703 |
|
|
if (detectExceptions) {
|
704 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
705 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_div, operandType);
|
706 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
707 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
708 |
|
|
}
|
709 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
710 |
|
|
}
|
711 |
|
|
break;
|
712 |
|
|
case 6: // double
|
713 |
|
|
nana = isnan_d(a.q); // check for NAN input
|
714 |
|
|
nanb = isnan_d(b.q);
|
715 |
|
|
if (nana && nanb) { // both are NAN
|
716 |
|
|
result.q = (a.q << 1) > (b.q << 1) ? a.q : b.q; // return the biggest payload
|
717 |
|
|
}
|
718 |
|
|
else if (nana) result.q = a.q;
|
719 |
|
|
else if (nanb) result.q = b.q;
|
720 |
|
|
else if (b.q << 1 == 0) { // division by zero
|
721 |
|
|
if (a.q << 1 == 0) { // 0./0. = nan
|
722 |
|
|
result.q = t->makeNan(nan_invalid_0div0, operandType);
|
723 |
|
|
}
|
724 |
|
|
else {
|
725 |
|
|
// a / 0. = infinity
|
726 |
|
|
if (mask & (1<<MSK_DIVZERO)) result.q = t->makeNan(nan_div0, operandType);
|
727 |
|
|
else result.q = inf_d;
|
728 |
|
|
}
|
729 |
|
|
result.q |= (a.q ^ b.q) & sign_d; // sign bit
|
730 |
|
|
}
|
731 |
|
|
else if (isinf_d(a.q) && isinf_d(b.q)) {
|
732 |
|
|
result.q = t->makeNan(nan_invalid_divinf, operandType); // INF/INF
|
733 |
|
|
result.q |= (a.q ^ b.q) & sign_d; // sign bit
|
734 |
|
|
}
|
735 |
|
|
else {
|
736 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
737 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
738 |
|
|
result.d = a.d / b.d; // normal division
|
739 |
|
|
if (detectExceptions) {
|
740 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
741 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_div, operandType);
|
742 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
743 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
744 |
|
|
}
|
745 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
746 |
|
|
}
|
747 |
|
|
break;
|
748 |
|
|
default:
|
749 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
750 |
|
|
result.i = 0;
|
751 |
|
|
}
|
752 |
|
|
return result.q;
|
753 |
|
|
}
|
754 |
|
|
|
755 |
|
|
uint64_t f_div_u(CThread * t) {
|
756 |
|
|
// divide two unsigned numbers
|
757 |
|
|
|
758 |
|
|
if (t->operandType > 4) {
|
759 |
|
|
return f_div(t); // floating point: same as f_div
|
760 |
|
|
}
|
761 |
|
|
SNum a = t->parm[1];
|
762 |
|
|
SNum b = t->parm[2];
|
763 |
|
|
//SNum mask = t->parm[3];
|
764 |
|
|
SNum result;
|
765 |
|
|
bool overflow = false;
|
766 |
|
|
uint32_t intRounding = 0; // integer rounding mode
|
767 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) {
|
768 |
|
|
intRounding = t->pInstr->a.im3; // E template. get integer rounding mode from IM3
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
switch (t->operandType) {
|
772 |
|
|
case 0: // int8
|
773 |
|
|
if (b.b == 0) {
|
774 |
|
|
result.i = 0xFF; overflow = true;
|
775 |
|
|
}
|
776 |
|
|
else {
|
777 |
|
|
result.i = a.b / b.b;
|
778 |
|
|
if (intRounding == 4 || intRounding == 6) {
|
779 |
|
|
uint32_t rem = a.b % b.b;
|
780 |
|
|
switch (intRounding) {
|
781 |
|
|
case 4: // nearest or even
|
782 |
|
|
if (rem*2 > b.b || (rem*2 == b.b && (result.i & 1))) result.i++;
|
783 |
|
|
break;
|
784 |
|
|
case 6: // up
|
785 |
|
|
if (rem != 0) result.i++;
|
786 |
|
|
break;
|
787 |
|
|
}
|
788 |
|
|
}
|
789 |
|
|
}
|
790 |
|
|
break;
|
791 |
|
|
case 1: // int16
|
792 |
|
|
if (b.s == 0) {
|
793 |
|
|
result.i = 0xFFFF; overflow = true;
|
794 |
|
|
}
|
795 |
|
|
else {
|
796 |
|
|
result.i = a.s / b.s;
|
797 |
|
|
if (intRounding == 4 || intRounding == 6) {
|
798 |
|
|
uint32_t rem = a.s % b.s;
|
799 |
|
|
switch (intRounding) {
|
800 |
|
|
case 4: // nearest or even
|
801 |
|
|
if (rem*2 > b.s || (rem*2 == b.s && (result.i & 1))) result.i++;
|
802 |
|
|
break;
|
803 |
|
|
case 6: // up
|
804 |
|
|
if (rem != 0) result.i++;
|
805 |
|
|
break;
|
806 |
|
|
}
|
807 |
|
|
}
|
808 |
|
|
}
|
809 |
|
|
break;
|
810 |
|
|
case 2: // int32
|
811 |
|
|
if (b.i == 0) {
|
812 |
|
|
result.is = -1; overflow = true;
|
813 |
|
|
}
|
814 |
|
|
else {
|
815 |
|
|
result.i = a.i / b.i;
|
816 |
|
|
if (intRounding == 4 || intRounding == 6) {
|
817 |
|
|
uint32_t rem = a.i % b.i;
|
818 |
|
|
switch (intRounding) {
|
819 |
|
|
case 4: // nearest or even
|
820 |
|
|
if (rem*2 > b.i || (rem*2 == b.i && (result.i & 1))) result.i++;
|
821 |
|
|
break;
|
822 |
|
|
case 6: // up
|
823 |
|
|
if (rem != 0) result.i++;
|
824 |
|
|
break;
|
825 |
|
|
}
|
826 |
|
|
}
|
827 |
|
|
}
|
828 |
|
|
break;
|
829 |
|
|
case 3: // int64
|
830 |
|
|
if (b.q == 0) {
|
831 |
|
|
result.qs = -(int64_t)1; overflow = true;
|
832 |
|
|
}
|
833 |
|
|
else {
|
834 |
|
|
result.q = a.q / b.q;
|
835 |
|
|
if (intRounding == 4 || intRounding == 6) {
|
836 |
|
|
uint64_t rem = a.q % b.q;
|
837 |
|
|
switch (intRounding) {
|
838 |
|
|
case 4: // nearest or even
|
839 |
|
|
if (rem*2 > b.q || (rem*2 == b.q && (result.q & 1))) result.q++;
|
840 |
|
|
break;
|
841 |
|
|
case 6: // up
|
842 |
|
|
if (rem != 0) result.q++;
|
843 |
|
|
break;
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
}
|
847 |
|
|
break;
|
848 |
|
|
default:
|
849 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
850 |
|
|
}
|
851 |
|
|
//if (overflow && (mask.i & MSK_OVERFL_UNSIGN)) t->interrupt(INT_OVERFL_UNSIGN); // unsigned integer overflow
|
852 |
|
|
return result.q;
|
853 |
|
|
}
|
854 |
|
|
|
855 |
|
|
static uint64_t f_div_rev(CThread * t) {
|
856 |
|
|
// divide two numbers, b/a
|
857 |
|
|
uint64_t temp = t->parm[2].q; // swap operands
|
858 |
|
|
t->parm[2].q = t->parm[1].q;
|
859 |
|
|
t->parm[1].q = temp;
|
860 |
|
|
uint64_t retval = f_div(t);
|
861 |
|
|
t->parm[2].q = temp; // restore parm[2] in case it is a constant
|
862 |
|
|
return retval;
|
863 |
|
|
}
|
864 |
|
|
|
865 |
|
|
uint64_t mul64_128u(uint64_t * low, uint64_t a, uint64_t b) {
|
866 |
|
|
// extended unsigned multiplication 64*64 -> 128 bits.
|
867 |
|
|
// Note: you may replace this by inline assembly or intrinsic functions on
|
868 |
|
|
// platforms that have extended multiplication instructions.
|
869 |
|
|
|
870 |
|
|
// The return value is the high half of the product,
|
871 |
|
|
// *low receives the low half of the product
|
872 |
|
|
union { // arrays for storing result
|
873 |
|
|
uint64_t q[2];
|
874 |
|
|
uint32_t i[4];
|
875 |
|
|
} res;
|
876 |
|
|
uint64_t t; // temporary product
|
877 |
|
|
uint64_t k; // temporary carry
|
878 |
|
|
uint64_t a0 = (uint32_t)a; // low a
|
879 |
|
|
uint64_t a1 = a >> 32; // high a
|
880 |
|
|
uint64_t b0 = (uint32_t)b; // low b
|
881 |
|
|
uint64_t b1 = b >> 32; // high b
|
882 |
|
|
t = a0 * b0;
|
883 |
|
|
res.i[0] = (uint32_t)t;
|
884 |
|
|
k = t >> 32;
|
885 |
|
|
t = a1 * b0 + k;
|
886 |
|
|
res.i[1] = (uint32_t)t;
|
887 |
|
|
k = t >> 32;
|
888 |
|
|
res.i[2] = (uint32_t)k;
|
889 |
|
|
t = a0 * b1 + res.i[1];
|
890 |
|
|
res.i[1] = (uint32_t)t;
|
891 |
|
|
k = t >> 32;
|
892 |
|
|
t = a1 * b1 + k + res.i[2];
|
893 |
|
|
res.i[2] = (uint32_t)t;
|
894 |
|
|
k = t >> 32;
|
895 |
|
|
res.i[3] = (uint32_t)k;
|
896 |
|
|
if (low) *low = res.q[0];
|
897 |
|
|
return res.q[1];
|
898 |
|
|
}
|
899 |
|
|
|
900 |
|
|
int64_t mul64_128s(uint64_t * low, int64_t a, int64_t b) {
|
901 |
|
|
// extended signed multiplication 64*64 -> 128 bits.
|
902 |
|
|
// Note: you may replace this by inline assembly or intrinsic functions on
|
903 |
|
|
// platforms that have extended multiplication instructions.
|
904 |
|
|
|
905 |
|
|
// The return value is the high half of the product,
|
906 |
|
|
// *low receives the low half of the product
|
907 |
|
|
bool sign = false;
|
908 |
|
|
if (a < 0) {
|
909 |
|
|
a = -a, sign = true;
|
910 |
|
|
}
|
911 |
|
|
if (b < 0) {
|
912 |
|
|
b = -b; sign = !sign;
|
913 |
|
|
}
|
914 |
|
|
uint64_t lo, hi;
|
915 |
|
|
hi = mul64_128u(&lo, a, b);
|
916 |
|
|
if (sign) { // change sign
|
917 |
|
|
lo = uint64_t(-int64_t(lo));
|
918 |
|
|
hi = ~hi;
|
919 |
|
|
if (lo == 0) hi++; // carry
|
920 |
|
|
}
|
921 |
|
|
if (low) *low = lo;
|
922 |
|
|
return (int64_t)hi;
|
923 |
|
|
}
|
924 |
|
|
|
925 |
|
|
static uint64_t f_mul_hi(CThread * t) {
|
926 |
|
|
// high part of extended signed multiply
|
927 |
|
|
SNum result;
|
928 |
|
|
switch (t->operandType) {
|
929 |
|
|
case 0: // int8
|
930 |
|
|
result.qs = ((int32_t)t->parm[1].bs * (int32_t)t->parm[2].bs) >> 8;
|
931 |
|
|
break;
|
932 |
|
|
case 1: // int16
|
933 |
|
|
result.qs = ((int32_t)t->parm[1].ss * (int32_t)t->parm[2].ss) >> 16;
|
934 |
|
|
break;
|
935 |
|
|
case 2: // int32
|
936 |
|
|
result.qs = ((int64_t)t->parm[1].is * (int64_t)t->parm[2].is) >> 32;
|
937 |
|
|
break;
|
938 |
|
|
case 3: // int64
|
939 |
|
|
result.qs = mul64_128s(0, t->parm[1].qs, t->parm[2].qs);
|
940 |
|
|
break;
|
941 |
|
|
default:
|
942 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
943 |
|
|
result.q = 0;
|
944 |
|
|
}
|
945 |
|
|
return result.q;
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
static uint64_t f_mul_hi_u(CThread * t) {
|
949 |
|
|
// high part of extended unsigned multiply
|
950 |
|
|
SNum result;
|
951 |
|
|
switch (t->operandType) {
|
952 |
|
|
case 0: // int8
|
953 |
|
|
result.q = ((uint32_t)t->parm[1].b * (uint32_t)t->parm[2].b) >> 8;
|
954 |
|
|
break;
|
955 |
|
|
case 1: // int16
|
956 |
|
|
result.q = ((uint32_t)t->parm[1].s * (uint32_t)t->parm[2].s) >> 16;
|
957 |
|
|
break;
|
958 |
|
|
case 2: // int32
|
959 |
|
|
result.q = ((uint64_t)t->parm[1].i * (uint64_t)t->parm[2].i) >> 32;
|
960 |
|
|
break;
|
961 |
|
|
case 3: // int64
|
962 |
|
|
result.q = mul64_128u(0, t->parm[1].q, t->parm[2].q);
|
963 |
|
|
break;
|
964 |
|
|
default:
|
965 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
966 |
|
|
result.q = 0;
|
967 |
|
|
}
|
968 |
|
|
return result.q;
|
969 |
|
|
}
|
970 |
|
|
|
971 |
|
|
|
972 |
|
|
static uint64_t f_rem(CThread * t) {
|
973 |
|
|
// remainder/modulo of two signed numbers
|
974 |
|
|
SNum a = t->parm[1];
|
975 |
|
|
SNum b = t->parm[2];
|
976 |
|
|
//SNum mask = t->parm[3];
|
977 |
|
|
SNum result;
|
978 |
|
|
bool overflow = false;
|
979 |
|
|
|
980 |
|
|
switch (t->operandType) {
|
981 |
|
|
case 0: // int8
|
982 |
|
|
if (b.b == 0 || (a.b == 0x80 && b.bs == -1)) {
|
983 |
|
|
result.i = 0x80; overflow = true;
|
984 |
|
|
}
|
985 |
|
|
else result.is = a.bs % b.bs;
|
986 |
|
|
break;
|
987 |
|
|
case 1: // int16
|
988 |
|
|
if (b.s == 0 || (a.s == 0x8000 && b.ss == -1)) {
|
989 |
|
|
result.i = 0x8000; overflow = true;
|
990 |
|
|
}
|
991 |
|
|
else result.is = a.ss % b.ss;
|
992 |
|
|
break;
|
993 |
|
|
case 2: // int32
|
994 |
|
|
if (b.i == 0 || (a.i == sign_f && b.is == -1)) {
|
995 |
|
|
result.i = sign_f; overflow = true;
|
996 |
|
|
}
|
997 |
|
|
else result.is = a.is % b.is;
|
998 |
|
|
break;
|
999 |
|
|
case 3: // int64
|
1000 |
|
|
if (b.q == 0 || (a.q == sign_d && b.qs == int64_t(-1))) {
|
1001 |
|
|
result.q = sign_d; overflow = true;
|
1002 |
|
|
}
|
1003 |
|
|
else result.qs = a.qs % b.qs;
|
1004 |
|
|
break;
|
1005 |
|
|
case 5: // float
|
1006 |
|
|
if (isnan_f(a.i) && isnan_f(b.i)) { // both are NAN
|
1007 |
|
|
result.i = (a.i << 1) > (b.i << 1) ? a.i : b.i; // return the biggest payload
|
1008 |
|
|
}
|
1009 |
|
|
else if (b.i << 1 == 0 || isinf_f(a.i)) { // rem(1,0) or rem(inf,1)
|
1010 |
|
|
result.q = t->makeNan(nan_invalid_rem, 5);
|
1011 |
|
|
}
|
1012 |
|
|
else {
|
1013 |
|
|
result.f = fmodf(a.f, b.f); // normal modulo
|
1014 |
|
|
}
|
1015 |
|
|
break;
|
1016 |
|
|
case 6: // double
|
1017 |
|
|
if (isnan_d(a.q) && isnan_d(b.q)) { // both are NAN
|
1018 |
|
|
result.q = (a.q << 1) > (b.q << 1) ? a.q : b.q; // return the biggest payload
|
1019 |
|
|
}
|
1020 |
|
|
else if (b.q << 1 == 0 || isinf_d(a.q)) { // rem(1,0) or rem(inf,1)
|
1021 |
|
|
result.q = t->makeNan(nan_invalid_rem, 5);
|
1022 |
|
|
}
|
1023 |
|
|
else {
|
1024 |
|
|
result.d = fmod(a.d, b.d); // normal modulo
|
1025 |
|
|
}
|
1026 |
|
|
break;
|
1027 |
|
|
default:
|
1028 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1029 |
|
|
result.i = 0;
|
1030 |
|
|
}
|
1031 |
|
|
//if (overflow&& (mask.i & MSK_OVERFL_SIGN)) t->interrupt(INT_OVERFL_SIGN); // signed integer overflow
|
1032 |
|
|
return result.q;
|
1033 |
|
|
}
|
1034 |
|
|
|
1035 |
|
|
static uint64_t f_rem_u(CThread * t) {
|
1036 |
|
|
// remainder/modulo of two unsigned numbers
|
1037 |
|
|
if (t->operandType > 4) return f_rem(t); // float types use f_rem
|
1038 |
|
|
SNum a = t->parm[1];
|
1039 |
|
|
SNum b = t->parm[2];
|
1040 |
|
|
//SNum mask = t->parm[3];
|
1041 |
|
|
SNum result;
|
1042 |
|
|
bool overflow = false;
|
1043 |
|
|
|
1044 |
|
|
switch (t->operandType) {
|
1045 |
|
|
case 0: // int8
|
1046 |
|
|
if (b.b == 0) {
|
1047 |
|
|
result.i = 0x80; overflow = true;
|
1048 |
|
|
}
|
1049 |
|
|
else result.i = a.b % b.b;
|
1050 |
|
|
break;
|
1051 |
|
|
case 1: // int16
|
1052 |
|
|
if (b.s == 0) {
|
1053 |
|
|
result.i = 0x8000; overflow = true;
|
1054 |
|
|
}
|
1055 |
|
|
else result.i = a.s % b.s;
|
1056 |
|
|
break;
|
1057 |
|
|
case 2: // int32
|
1058 |
|
|
if (b.i == 0) {
|
1059 |
|
|
result.i = sign_f; overflow = true;
|
1060 |
|
|
}
|
1061 |
|
|
else result.i = a.i % b.i;
|
1062 |
|
|
break;
|
1063 |
|
|
case 3: // int64
|
1064 |
|
|
if (b.q == 0) {
|
1065 |
|
|
result.q = sign_d; overflow = true;
|
1066 |
|
|
}
|
1067 |
|
|
else result.q = a.q % b.q;
|
1068 |
|
|
break;
|
1069 |
|
|
default:
|
1070 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1071 |
|
|
result.i = 0;
|
1072 |
|
|
}
|
1073 |
|
|
//if (overflow&& (mask.i & MSK_OVERFL_SIGN)) t->interrupt(INT_OVERFL_SIGN); // signed integer overflow
|
1074 |
|
|
return result.q;
|
1075 |
|
|
}
|
1076 |
|
|
|
1077 |
|
|
static uint64_t f_min(CThread * t) {
|
1078 |
|
|
// minimum of two signed numbers
|
1079 |
|
|
SNum a = t->parm[1];
|
1080 |
|
|
SNum b = t->parm[2];
|
1081 |
|
|
SNum result;
|
1082 |
|
|
int8_t isnan;
|
1083 |
|
|
switch (t->operandType) {
|
1084 |
|
|
case 0: // int8
|
1085 |
|
|
result.is = a.bs < b.bs ? a.bs : b.bs;
|
1086 |
|
|
break;
|
1087 |
|
|
case 1: // int16
|
1088 |
|
|
result.is = a.ss < b.ss ? a.ss : b.ss;
|
1089 |
|
|
break;
|
1090 |
|
|
case 2: // int32
|
1091 |
|
|
result.is = a.is < b.is ? a.is : b.is;
|
1092 |
|
|
break;
|
1093 |
|
|
case 3: // int64
|
1094 |
|
|
result.qs = a.qs < b.qs ? a.qs : b.qs;
|
1095 |
|
|
break;
|
1096 |
|
|
case 5: // float
|
1097 |
|
|
result.f = a.f < b.f ? a.f : b.f;
|
1098 |
|
|
// check NANs
|
1099 |
|
|
isnan = isnan_f(a.i); // a is nan
|
1100 |
|
|
isnan |= isnan_f(b.i) << 1; // b is nan
|
1101 |
|
|
if (isnan) { // propagate NAN according to the 2019 revision of the IEEE-754 standard
|
1102 |
|
|
if (isnan == 1) result.i = a.i;
|
1103 |
|
|
else if (isnan == 2) result.i = b.i;
|
1104 |
|
|
else result.i = (a.i << 1) > (b.i << 1) ? a.i : b.i; // return the biggest payload
|
1105 |
|
|
}
|
1106 |
|
|
break;
|
1107 |
|
|
case 6: // double
|
1108 |
|
|
result.d = a.d < b.d ? a.d : b.d;
|
1109 |
|
|
// check NANs
|
1110 |
|
|
isnan = isnan_d(a.q); // a is nan
|
1111 |
|
|
isnan |= isnan_d(b.q) << 1; // b is nan
|
1112 |
|
|
if (isnan) { // propagate NAN according to the 2019 revision of the IEEE-754 standard
|
1113 |
|
|
if (isnan == 1) result.q = a.q;
|
1114 |
|
|
else if (isnan == 2) result.q = b.q;
|
1115 |
|
|
else result.q = (a.q << 1) > (b.q << 1) ? a.q : b.q; // return the biggest payload
|
1116 |
|
|
}
|
1117 |
|
|
break;
|
1118 |
|
|
default:
|
1119 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1120 |
|
|
result.i = 0;
|
1121 |
|
|
}
|
1122 |
|
|
return result.q;
|
1123 |
|
|
}
|
1124 |
|
|
|
1125 |
|
|
static uint64_t f_min_u(CThread * t) {
|
1126 |
|
|
// minimum of two unsigned numbers
|
1127 |
|
|
SNum a = t->parm[1];
|
1128 |
|
|
SNum b = t->parm[2];
|
1129 |
|
|
SNum result;
|
1130 |
|
|
switch (t->operandType) {
|
1131 |
|
|
case 0: // int8
|
1132 |
|
|
result.i = a.b < b.b ? a.b : b.b;
|
1133 |
|
|
break;
|
1134 |
|
|
case 1: // int16
|
1135 |
|
|
result.i = a.s < b.s ? a.s : b.s;
|
1136 |
|
|
break;
|
1137 |
|
|
case 2: // int32
|
1138 |
|
|
result.i = a.i < b.i ? a.i : b.i;
|
1139 |
|
|
break;
|
1140 |
|
|
case 3: // int64
|
1141 |
|
|
result.q = a.q < b.q ? a.q : b.q;
|
1142 |
|
|
break;
|
1143 |
|
|
case 5: // float
|
1144 |
|
|
case 6: // double
|
1145 |
|
|
return f_min(t);
|
1146 |
|
|
default:
|
1147 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1148 |
|
|
result.i = 0;
|
1149 |
|
|
}
|
1150 |
|
|
return result.q;
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
static uint64_t f_max(CThread * t) {
|
1154 |
|
|
// maximum of two signed numbers
|
1155 |
|
|
SNum a = t->parm[1];
|
1156 |
|
|
SNum b = t->parm[2];
|
1157 |
|
|
SNum result;
|
1158 |
|
|
uint8_t isnan;
|
1159 |
|
|
switch (t->operandType) {
|
1160 |
|
|
case 0: // int8
|
1161 |
|
|
result.is = a.bs > b.bs ? a.bs : b.bs;
|
1162 |
|
|
break;
|
1163 |
|
|
case 1: // int16
|
1164 |
|
|
result.is = a.ss > b.ss ? a.ss : b.ss;
|
1165 |
|
|
break;
|
1166 |
|
|
case 2: // int32
|
1167 |
|
|
result.is = a.is > b.is ? a.is : b.is;
|
1168 |
|
|
break;
|
1169 |
|
|
case 3: // int64
|
1170 |
|
|
result.qs = a.qs > b.qs ? a.qs : b.qs;
|
1171 |
|
|
break;
|
1172 |
|
|
case 5: // float
|
1173 |
|
|
result.f = a.f > b.f ? a.f : b.f;
|
1174 |
|
|
// check NANs
|
1175 |
|
|
isnan = isnan_f(a.i); // a is nan
|
1176 |
|
|
isnan |= isnan_f(b.i) << 1; // b is nan
|
1177 |
|
|
if (isnan) {
|
1178 |
|
|
// propagate NAN according to the 2019 revision of the IEEE-754 standard
|
1179 |
|
|
if (isnan == 1) result.i = a.i;
|
1180 |
|
|
else if (isnan == 2) result.i = b.i;
|
1181 |
|
|
else result.i = (a.i << 1) > (b.i << 1) ? a.i : b.i; // return the biggest payload
|
1182 |
|
|
}
|
1183 |
|
|
break;
|
1184 |
|
|
case 6: // double
|
1185 |
|
|
result.d = a.d > b.d ? a.d : b.d;
|
1186 |
|
|
// check NANs
|
1187 |
|
|
isnan = isnan_d(a.q); // a is nan
|
1188 |
|
|
isnan |= isnan_d(b.q) << 1; // b is nan
|
1189 |
|
|
if (isnan) {
|
1190 |
|
|
// propagate NAN according to the 2019 revision of the IEEE-754 standard
|
1191 |
|
|
if (isnan == 1) result.q = a.q;
|
1192 |
|
|
else if (isnan == 2) result.q = b.q;
|
1193 |
|
|
else result.q = (a.q << 1) > (b.q << 1) ? a.q : b.q; // return the biggest payload
|
1194 |
|
|
}
|
1195 |
|
|
break;
|
1196 |
|
|
default:
|
1197 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1198 |
|
|
result.i = 0;
|
1199 |
|
|
}
|
1200 |
|
|
return result.q;
|
1201 |
|
|
}
|
1202 |
|
|
|
1203 |
|
|
static uint64_t f_max_u(CThread * t) {
|
1204 |
|
|
// maximum of two unsigned numbers
|
1205 |
|
|
SNum a = t->parm[1];
|
1206 |
|
|
SNum b = t->parm[2];
|
1207 |
|
|
SNum result;
|
1208 |
|
|
switch (t->operandType) {
|
1209 |
|
|
case 0: // int8
|
1210 |
|
|
result.i = a.b > b.b ? a.b : b.b;
|
1211 |
|
|
break;
|
1212 |
|
|
case 1: // int16
|
1213 |
|
|
result.i = a.s > b.s ? a.s : b.s;
|
1214 |
|
|
break;
|
1215 |
|
|
case 2: // int32
|
1216 |
|
|
result.i = a.i > b.i ? a.i : b.i;
|
1217 |
|
|
break;
|
1218 |
|
|
case 3: // int64
|
1219 |
|
|
result.q = a.q > b.q ? a.q : b.q;
|
1220 |
|
|
break;
|
1221 |
|
|
case 5: // float
|
1222 |
|
|
case 6: // double
|
1223 |
|
|
return f_max(t);
|
1224 |
|
|
default:
|
1225 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1226 |
|
|
result.i = 0;
|
1227 |
|
|
}
|
1228 |
|
|
return result.q;
|
1229 |
|
|
}
|
1230 |
|
|
|
1231 |
|
|
static uint64_t f_and(CThread * t) {
|
1232 |
|
|
// bitwise AND of two numbers
|
1233 |
|
|
return t->parm[1].q & t->parm[2].q;
|
1234 |
|
|
}
|
1235 |
|
|
/*
|
1236 |
|
|
static uint64_t f_and_not(CThread * t) {
|
1237 |
|
|
// a & ~b
|
1238 |
|
|
return t->parm[1].q & ~ t->parm[2].q;
|
1239 |
|
|
}*/
|
1240 |
|
|
|
1241 |
|
|
static uint64_t f_or(CThread * t) {
|
1242 |
|
|
// bitwise OR of two numbers
|
1243 |
|
|
return t->parm[1].q | t->parm[2].q;
|
1244 |
|
|
}
|
1245 |
|
|
|
1246 |
|
|
static uint64_t f_xor(CThread * t) {
|
1247 |
|
|
// bitwise exclusive OR of two numbers
|
1248 |
|
|
return t->parm[1].q ^ t->parm[2].q;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
static uint64_t f_select_bits(CThread * t) {
|
1252 |
|
|
// a & c | b & ~c
|
1253 |
|
|
return (t->parm[0].q & t->parm[2].q) | (t->parm[1].q & ~ t->parm[2].q);
|
1254 |
|
|
}
|
1255 |
|
|
|
1256 |
|
|
static uint64_t f_shift_left(CThread * t) {
|
1257 |
|
|
// integer: a << b, float a * 2^b where b is interpreted as integer
|
1258 |
|
|
SNum a = t->parm[1];
|
1259 |
|
|
SNum b = t->parm[2];
|
1260 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1261 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1262 |
|
|
|
1263 |
|
|
SNum mask = t->parm[3];
|
1264 |
|
|
SNum result;
|
1265 |
|
|
uint64_t exponent;
|
1266 |
|
|
switch (t->operandType) {
|
1267 |
|
|
case 0: // int8
|
1268 |
|
|
result.b = a.b << b.b;
|
1269 |
|
|
if (b.b > 7) result.q = 0;
|
1270 |
|
|
break;
|
1271 |
|
|
case 1: // int16
|
1272 |
|
|
result.s = a.s << b.s;
|
1273 |
|
|
if (b.b > 15) result.q = 0;
|
1274 |
|
|
break;
|
1275 |
|
|
case 2: // int32
|
1276 |
|
|
result.i = a.i << b.i;
|
1277 |
|
|
if (b.b > 31) result.q = 0;
|
1278 |
|
|
break;
|
1279 |
|
|
case 3: // int64
|
1280 |
|
|
result.q = a.q << b.q;
|
1281 |
|
|
if (b.b > 63) result.q = 0;
|
1282 |
|
|
break;
|
1283 |
|
|
case 5: // float
|
1284 |
|
|
if (isnan_f(a.i)) return a.q; // a is nan
|
1285 |
|
|
exponent = a.i >> 23 & 0xFF; // get exponent
|
1286 |
|
|
if (exponent == 0) return a.i & sign_f; // a is zero or subnormal. return zero
|
1287 |
|
|
exponent += b.i; // add integer to exponent
|
1288 |
|
|
if ((int32_t)exponent >= 0xFF) { // overflow
|
1289 |
|
|
result.i = inf_f;
|
1290 |
|
|
}
|
1291 |
|
|
else if ((int32_t)exponent <= 0) { // underflow
|
1292 |
|
|
if ((mask.i & (1<<MSK_UNDERFLOW)) != 0) { // make NAN if exception
|
1293 |
|
|
result.q = t->makeNan(nan_underflow, 5);
|
1294 |
|
|
}
|
1295 |
|
|
else {
|
1296 |
|
|
result.q = 0;
|
1297 |
|
|
}
|
1298 |
|
|
}
|
1299 |
|
|
else {
|
1300 |
|
|
result.i = (a.i & 0x807FFFFF) | uint32_t(exponent) << 23; // insert new exponent
|
1301 |
|
|
}
|
1302 |
|
|
break;
|
1303 |
|
|
case 6: // double
|
1304 |
|
|
if (isnan_d(a.q)) return a.q; // a is nan
|
1305 |
|
|
exponent = a.q >> 52 & 0x7FF;
|
1306 |
|
|
if (exponent == 0) return a.q & sign_d; // a is zero or subnormal. return zero
|
1307 |
|
|
exponent += b.q; // add integer to exponent
|
1308 |
|
|
if ((int64_t)exponent >= 0x7FF) { // overflow
|
1309 |
|
|
result.q = inf_d;
|
1310 |
|
|
//if (mask.i & MSK_OVERFL_FLOAT) t->interrupt(INT_OVERFL_FLOAT);
|
1311 |
|
|
}
|
1312 |
|
|
else if ((int64_t)exponent <= 0) { // underflow
|
1313 |
|
|
if ((mask.i & (1<<MSK_UNDERFLOW)) != 0) { // make NAN if exception
|
1314 |
|
|
result.q = t->makeNan(nan_underflow, 6);
|
1315 |
|
|
}
|
1316 |
|
|
else {
|
1317 |
|
|
result.q = 0;
|
1318 |
|
|
}
|
1319 |
|
|
}
|
1320 |
|
|
else {
|
1321 |
|
|
result.q = (a.q & 0x800FFFFFFFFFFFFF) | (exponent << 52); // insert new exponent
|
1322 |
|
|
}
|
1323 |
|
|
break;
|
1324 |
|
|
default:
|
1325 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1326 |
|
|
result.i = 0;
|
1327 |
|
|
}
|
1328 |
|
|
return result.q;
|
1329 |
|
|
}
|
1330 |
|
|
|
1331 |
|
|
static uint64_t f_rotate(CThread * t) {
|
1332 |
|
|
// rotate bits left
|
1333 |
|
|
SNum a = t->parm[1];
|
1334 |
|
|
SNum b = t->parm[2];
|
1335 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1336 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1337 |
|
|
|
1338 |
|
|
SNum result;
|
1339 |
|
|
switch (t->operandType) {
|
1340 |
|
|
case 0: // int8
|
1341 |
|
|
result.b = a.b << (b.b & 7) | a.b >> (8 - (b.b & 7));
|
1342 |
|
|
break;
|
1343 |
|
|
case 1: // int16
|
1344 |
|
|
result.s = a.s << (b.s & 15) | a.s >> (16 - (b.s & 15));
|
1345 |
|
|
break;
|
1346 |
|
|
case 2: // int32
|
1347 |
|
|
case 5: // float
|
1348 |
|
|
result.i = a.i << (b.i & 31) | a.i >> (32 - (b.i & 31));
|
1349 |
|
|
break;
|
1350 |
|
|
case 3: // int64
|
1351 |
|
|
case 6: // double
|
1352 |
|
|
result.q = a.q << (b.q & 63) | a.q >> (64 - (b.q & 63));
|
1353 |
|
|
break;
|
1354 |
|
|
default:
|
1355 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1356 |
|
|
result.i = 0;
|
1357 |
|
|
}
|
1358 |
|
|
return result.q;
|
1359 |
|
|
}
|
1360 |
|
|
|
1361 |
|
|
static uint64_t f_shift_right_s(CThread * t) {
|
1362 |
|
|
// integer only: a >> b, with sign extension
|
1363 |
|
|
SNum a = t->parm[1];
|
1364 |
|
|
SNum b = t->parm[2];
|
1365 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1366 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1367 |
|
|
|
1368 |
|
|
SNum result;
|
1369 |
|
|
switch (t->operandType) {
|
1370 |
|
|
case 0: // int8
|
1371 |
|
|
result.bs = a.bs >> b.bs;
|
1372 |
|
|
if (b.b > 7) result.qs = a.bs >> 7;
|
1373 |
|
|
break;
|
1374 |
|
|
case 1: // int16
|
1375 |
|
|
result.ss = a.ss >> b.ss;
|
1376 |
|
|
if (b.s > 15) result.qs = a.ss >> 15;
|
1377 |
|
|
break;
|
1378 |
|
|
case 2: // int32
|
1379 |
|
|
result.is = a.is >> b.is;
|
1380 |
|
|
if (b.i > 31) result.qs = a.is >> 31;
|
1381 |
|
|
break;
|
1382 |
|
|
case 3: // int64
|
1383 |
|
|
result.qs = a.qs >> b.qs;
|
1384 |
|
|
if (b.q > 63) result.qs = a.qs >> 63;
|
1385 |
|
|
break;
|
1386 |
|
|
default:
|
1387 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1388 |
|
|
result.i = 0;
|
1389 |
|
|
}
|
1390 |
|
|
return result.q;
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
static uint64_t f_shift_right_u(CThread * t) {
|
1394 |
|
|
// integer only: a >> b, with zero extension
|
1395 |
|
|
SNum a = t->parm[1];
|
1396 |
|
|
SNum b = t->parm[2];
|
1397 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1398 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1399 |
|
|
|
1400 |
|
|
SNum result;
|
1401 |
|
|
switch (t->operandType) {
|
1402 |
|
|
case 0: // int8
|
1403 |
|
|
result.b = a.b >> b.b;
|
1404 |
|
|
if (b.b > 7) result.q = 0;
|
1405 |
|
|
break;
|
1406 |
|
|
case 1: // int16
|
1407 |
|
|
result.s = a.s >> b.s;
|
1408 |
|
|
if (b.s > 15) result.q = 0;
|
1409 |
|
|
break;
|
1410 |
|
|
case 2: // int32
|
1411 |
|
|
result.i = a.i >> b.i;
|
1412 |
|
|
if (b.i > 31) result.q = 0;
|
1413 |
|
|
break;
|
1414 |
|
|
case 3: // int64
|
1415 |
|
|
result.q = a.q >> b.q;
|
1416 |
|
|
if (b.q > 63) result.q = 0;
|
1417 |
|
|
break;
|
1418 |
|
|
default:
|
1419 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1420 |
|
|
result.i = 0;
|
1421 |
|
|
}
|
1422 |
|
|
return result.q;
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
static uint64_t f_funnel_shift(CThread * t) {
|
1426 |
|
|
uint64_t shift_count = t->parm[2].q;
|
1427 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) shift_count = t->parm[4].q; // avoid conversion of c to float
|
1428 |
|
|
|
1429 |
|
|
if (t->vect == 0) { // g.p. registers. shift integers n bytes
|
1430 |
|
|
uint32_t dataSize = dataSizeTableBits[t->operandType]; // operand size, bits
|
1431 |
|
|
uint64_t dataMask = dataSizeMask[t->operandType]; // operand size mask, dataSize bits of 1
|
1432 |
|
|
if ((shift_count & dataMask) >= dataSize) return 0; // shift count out of range
|
1433 |
|
|
return ((t->parm[0].q & dataMask) >> shift_count | (t->parm[1].q & dataMask) << (dataSize - shift_count)) & dataMask;
|
1434 |
|
|
}
|
1435 |
|
|
else { // vector registers. shift concatenated whole vectors n bytes down
|
1436 |
|
|
|
1437 |
|
|
// The second operand may be a vector register of incomplete size or a broadcast memory operand.
|
1438 |
|
|
// Both input operands may be the same as the destination register.
|
1439 |
|
|
// The operand size may not match the shift count
|
1440 |
|
|
// The easiest way to handle all these cases is to copy both input vectors into temporary buffers
|
1441 |
|
|
switch (t->operandType) {
|
1442 |
|
|
case 0:
|
1443 |
|
|
*(t->tempBuffer + t->vectorOffset) = t->parm[0].bs;
|
1444 |
|
|
*(t->tempBuffer + t->MaxVectorLength + t->vectorOffset) = t->parm[1].bs;
|
1445 |
|
|
break;
|
1446 |
|
|
case 1:
|
1447 |
|
|
*(uint16_t*)(t->tempBuffer + t->vectorOffset) = t->parm[0].s;
|
1448 |
|
|
*(uint16_t*)(t->tempBuffer + t->MaxVectorLength + t->vectorOffset) = t->parm[1].s;
|
1449 |
|
|
break;
|
1450 |
|
|
case 2: case 5:
|
1451 |
|
|
*(uint32_t*)(t->tempBuffer + t->vectorOffset) = t->parm[0].i;
|
1452 |
|
|
*(uint32_t*)(t->tempBuffer + t->MaxVectorLength + t->vectorOffset) = t->parm[1].i;
|
1453 |
|
|
break;
|
1454 |
|
|
case 3: case 6:
|
1455 |
|
|
*(uint64_t*)(t->tempBuffer + t->vectorOffset) = t->parm[0].q;
|
1456 |
|
|
*(uint64_t*)(t->tempBuffer + t->MaxVectorLength + t->vectorOffset) = t->parm[1].q;
|
1457 |
|
|
break;
|
1458 |
|
|
case 4: case 7: // to do: support 128 bits
|
1459 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1460 |
|
|
break;
|
1461 |
|
|
}
|
1462 |
|
|
uint32_t dataSizeBytes = dataSizeTable[t->operandType]; // operand size, bits
|
1463 |
|
|
if (t->vectorOffset + dataSizeBytes >= t->vectorLengthR) {
|
1464 |
|
|
// last iteration. Make the result
|
1465 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
1466 |
|
|
shift_count *= dataSizeBytes; // shift n elements
|
1467 |
|
|
if (shift_count >= t->vectorLengthR) {
|
1468 |
|
|
// shift count out of range. return 0
|
1469 |
|
|
memset(t->vectors.buf() + t->MaxVectorLength*rd, 0, t->vectorLengthR);
|
1470 |
|
|
}
|
1471 |
|
|
else {
|
1472 |
|
|
// copy upper part of first vector to lower part of destination vector
|
1473 |
|
|
memcpy(t->vectors.buf() + t->MaxVectorLength * rd, t->tempBuffer + shift_count, t->vectorLengthR - shift_count);
|
1474 |
|
|
// copy lower part of second vector to upper part of destination vector
|
1475 |
|
|
memcpy(t->vectors.buf() + t->MaxVectorLength * rd + (t->vectorLengthR - shift_count), t->tempBuffer + t->MaxVectorLength, shift_count);
|
1476 |
|
|
}
|
1477 |
|
|
}
|
1478 |
|
|
t->running = 2; // don't save RD. It is saved by above code
|
1479 |
|
|
return 0;
|
1480 |
|
|
}
|
1481 |
|
|
}
|
1482 |
|
|
|
1483 |
|
|
static uint64_t f_set_bit(CThread * t) {
|
1484 |
|
|
// a | 1 << b
|
1485 |
|
|
SNum a = t->parm[1];
|
1486 |
|
|
SNum b = t->parm[2];
|
1487 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1488 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1489 |
|
|
|
1490 |
|
|
SNum result;
|
1491 |
|
|
switch (t->operandType) {
|
1492 |
|
|
case 0: // int8
|
1493 |
|
|
result.b = a.b;
|
1494 |
|
|
if (b.b < 8) result.b |= 1 << b.b;
|
1495 |
|
|
break;
|
1496 |
|
|
case 1: // int16
|
1497 |
|
|
result.s = a.s;
|
1498 |
|
|
if (b.s < 16) result.s |= 1 << b.s;
|
1499 |
|
|
break;
|
1500 |
|
|
case 2: // int32
|
1501 |
|
|
case 5: // float
|
1502 |
|
|
result.i = a.i;
|
1503 |
|
|
if (b.i < 32) result.i |= 1 << b.i;
|
1504 |
|
|
break;
|
1505 |
|
|
case 3: // int64
|
1506 |
|
|
case 6: // double
|
1507 |
|
|
result.q = a.q;
|
1508 |
|
|
if (b.q < 64) result.q |= (uint64_t)1 << b.q;
|
1509 |
|
|
break;
|
1510 |
|
|
default:
|
1511 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1512 |
|
|
result.i = 0;
|
1513 |
|
|
}
|
1514 |
|
|
return result.q;
|
1515 |
|
|
}
|
1516 |
|
|
|
1517 |
|
|
static uint64_t f_clear_bit(CThread * t) {
|
1518 |
|
|
// a & ~ (1 << b)
|
1519 |
|
|
SNum a = t->parm[1];
|
1520 |
|
|
SNum b = t->parm[2];
|
1521 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1522 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1523 |
|
|
SNum result;
|
1524 |
|
|
switch (t->operandType) {
|
1525 |
|
|
case 0: // int8
|
1526 |
|
|
result.b = a.b;
|
1527 |
|
|
if (b.b < 8) result.b &= ~(1 << b.b);
|
1528 |
|
|
break;
|
1529 |
|
|
case 1: // int16
|
1530 |
|
|
result.s = a.s;
|
1531 |
|
|
if (b.s < 16) result.s &= ~(1 << b.s);
|
1532 |
|
|
break;
|
1533 |
|
|
case 2: // int32
|
1534 |
|
|
case 5: // float
|
1535 |
|
|
result.i = a.i;
|
1536 |
|
|
if (b.i < 32) result.i &= ~(1 << b.i);
|
1537 |
|
|
break;
|
1538 |
|
|
case 3: // int64
|
1539 |
|
|
case 6: // double
|
1540 |
|
|
result.q = a.q;
|
1541 |
|
|
if (b.q < 64) result.q &= ~((uint64_t)1 << b.q);
|
1542 |
|
|
break;
|
1543 |
|
|
default:
|
1544 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1545 |
|
|
result.i = 0;
|
1546 |
|
|
}
|
1547 |
|
|
return result.q;
|
1548 |
|
|
}
|
1549 |
|
|
|
1550 |
|
|
static uint64_t f_toggle_bit(CThread * t) {
|
1551 |
|
|
// a ^ (1 << b)
|
1552 |
|
|
SNum a = t->parm[1];
|
1553 |
|
|
SNum b = t->parm[2];
|
1554 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1555 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1556 |
|
|
SNum result;
|
1557 |
|
|
switch (t->operandType) {
|
1558 |
|
|
case 0: // int8
|
1559 |
|
|
result.b = a.b;
|
1560 |
|
|
if (b.b < 8) result.b ^= 1 << b.b;
|
1561 |
|
|
break;
|
1562 |
|
|
case 1: // int16
|
1563 |
|
|
result.s = a.s;
|
1564 |
|
|
if (b.s < 16) result.s ^= 1 << b.s;
|
1565 |
|
|
break;
|
1566 |
|
|
case 2: // int32
|
1567 |
|
|
case 5: // float
|
1568 |
|
|
result.i = a.i;
|
1569 |
|
|
if (b.i < 32) result.i ^= 1 << b.i;
|
1570 |
|
|
break;
|
1571 |
|
|
case 3: // int64
|
1572 |
|
|
case 6: // double
|
1573 |
|
|
result.q = a.q;
|
1574 |
|
|
if (b.q < 64) result.q ^= (uint64_t)1 << b.q;
|
1575 |
|
|
break;
|
1576 |
|
|
default:
|
1577 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1578 |
|
|
result.i = 0;
|
1579 |
|
|
}
|
1580 |
|
|
return result.q;
|
1581 |
|
|
}
|
1582 |
|
|
|
1583 |
|
|
/*
|
1584 |
|
|
static uint64_t f_and_bit(CThread * t) {
|
1585 |
|
|
// clear all bits except one
|
1586 |
|
|
// a & (1 << b)
|
1587 |
|
|
SNum a = t->parm[1];
|
1588 |
|
|
SNum b = t->parm[2];
|
1589 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1590 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1591 |
|
|
SNum result;
|
1592 |
|
|
switch (t->operandType) {
|
1593 |
|
|
case 0: // int8
|
1594 |
|
|
result.b = a.b;
|
1595 |
|
|
if (b.b < 8) result.b &= 1 << b.b;
|
1596 |
|
|
break;
|
1597 |
|
|
case 1: // int16
|
1598 |
|
|
result.s = a.s;
|
1599 |
|
|
if (b.s < 16) result.s &= 1 << b.s;
|
1600 |
|
|
break;
|
1601 |
|
|
case 2: // int32
|
1602 |
|
|
case 5: // float
|
1603 |
|
|
result.i = a.i;
|
1604 |
|
|
if (b.i < 32) result.i &= 1 << b.i;
|
1605 |
|
|
break;
|
1606 |
|
|
case 3: // int64
|
1607 |
|
|
case 6: // double
|
1608 |
|
|
result.q = a.q;
|
1609 |
|
|
if (b.q < 64) result.q &= (uint64_t)1 << b.q;
|
1610 |
|
|
break;
|
1611 |
|
|
default:
|
1612 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1613 |
|
|
result.i = 0;
|
1614 |
|
|
}
|
1615 |
|
|
return result.q;
|
1616 |
|
|
}*/
|
1617 |
|
|
|
1618 |
|
|
static uint64_t f_test_bit(CThread * t) {
|
1619 |
|
|
// test a single bit: a >> b & 1
|
1620 |
|
|
SNum a = t->parm[1];
|
1621 |
|
|
SNum b = t->parm[2];
|
1622 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1623 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1624 |
|
|
if (t->fInstr->imm2 & 4) {
|
1625 |
|
|
b = t->parm[4]; // avoid immediate operand shifted by imm3
|
1626 |
|
|
}
|
1627 |
|
|
SNum result;
|
1628 |
|
|
result.q = 0;
|
1629 |
|
|
SNum mask = t->parm[3];
|
1630 |
|
|
uint8_t fallbackreg = t->operands[2]; // fallback register
|
1631 |
|
|
SNum fallback; // fallback value
|
1632 |
|
|
fallback.q = (fallbackreg & 0x1F) != 0x1F ? t->readRegister(fallbackreg & 0x1F) : 0;
|
1633 |
|
|
switch (t->operandType) {
|
1634 |
|
|
case 0: // int8
|
1635 |
|
|
if (b.b < 8) result.b = a.b >> b.b & 1;
|
1636 |
|
|
break;
|
1637 |
|
|
case 1: // int16
|
1638 |
|
|
if (b.s < 16) result.s = a.s >> b.s & 1;
|
1639 |
|
|
break;
|
1640 |
|
|
case 2: // int32
|
1641 |
|
|
case 5: // float
|
1642 |
|
|
if (b.i < 32) result.i = a.i >> b.i & 1;
|
1643 |
|
|
break;
|
1644 |
|
|
case 3: // int64
|
1645 |
|
|
case 6: // double
|
1646 |
|
|
if (b.q < 64) result.q = a.q >> b.q & 1;
|
1647 |
|
|
break;
|
1648 |
|
|
default:
|
1649 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1650 |
|
|
result.i = 0;
|
1651 |
|
|
}
|
1652 |
|
|
// get additional options
|
1653 |
|
|
uint8_t options = 0;
|
1654 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) options = t->pInstr->a.im3;
|
1655 |
|
|
if (options & 4) result.b ^= 1; // invert result
|
1656 |
|
|
if (options & 8) fallback.b ^= 1; // invert fallback
|
1657 |
|
|
if (options & 0x10) mask.b ^= 1; // invert mask
|
1658 |
|
|
switch (options & 3) {
|
1659 |
|
|
case 0:
|
1660 |
|
|
result.b = (mask.b & 1) ? result.b : fallback.b;
|
1661 |
|
|
break;
|
1662 |
|
|
case 1:
|
1663 |
|
|
result.b = mask.b & result.b & fallback.b;
|
1664 |
|
|
break;
|
1665 |
|
|
case 2:
|
1666 |
|
|
result.b = mask.b & (result.b | fallback.b);
|
1667 |
|
|
break;
|
1668 |
|
|
case 3:
|
1669 |
|
|
result.b = mask.b & (result.b ^ fallback.b);
|
1670 |
|
|
}
|
1671 |
|
|
// ignore other bits
|
1672 |
|
|
result.q &= 1;
|
1673 |
|
|
if (options & 0x20) { // get remaining bits from flag or NUMCONTR
|
1674 |
|
|
result.q |= mask.q & ~(uint64_t)1;
|
1675 |
|
|
}
|
1676 |
|
|
// disable normal fallback process
|
1677 |
|
|
t->parm[3].b = 1;
|
1678 |
|
|
return result.q;
|
1679 |
|
|
}
|
1680 |
|
|
|
1681 |
|
|
static uint64_t f_test_bits_and(CThread * t) {
|
1682 |
|
|
// Test if all the indicated bits are 1
|
1683 |
|
|
// result = (a & b) == b
|
1684 |
|
|
SNum a = t->parm[1];
|
1685 |
|
|
SNum b = t->parm[2];
|
1686 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1687 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1688 |
|
|
if (t->fInstr->imm2 & 4) {
|
1689 |
|
|
b = t->parm[4]; // avoid immediate operand shifted by imm3
|
1690 |
|
|
}
|
1691 |
|
|
SNum result;
|
1692 |
|
|
SNum mask = t->parm[3];
|
1693 |
|
|
uint8_t fallbackreg = t->operands[2]; // fallback register
|
1694 |
|
|
SNum fallback; // fallback value
|
1695 |
|
|
fallback.q = (fallbackreg & 0x1F) != 0x1F ? t->readRegister(fallbackreg & 0x1F) : 0;
|
1696 |
|
|
switch (t->operandType) {
|
1697 |
|
|
case 0: // int8
|
1698 |
|
|
result.b = (a.b & b.b) == b.b;
|
1699 |
|
|
break;
|
1700 |
|
|
case 1: // int16
|
1701 |
|
|
result.s = (a.s & b.s) == b.s;
|
1702 |
|
|
break;
|
1703 |
|
|
case 2: // int32
|
1704 |
|
|
case 5: // float
|
1705 |
|
|
result.i = (a.i & b.i) == b.i;
|
1706 |
|
|
break;
|
1707 |
|
|
case 3: // int64
|
1708 |
|
|
case 6: // double
|
1709 |
|
|
result.q = (a.q & b.q) == b.q;
|
1710 |
|
|
break;
|
1711 |
|
|
default:
|
1712 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1713 |
|
|
result.i = 0;
|
1714 |
|
|
}
|
1715 |
|
|
// get additional options
|
1716 |
|
|
uint8_t options = 0;
|
1717 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) options = t->pInstr->a.im3;
|
1718 |
|
|
if (options & 4) result.b ^= 1; // invert result
|
1719 |
|
|
if (options & 8) fallback.b ^= 1; // invert fallback
|
1720 |
|
|
if (options & 0x10) mask.b ^= 1; // invert mask
|
1721 |
|
|
switch (options & 3) {
|
1722 |
|
|
case 0:
|
1723 |
|
|
result.b = (mask.b & 1) ? result.b : fallback.b;
|
1724 |
|
|
break;
|
1725 |
|
|
case 1:
|
1726 |
|
|
result.b &= mask.b & fallback.b;
|
1727 |
|
|
break;
|
1728 |
|
|
case 2:
|
1729 |
|
|
result.b = mask.b & (result.b | fallback.b);
|
1730 |
|
|
break;
|
1731 |
|
|
case 3:
|
1732 |
|
|
result.b = mask.b & (result.b ^ fallback.b);
|
1733 |
|
|
}
|
1734 |
|
|
// ignore other bits
|
1735 |
|
|
result.q &= 1;
|
1736 |
|
|
if (options & 0x20) { // get remaining bits from flag or NUMCONTR
|
1737 |
|
|
result.q |= mask.q & ~(uint64_t)1;
|
1738 |
|
|
}
|
1739 |
|
|
// disable normal fallback process
|
1740 |
|
|
t->parm[3].b = 1;
|
1741 |
|
|
return result.q;
|
1742 |
|
|
}
|
1743 |
|
|
|
1744 |
|
|
static uint64_t f_test_bits_or(CThread * t) {
|
1745 |
|
|
// Test if at least one of the indicated bits is 1.
|
1746 |
|
|
// result = (a & b) != 0
|
1747 |
|
|
SNum a = t->parm[1];
|
1748 |
|
|
SNum b = t->parm[2];
|
1749 |
|
|
//if (t->fInstr->immSize && t->operandType >= 5) b = t->parm[4]; // avoid conversion of b to float
|
1750 |
|
|
if ((t->operands[5] & 0x20) && t->operandType > 4) b = t->parm[4]; // avoid conversion of b to float
|
1751 |
|
|
if (t->fInstr->imm2 & 4) {
|
1752 |
|
|
b = t->parm[4]; // avoid immediate operand shifted by imm3
|
1753 |
|
|
}
|
1754 |
|
|
SNum result;
|
1755 |
|
|
SNum mask = t->parm[3];
|
1756 |
|
|
uint8_t fallbackreg = t->operands[2]; // fallback register
|
1757 |
|
|
SNum fallback; // fallback value
|
1758 |
|
|
fallback.q = (fallbackreg & 0x1F) != 0x1F ? t->readRegister(fallbackreg & 0x1F) : 0;
|
1759 |
|
|
switch (t->operandType) {
|
1760 |
|
|
case 0: // int8
|
1761 |
|
|
result.b = (a.b & b.b) != 0;
|
1762 |
|
|
break;
|
1763 |
|
|
case 1: // int16
|
1764 |
|
|
result.s = (a.s & b.s) != 0;
|
1765 |
|
|
break;
|
1766 |
|
|
case 2: // int32
|
1767 |
|
|
case 5: // float
|
1768 |
|
|
result.i = (a.i & b.i) != 0;
|
1769 |
|
|
break;
|
1770 |
|
|
case 3: // int64
|
1771 |
|
|
case 6: // double
|
1772 |
|
|
result.q = (a.q & b.q) != 0;
|
1773 |
|
|
break;
|
1774 |
|
|
default:
|
1775 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1776 |
|
|
result.i = 0;
|
1777 |
|
|
}
|
1778 |
|
|
// get additional options
|
1779 |
|
|
uint8_t options = 0;
|
1780 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) options = t->pInstr->a.im3;
|
1781 |
|
|
if (options & 4) result.b ^= 1; // invert result
|
1782 |
|
|
if (options & 8) fallback.b ^= 1; // invert fallback
|
1783 |
|
|
if (options & 0x10) mask.b ^= 1; // invert mask
|
1784 |
|
|
switch (options & 3) {
|
1785 |
|
|
case 0:
|
1786 |
|
|
result.b = (mask.b & 1) ? result.b : fallback.b;
|
1787 |
|
|
break;
|
1788 |
|
|
case 1:
|
1789 |
|
|
result.b &= mask.b & fallback.b;
|
1790 |
|
|
break;
|
1791 |
|
|
case 2:
|
1792 |
|
|
result.b = mask.b & (result.b | fallback.b);
|
1793 |
|
|
break;
|
1794 |
|
|
case 3:
|
1795 |
|
|
result.b = mask.b & (result.b ^ fallback.b);
|
1796 |
|
|
}
|
1797 |
|
|
// ignore other bits
|
1798 |
|
|
result.q &= 1;
|
1799 |
|
|
if (options & 0x20) { // get remaining bits from flag or NUMCONTR
|
1800 |
|
|
result.q |= mask.q & ~(uint64_t)1;
|
1801 |
|
|
}
|
1802 |
|
|
// disable normal fallback process
|
1803 |
|
|
t->parm[3].b = 1;
|
1804 |
|
|
return result.q;
|
1805 |
|
|
}
|
1806 |
|
|
|
1807 |
|
|
|
1808 |
|
|
float mul_add_f(float a, float b, float c) {
|
1809 |
|
|
// calculate a * b + c with extra precision on the intermediate product.
|
1810 |
|
|
#if FMA_AVAILABLE
|
1811 |
|
|
// use FMA instruction for correct precision if available
|
1812 |
|
|
return _mm_cvtss_f32(_mm_fmadd_ss(_mm_load_ss(&a), _mm_load_ss(&b), _mm_load_ss(&c)));
|
1813 |
|
|
#else
|
1814 |
|
|
return float((double)a * (double)b + (double)c);
|
1815 |
|
|
#endif
|
1816 |
|
|
}
|
1817 |
|
|
|
1818 |
|
|
double mul_add_d(double a, double b, double c) {
|
1819 |
|
|
// calculate a * b + c with extra precision on the intermediate product.
|
1820 |
|
|
#if FMA_AVAILABLE
|
1821 |
|
|
// use FMA instruction for correct precision if available
|
1822 |
|
|
return _mm_cvtsd_f64(_mm_fmadd_sd(_mm_load_sd(&a), _mm_load_sd(&b), _mm_load_sd(&c)));
|
1823 |
|
|
#else
|
1824 |
|
|
// calculate a*b-c with extended precision. This code is not as good as the real FMA instruction
|
1825 |
|
|
SNum aa, bb, ahi, bhi, alo, blo;
|
1826 |
|
|
uint64_t upper_mask = 0xFFFFFFFFF8000000;
|
1827 |
|
|
aa.d = a; bb.d = b;
|
1828 |
|
|
ahi.q = aa.q & upper_mask; // split into high and low parts
|
1829 |
|
|
alo.d = a - ahi.d;
|
1830 |
|
|
bhi.q = bb.q & upper_mask;
|
1831 |
|
|
blo.d = b - bhi.d;
|
1832 |
|
|
double r1 = ahi.d * bhi.d; // this product is exact
|
1833 |
|
|
// perhaps a different order of addition is better here in some cases?
|
1834 |
|
|
double r2 = r1 + c; // add c to high product
|
1835 |
|
|
double r3 = r2 + (ahi.d * blo.d + bhi.d * alo.d) + alo.d * blo.d; // add rest of product
|
1836 |
|
|
return r3;
|
1837 |
|
|
#endif
|
1838 |
|
|
}
|
1839 |
|
|
|
1840 |
|
|
uint64_t f_mul_add(CThread * t) {
|
1841 |
|
|
// a * b + c, calculated with extra precision on the intermediate product
|
1842 |
|
|
SNum a = t->parm[0];
|
1843 |
|
|
SNum b = t->parm[1];
|
1844 |
|
|
SNum c = t->parm[2];
|
1845 |
|
|
if ((t->fInstr->imm2 & 4) && t->operandType < 5) {
|
1846 |
|
|
c = t->parm[4]; // avoid immediate operand shifted by imm3
|
1847 |
|
|
}
|
1848 |
|
|
if (t->op == II_MUL_ADD2) {
|
1849 |
|
|
SNum t = b; b = c; c = t; // swap last two operands
|
1850 |
|
|
}
|
1851 |
|
|
uint32_t mask = t->parm[3].i;
|
1852 |
|
|
SNum result;
|
1853 |
|
|
bool roundingMode = (mask & (3 << MSKI_ROUNDING)) != 0; // non-standard rounding mode
|
1854 |
|
|
bool detectExceptions = (mask & (0xF << MSKI_EXCEPTIONS)) != 0; // make NAN if exceptions
|
1855 |
|
|
|
1856 |
|
|
// get sign options
|
1857 |
|
|
uint8_t options = 0;
|
1858 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) options = t->pInstr->a.im3;
|
1859 |
|
|
//else if (t->fInstr->tmplate == 0xA) options = (mask >> MSKI_OPTIONS) & 0xF;
|
1860 |
|
|
if (t->vect == 2) { // odd vector element
|
1861 |
|
|
options >>= 1;
|
1862 |
|
|
}
|
1863 |
|
|
bool unsignedOverflow = false;
|
1864 |
|
|
bool signedOverflow = false;
|
1865 |
|
|
uint8_t operandType = t->operandType;
|
1866 |
|
|
switch (operandType) {
|
1867 |
|
|
case 0: // int8
|
1868 |
|
|
a.is = a.bs; b.is = b.bs; // sign extend to avoid overflow during sign change
|
1869 |
|
|
if (options & 1) a.is = -a.is;
|
1870 |
|
|
if (options & 4) c.is = -c.is;
|
1871 |
|
|
result.is = a.is * b.is + c.bs;
|
1872 |
|
|
signedOverflow = result.is != result.bs;
|
1873 |
|
|
unsignedOverflow = result.i != result.b;
|
1874 |
|
|
break;
|
1875 |
|
|
case 1: // int16
|
1876 |
|
|
a.is = a.ss; b.is = b.ss; // sign extend to avoid overflow during sign change
|
1877 |
|
|
if (options & 1) a.is = -a.is;
|
1878 |
|
|
if (options & 4) c.is = -c.is;
|
1879 |
|
|
result.is = a.is * b.is + c.ss;
|
1880 |
|
|
signedOverflow = result.is != result.ss;
|
1881 |
|
|
unsignedOverflow = result.i != result.s;
|
1882 |
|
|
break;
|
1883 |
|
|
case 2: // int32
|
1884 |
|
|
a.qs = a.is; b.qs = b.is; // sign extend to avoid overflow during sign change
|
1885 |
|
|
if (options & 1) a.qs = -a.qs;
|
1886 |
|
|
if (options & 4) c.qs = -c.qs;
|
1887 |
|
|
result.qs = a.qs * b.qs + c.is;
|
1888 |
|
|
signedOverflow = result.qs != result.is;
|
1889 |
|
|
unsignedOverflow = result.q != result.i;
|
1890 |
|
|
break;
|
1891 |
|
|
case 3: // int64
|
1892 |
|
|
if (options & 1) {
|
1893 |
|
|
if (a.q == sign_d) signedOverflow = true;
|
1894 |
|
|
a.qs = -a.qs;
|
1895 |
|
|
}
|
1896 |
|
|
if (options & 4) {
|
1897 |
|
|
if (b.q == sign_d) signedOverflow = true;
|
1898 |
|
|
c.qs = -c.qs;
|
1899 |
|
|
}
|
1900 |
|
|
result.qs = a.qs * b.qs + c.qs;
|
1901 |
|
|
/*
|
1902 |
|
|
if (mask.b & MSK_OVERFL_UNSIGN) { // check for unsigned overflow
|
1903 |
|
|
if (fabs((double)a.q + (double)b.q * (double)c.q - (double)result.q) > 1.E8) unsignedOverflow = true;
|
1904 |
|
|
}
|
1905 |
|
|
if (mask.b & MSK_OVERFL_SIGN) { // check for signed overflow
|
1906 |
|
|
if (fabs((double)a.qs + (double)b.qs * (double)c.qs - (double)result.qs) > 1.E8) signedOverflow = true;
|
1907 |
|
|
} */
|
1908 |
|
|
break;
|
1909 |
|
|
case 5: // float
|
1910 |
|
|
if (options & 1) a.f = -a.f;
|
1911 |
|
|
if (options & 4) c.f = -c.f;
|
1912 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
1913 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
1914 |
|
|
|
1915 |
|
|
result.f = mul_add_f(a.f, b.f, c.f); // do the calculation
|
1916 |
|
|
if (isnan_or_inf_f(result.i)) { // check for overflow and nan
|
1917 |
|
|
uint32_t nans = 0; // biggest NAN
|
1918 |
|
|
uint32_t infs = 0; // count INF inputs
|
1919 |
|
|
for (int i = 0; i < 3; i++) { // loop through input operands
|
1920 |
|
|
uint32_t tmp = t->parm[i].i & nsign_f; // ignore sign bit
|
1921 |
|
|
if (tmp == inf_f) infs++; // is INF
|
1922 |
|
|
else if (tmp > nans) nans = tmp; // get the biggest if there are multiple NANs
|
1923 |
|
|
}
|
1924 |
|
|
if (nans) result.i = nans; // there is at least one NAN. return the biggest (sign bit is lost)
|
1925 |
|
|
else if (isnan_f(result.i)) {
|
1926 |
|
|
// result is NAN, but no input is NAN. This can be 0*INF or INF-INF
|
1927 |
|
|
if ((a.i << 1 == 0 || b.i << 1 == 0) && infs) result.q = t->makeNan(nan_invalid_0mulinf, operandType);
|
1928 |
|
|
else result.q = t->makeNan(nan_invalid_sub, operandType);
|
1929 |
|
|
}
|
1930 |
|
|
}
|
1931 |
|
|
else if (detectExceptions) {
|
1932 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
1933 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_mul, operandType);
|
1934 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
1935 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
1936 |
|
|
}
|
1937 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
1938 |
|
|
break;
|
1939 |
|
|
|
1940 |
|
|
case 6: // double
|
1941 |
|
|
if (options & 1) a.d = -a.d;
|
1942 |
|
|
if (options & 4) c.d = -c.d;
|
1943 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
1944 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
1945 |
|
|
|
1946 |
|
|
result.d = mul_add_d(a.d, b.d, c.d); // do the calculation
|
1947 |
|
|
if (isnan_or_inf_d(result.q)) { // check for overflow and nan
|
1948 |
|
|
uint64_t nans = 0; // biggest NAN
|
1949 |
|
|
uint32_t infs = 0; // count INF inputs
|
1950 |
|
|
for (int i = 0; i < 3; i++) { // loop through input operands
|
1951 |
|
|
uint64_t tmp = t->parm[i].q & nsign_d; // ignore sign bit
|
1952 |
|
|
if (tmp == inf_d) infs++; // is INF
|
1953 |
|
|
else if (tmp > nans) nans = tmp; // get the biggest if there are multiple NANs
|
1954 |
|
|
}
|
1955 |
|
|
if (nans) result.q = nans; // there is at least one NAN. return the biggest (sign bit is lost)
|
1956 |
|
|
else if (isnan_d(result.q)) {
|
1957 |
|
|
// result is NAN, but no input is NAN. This can be 0*INF or INF-INF
|
1958 |
|
|
if ((a.q << 1 == 0 || b.q << 1 == 0) && infs) result.q = t->makeNan(nan_invalid_0mulinf, operandType);
|
1959 |
|
|
else result.q = t->makeNan(nan_invalid_sub, operandType);
|
1960 |
|
|
}
|
1961 |
|
|
}
|
1962 |
|
|
else if (detectExceptions) {
|
1963 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
1964 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) result.q = t->makeNan(nan_overflow_mul, operandType);
|
1965 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
1966 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
1967 |
|
|
}
|
1968 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
1969 |
|
|
break;
|
1970 |
|
|
|
1971 |
|
|
default:
|
1972 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1973 |
|
|
result.i = 0;
|
1974 |
|
|
}
|
1975 |
|
|
return result.q;
|
1976 |
|
|
}
|
1977 |
|
|
|
1978 |
|
|
static uint64_t f_add_add(CThread * t) {
|
1979 |
|
|
// a + b + c, calculated with extra precision on the intermediate sum
|
1980 |
|
|
int i, j;
|
1981 |
|
|
SNum parm[3];
|
1982 |
|
|
// copy parameters so that we change sign and reorder them without changing original constant
|
1983 |
|
|
for (i = 0; i < 3; i++) parm[i] = t->parm[i];
|
1984 |
|
|
if ((t->fInstr->imm2 & 4) && t->operandType < 5) {
|
1985 |
|
|
parm[2] = t->parm[4]; // avoid immediate operand shifted by imm3
|
1986 |
|
|
}
|
1987 |
|
|
uint32_t mask = t->parm[3].i;
|
1988 |
|
|
bool roundingMode = (mask & (3 << MSKI_ROUNDING)) != 0; // non-standard rounding mode
|
1989 |
|
|
bool detectExceptions = (mask & (0xF << MSKI_EXCEPTIONS)) != 0; // make NAN if exceptions
|
1990 |
|
|
uint8_t operandType = t->operandType;
|
1991 |
|
|
SNum sumS, sumU; // signed and unsigned sums
|
1992 |
|
|
SNum nanS; // combined nan's
|
1993 |
|
|
// get sign options
|
1994 |
|
|
uint8_t options = 0;
|
1995 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) options = t->pInstr->a.im3;
|
1996 |
|
|
//else if (t->fInstr->tmplate == 0xA) options = uint8_t(mask >> MSKI_OPTIONS);
|
1997 |
|
|
|
1998 |
|
|
uint8_t signedOverflow = 0;
|
1999 |
|
|
uint8_t unsignedOverflow = 0;
|
2000 |
|
|
//bool parmInf = false;
|
2001 |
|
|
sumS.q = sumU.q = 0;
|
2002 |
|
|
uint32_t temp1;
|
2003 |
|
|
uint64_t temp2;
|
2004 |
|
|
|
2005 |
|
|
switch (operandType) {
|
2006 |
|
|
case 0: // int8
|
2007 |
|
|
for (i = 0; i < 3; i++) { // loop through operands
|
2008 |
|
|
if (options & 1) { // change sign
|
2009 |
|
|
if (parm[i].b == 0x80) signedOverflow ^= 1;
|
2010 |
|
|
if (parm[i].b != 0) unsignedOverflow ^= 1;
|
2011 |
|
|
parm[i].is = - parm[i].is;
|
2012 |
|
|
}
|
2013 |
|
|
options >>= 1; // get next option bit
|
2014 |
|
|
sumU.i += parm[i].b; // unsigned sum
|
2015 |
|
|
sumS.is += parm[i].bs; // sign-extended sum
|
2016 |
|
|
}
|
2017 |
|
|
if (sumU.b != sumU.i) unsignedOverflow ^= 1;
|
2018 |
|
|
if (sumS.bs != sumS.is) signedOverflow ^= 1;
|
2019 |
|
|
break;
|
2020 |
|
|
case 1: // int16
|
2021 |
|
|
for (i = 0; i < 3; i++) { // loop through operands
|
2022 |
|
|
if (options & 1) { // change sign
|
2023 |
|
|
if (parm[i].s == 0x8000) signedOverflow ^= 1;
|
2024 |
|
|
if (parm[i].s != 0) unsignedOverflow ^= 1;
|
2025 |
|
|
parm[i].is = - parm[i].is;
|
2026 |
|
|
}
|
2027 |
|
|
options >>= 1; // get next option bit
|
2028 |
|
|
sumU.i += parm[i].s; // unsigned sum
|
2029 |
|
|
sumS.is += parm[i].ss; // sign-extended sum
|
2030 |
|
|
}
|
2031 |
|
|
if (sumU.s != sumU.i) unsignedOverflow ^= 1;
|
2032 |
|
|
if (sumS.ss != sumS.is) signedOverflow ^= 1;
|
2033 |
|
|
break;
|
2034 |
|
|
case 2: // int32
|
2035 |
|
|
for (i = 0; i < 3; i++) { // loop through operands
|
2036 |
|
|
if (options & 1) { // change sign
|
2037 |
|
|
if (parm[i].i == sign_f) signedOverflow ^= 1;
|
2038 |
|
|
if (parm[i].i != 0) unsignedOverflow ^= 1;
|
2039 |
|
|
parm[i].is = - parm[i].is;
|
2040 |
|
|
}
|
2041 |
|
|
options >>= 1; // get next option bit
|
2042 |
|
|
sumU.q += parm[i].i; // unsigned sum
|
2043 |
|
|
sumS.qs += parm[i].is; // sign-extended sum
|
2044 |
|
|
}
|
2045 |
|
|
if (sumU.i != sumU.q) unsignedOverflow ^= 1;
|
2046 |
|
|
if (sumS.is != sumS.qs) signedOverflow ^= 1;
|
2047 |
|
|
break;
|
2048 |
|
|
case 3: // int64
|
2049 |
|
|
for (i = 0; i < 3; i++) { // loop through operands
|
2050 |
|
|
if (options & 1) { // change sign
|
2051 |
|
|
if (parm[i].q == sign_d) signedOverflow ^= 1;
|
2052 |
|
|
if (parm[i].q != 0) unsignedOverflow ^= 1;
|
2053 |
|
|
parm[i].qs = - parm[i].qs;
|
2054 |
|
|
}
|
2055 |
|
|
options >>= 1; // get next option bit
|
2056 |
|
|
uint64_t a = parm[i].q;
|
2057 |
|
|
uint64_t b = sumU.q;
|
2058 |
|
|
sumU.q = a + b; // sum
|
2059 |
|
|
if (sumU.q < a) unsignedOverflow ^= 1;
|
2060 |
|
|
if (int64_t(~(a ^ b) & (a ^ sumU.q)) < 0) signedOverflow ^= 1;
|
2061 |
|
|
}
|
2062 |
|
|
break;
|
2063 |
|
|
case 5: // float
|
2064 |
|
|
sumS.is = -1; nanS.i = 0;
|
2065 |
|
|
for (i = 0; i < 3; i++) { // loop through operands
|
2066 |
|
|
if (options & 1) parm[i].f = -parm[i].f; // change sign
|
2067 |
|
|
// find the smallest of the three operands
|
2068 |
|
|
if ((parm[i].i << 1) < sumS.i) {
|
2069 |
|
|
sumS.i = (parm[i].i << 1); j = i;
|
2070 |
|
|
}
|
2071 |
|
|
// find NANs and infs
|
2072 |
|
|
temp1 = parm[i].i & nsign_f; // ignore sign bit
|
2073 |
|
|
if (temp1 > nanS.i) nanS.i = temp1; // find the biggest NAN
|
2074 |
|
|
//if (temp1 == inf_f) parmInf = true; // OR of all INFs
|
2075 |
|
|
options >>= 1; // next option bit
|
2076 |
|
|
}
|
2077 |
|
|
if (nanS.i > inf_f) return nanS.i; // result is NAN
|
2078 |
|
|
// get the smallest operand last to minimize loss of precision if the two biggest operands have opposite signs
|
2079 |
|
|
temp1 = parm[j].i;
|
2080 |
|
|
parm[j].i = parm[2].i;
|
2081 |
|
|
parm[2].i = temp1;
|
2082 |
|
|
|
2083 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
2084 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
2085 |
|
|
|
2086 |
|
|
// calculate sum
|
2087 |
|
|
sumU.f = (parm[0].f + parm[1].f) + parm[2].f;
|
2088 |
|
|
|
2089 |
|
|
if (isnan_f(sumU.i)) {
|
2090 |
|
|
// the result is NAN but neither input is NAN. This must be INF-INF
|
2091 |
|
|
sumU.q = t->makeNan(nan_invalid_sub, operandType);
|
2092 |
|
|
}
|
2093 |
|
|
if (detectExceptions) {
|
2094 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
2095 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) sumU.q = t->makeNan(nan_overflow_add, operandType);
|
2096 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) sumU.q = t->makeNan(nan_underflow, operandType);
|
2097 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) sumU.q = t->makeNan(nan_inexact, operandType);
|
2098 |
|
|
}
|
2099 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
2100 |
|
|
break;
|
2101 |
|
|
|
2102 |
|
|
case 6: // double
|
2103 |
|
|
sumS.qs = -1; nanS.q = 0;
|
2104 |
|
|
for (i = 0; i < 3; i++) { // loop through operands
|
2105 |
|
|
if (options & 1) parm[i].d = -parm[i].d; // change sign
|
2106 |
|
|
// find the smallest of the three operands
|
2107 |
|
|
if ((parm[i].q << 1) < sumS.q) {
|
2108 |
|
|
sumS.q = (parm[i].q << 1); j = i;
|
2109 |
|
|
}
|
2110 |
|
|
// find NANs and infs
|
2111 |
|
|
temp2 = parm[i].q & nsign_d; // ignore sign bit
|
2112 |
|
|
if (temp2 > nanS.q) nanS.q = temp2; // find the biggest NAN
|
2113 |
|
|
//if (temp2 == inf_d) parmInf = true; // OR of all INFs
|
2114 |
|
|
options >>= 1; // next option bit
|
2115 |
|
|
}
|
2116 |
|
|
if (nanS.q > inf_d) return nanS.q; // result is NAN
|
2117 |
|
|
|
2118 |
|
|
// get the smallest operand last to minimize loss of precision if
|
2119 |
|
|
// the two biggest operands have opposite signs
|
2120 |
|
|
temp2 = parm[j].q;
|
2121 |
|
|
parm[j].q = parm[2].q;
|
2122 |
|
|
parm[2].q = temp2;
|
2123 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
2124 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
2125 |
|
|
|
2126 |
|
|
// calculate sum
|
2127 |
|
|
sumU.d = (parm[0].d + parm[1].d) + parm[2].d;
|
2128 |
|
|
|
2129 |
|
|
if (isnan_d(sumU.q)) {
|
2130 |
|
|
// the result is NAN but neither input is NAN. This must be INF-INF
|
2131 |
|
|
sumU.q = t->makeNan(nan_invalid_sub, operandType);
|
2132 |
|
|
}
|
2133 |
|
|
if (detectExceptions) {
|
2134 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
2135 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && (x & 8)) sumU.q = t->makeNan(nan_overflow_add, operandType);
|
2136 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) sumU.q = t->makeNan(nan_underflow, operandType);
|
2137 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) sumU.q = t->makeNan(nan_inexact, operandType);
|
2138 |
|
|
}
|
2139 |
|
|
if (roundingMode) setRoundingMode(0); // reset rounding mode
|
2140 |
|
|
break;
|
2141 |
|
|
|
2142 |
|
|
default:
|
2143 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
2144 |
|
|
sumU.i = 0;
|
2145 |
|
|
}
|
2146 |
|
|
return sumU.q;
|
2147 |
|
|
}
|
2148 |
|
|
|
2149 |
|
|
uint64_t f_add_h(CThread * t) {
|
2150 |
|
|
// add two numbers, float16
|
2151 |
|
|
// (rounding mode not supported)
|
2152 |
|
|
SNum a = t->parm[1];
|
2153 |
|
|
SNum b = t->parm[2];
|
2154 |
|
|
uint32_t mask = t->parm[3].i;
|
2155 |
|
|
uint16_t result;
|
2156 |
|
|
|
2157 |
|
|
if (t->fInstr->immSize == 1) b.s = float2half(b.bs); // convert 8-bit integer to float16
|
2158 |
|
|
if (t->operandType != 1) t->interrupt(INT_WRONG_PARAMETERS);
|
2159 |
|
|
if (isnan_h(a.s) && isnan_h(b.s)) { // both are NAN
|
2160 |
|
|
result = (a.s << 1) > (b.s << 1) ? a.s : b.s; // return the biggest payload
|
2161 |
|
|
}
|
2162 |
|
|
if (mask & (1<<MSK_INEXACT)) clearExceptionFlags(); // clear previous exceptions
|
2163 |
|
|
|
2164 |
|
|
// the exact result is obtained with double precision. This makes sure we don't get double rounding errors
|
2165 |
|
|
double resultd = (double)half2float(a.s) + (double)half2float(b.s); // calculate with single precision
|
2166 |
|
|
result = double2half(resultd);
|
2167 |
|
|
|
2168 |
|
|
// check for exceptions
|
2169 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && isinf_h(result) && !isinf_h(a.s) && !isinf_h(b.s)) {
|
2170 |
|
|
// overflow
|
2171 |
|
|
result = (uint16_t)t->makeNan(nan_overflow_add, 1);
|
2172 |
|
|
result |= (a.s ^ b.s) & 0x8000; // get the sign
|
2173 |
|
|
}
|
2174 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && is_zero_or_subnormal_h(result) && resultd != 0.0) {
|
2175 |
|
|
// underflow
|
2176 |
|
|
result = (uint16_t)t->makeNan(nan_underflow, 1) | (result & 0x8000); // signed NAN
|
2177 |
|
|
}
|
2178 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (half2float(result) != resultd || (getExceptionFlags() & 0x20)) != 0) {
|
2179 |
|
|
// inexact
|
2180 |
|
|
result = (uint16_t)t->makeNan(nan_inexact, 1);
|
2181 |
|
|
}
|
2182 |
|
|
|
2183 |
|
|
uint8_t roundingMode = mask >> MSKI_ROUNDING & 3;
|
2184 |
|
|
if (roundingMode != 0 && !isnan_or_inf_h(result)) {
|
2185 |
|
|
double r = half2float(result);
|
2186 |
|
|
// non-standard rounding mode
|
2187 |
|
|
switch (roundingMode) {
|
2188 |
|
|
case 1: // down
|
2189 |
|
|
if (r > resultd && result != 0xFBFF) {
|
2190 |
|
|
if (result == 0) result = 0x8001;
|
2191 |
|
|
else if ((int16_t)result > 0) result--;
|
2192 |
|
|
else result++;
|
2193 |
|
|
}
|
2194 |
|
|
break;
|
2195 |
|
|
case 2: // up
|
2196 |
|
|
if (r < resultd && result != 0x7BFF) {
|
2197 |
|
|
if ((int16_t)result > 0) result++;
|
2198 |
|
|
else result--;
|
2199 |
|
|
}
|
2200 |
|
|
break;
|
2201 |
|
|
case 3: // towards zero
|
2202 |
|
|
if ((int16_t)result > 0 && r > resultd) result--;
|
2203 |
|
|
else if ((int16_t)result < 0 && r < resultd) result--;
|
2204 |
|
|
}
|
2205 |
|
|
}
|
2206 |
|
|
t->returnType =0x118;
|
2207 |
|
|
return result;
|
2208 |
|
|
}
|
2209 |
|
|
|
2210 |
|
|
uint64_t f_sub_h(CThread * t) {
|
2211 |
|
|
// subtract two numbers, float16
|
2212 |
|
|
// (rounding mode not supported)
|
2213 |
|
|
SNum a = t->parm[1];
|
2214 |
|
|
SNum b = t->parm[2];
|
2215 |
|
|
uint32_t mask = t->parm[3].i;
|
2216 |
|
|
uint16_t result;
|
2217 |
|
|
|
2218 |
|
|
if (t->fInstr->immSize == 1) b.s = float2half(b.bs); // convert 8-bit integer to float16
|
2219 |
|
|
if (t->operandType != 1) t->interrupt(INT_WRONG_PARAMETERS);
|
2220 |
|
|
if (isnan_h(a.s) && isnan_h(b.s)) { // both are NAN
|
2221 |
|
|
result = (a.s << 1) > (b.s << 1) ? a.s : b.s; // return the biggest payload
|
2222 |
|
|
}
|
2223 |
|
|
if (mask & (1<<MSK_INEXACT)) clearExceptionFlags(); // clear previous exceptions
|
2224 |
|
|
|
2225 |
|
|
// the exact result is obtained with double precision. This makes sure we don't get double rounding errors
|
2226 |
|
|
double resultd = (double)half2float(a.s) - (double)half2float(b.s); // calculate with single precision
|
2227 |
|
|
result = double2half(resultd);
|
2228 |
|
|
|
2229 |
|
|
// check for exceptions
|
2230 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && isinf_h(result) && !isinf_h(a.s) && !isinf_h(b.s)) {
|
2231 |
|
|
// overflow
|
2232 |
|
|
result = (uint16_t)t->makeNan(nan_overflow_add, 1);
|
2233 |
|
|
result |= (a.s ^ b.s) & 0x8000; // get the sign
|
2234 |
|
|
}
|
2235 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && is_zero_or_subnormal_h(result) && resultd != 0.0) {
|
2236 |
|
|
// underflow
|
2237 |
|
|
result = (uint16_t)t->makeNan(nan_underflow, 1) | (result & 0x8000); // signed NAN
|
2238 |
|
|
}
|
2239 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (half2float(result) != resultd || (getExceptionFlags() & 0x20)) != 0) {
|
2240 |
|
|
// inexact
|
2241 |
|
|
result = (uint16_t)t->makeNan(nan_inexact, 1);
|
2242 |
|
|
}
|
2243 |
|
|
uint8_t roundingMode = mask >> MSKI_ROUNDING & 3;
|
2244 |
|
|
if (roundingMode != 0 && !isnan_or_inf_h(result)) {
|
2245 |
|
|
double r = half2float(result);
|
2246 |
|
|
// non-standard rounding mode
|
2247 |
|
|
switch (roundingMode) {
|
2248 |
|
|
case 1: // down
|
2249 |
|
|
if (r > resultd && result != 0xFBFF) {
|
2250 |
|
|
if (result == 0) result = 0x8001;
|
2251 |
|
|
else if ((int16_t)result > 0) result--;
|
2252 |
|
|
else result++;
|
2253 |
|
|
}
|
2254 |
|
|
break;
|
2255 |
|
|
case 2: // up
|
2256 |
|
|
if (r < resultd && result != 0x7BFF) {
|
2257 |
|
|
if ((int16_t)result > 0) result++;
|
2258 |
|
|
else result--;
|
2259 |
|
|
}
|
2260 |
|
|
break;
|
2261 |
|
|
case 3: // towards zero
|
2262 |
|
|
if ((int16_t)result > 0 && r > resultd) result--;
|
2263 |
|
|
else if ((int16_t)result < 0 && r < resultd) result--;
|
2264 |
|
|
}
|
2265 |
|
|
}
|
2266 |
|
|
t->returnType =0x118;
|
2267 |
|
|
return result;
|
2268 |
|
|
}
|
2269 |
|
|
|
2270 |
|
|
uint64_t f_mul_h(CThread * t) {
|
2271 |
|
|
// multiply two numbers, float16
|
2272 |
|
|
SNum a = t->parm[1];
|
2273 |
|
|
SNum b = t->parm[2];
|
2274 |
|
|
uint32_t mask = t->parm[3].i;
|
2275 |
|
|
uint16_t result;
|
2276 |
|
|
|
2277 |
|
|
if (t->fInstr->immSize == 1) b.s = float2half(b.bs); // convert 8-bit integer to float16
|
2278 |
|
|
if (t->operandType != 1) t->interrupt(INT_WRONG_PARAMETERS);
|
2279 |
|
|
if (isnan_h(a.s) && isnan_h(b.s)) { // both are NAN
|
2280 |
|
|
result = (a.s << 1) > (b.s << 1) ? a.s : b.s; // return the biggest payload
|
2281 |
|
|
}
|
2282 |
|
|
if (mask & (1<<MSK_INEXACT)) clearExceptionFlags(); // clear previous exceptions
|
2283 |
|
|
|
2284 |
|
|
// single precision is sufficient to get an exact multiplication result
|
2285 |
|
|
float resultf = half2float(a.s) * half2float(b.s); // calculate with single precision
|
2286 |
|
|
result = float2half(resultf);
|
2287 |
|
|
|
2288 |
|
|
// check for exceptions
|
2289 |
|
|
if ((mask & (1<<MSK_OVERFLOW)) && isinf_h(result) && !isinf_h(a.s) && !isinf_h(b.s)) {
|
2290 |
|
|
// overflow
|
2291 |
|
|
result = (uint16_t)t->makeNan(nan_overflow_mul, 1);
|
2292 |
|
|
result |= (a.s ^ b.s) & 0x8000; // get the sign
|
2293 |
|
|
}
|
2294 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && is_zero_or_subnormal_h(result) && resultf != 0.0f) {
|
2295 |
|
|
// underflow
|
2296 |
|
|
result = (uint16_t)t->makeNan(nan_underflow, 1) | (result & 0x8000); // signed NAN
|
2297 |
|
|
}
|
2298 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (half2float(result) != resultf || (getExceptionFlags() & 0x20)) != 0) {
|
2299 |
|
|
// inexact
|
2300 |
|
|
result = (uint16_t)t->makeNan(nan_inexact, 1);
|
2301 |
|
|
}
|
2302 |
|
|
uint8_t roundingMode = mask >> MSKI_ROUNDING & 3;
|
2303 |
|
|
if (roundingMode != 0 && !isnan_or_inf_h(result)) {
|
2304 |
|
|
// non-standard rounding mode
|
2305 |
|
|
float r = half2float(result);
|
2306 |
|
|
switch (roundingMode) {
|
2307 |
|
|
case 1: // down
|
2308 |
|
|
if (r > resultf && result != 0xFBFF) {
|
2309 |
|
|
if (result == 0) result = 0x8001;
|
2310 |
|
|
else if ((int16_t)result > 0) result--;
|
2311 |
|
|
else result++;
|
2312 |
|
|
}
|
2313 |
|
|
break;
|
2314 |
|
|
case 2: // up
|
2315 |
|
|
if (r < resultf && result != 0x7BFF) {
|
2316 |
|
|
if ((int16_t)result > 0) result++;
|
2317 |
|
|
else result--;
|
2318 |
|
|
}
|
2319 |
|
|
break;
|
2320 |
|
|
case 3: // towards zero
|
2321 |
|
|
if ((int16_t)result > 0 && r > resultf) result--;
|
2322 |
|
|
else if ((int16_t)result < 0 && r < resultf) result--;
|
2323 |
|
|
}
|
2324 |
|
|
}
|
2325 |
|
|
t->returnType =0x118;
|
2326 |
|
|
return result;
|
2327 |
|
|
}
|
2328 |
|
|
|
2329 |
|
|
|
2330 |
|
|
uint64_t f_mul_add_h(CThread * t) {
|
2331 |
|
|
// a + b * c, float16
|
2332 |
|
|
SNum a = t->parm[0];
|
2333 |
|
|
SNum b = t->parm[1];
|
2334 |
|
|
SNum c = t->parm[2];
|
2335 |
|
|
uint32_t mask = t->parm[3].i;
|
2336 |
|
|
if (t->fInstr->imm2 & 4) c = t->parm[4]; // avoid immediate operand shifted by imm3
|
2337 |
|
|
if (t->fInstr->immSize == 1) c.s = float2half(c.bs); // convert 8-bit integer to float16 // get sign options
|
2338 |
|
|
uint8_t options = 0;
|
2339 |
|
|
if (t->fInstr->tmplate == 0xE && (t->fInstr->imm2 & 2)) options = t->pInstr->a.im3;
|
2340 |
|
|
//else if (t->fInstr->tmplate == 0xA) options = (mask >> MSKI_OPTIONS) & 0xF;
|
2341 |
|
|
if (t->vect == 2) { // odd vector element
|
2342 |
|
|
options >>= 1;
|
2343 |
|
|
}
|
2344 |
|
|
if (t->operandType != 1) t->interrupt(INT_WRONG_PARAMETERS);
|
2345 |
|
|
if (options & 1) a.s ^= 0x8000; // adjust sign
|
2346 |
|
|
if (options & 4) b.s ^= 0x8000;
|
2347 |
|
|
|
2348 |
|
|
if (mask & (1<<MSK_INEXACT)) clearExceptionFlags(); // clear previous exceptions
|
2349 |
|
|
|
2350 |
|
|
double resultd = (double)half2float(a.s) + (double)half2float(b.s) * (double)half2float(c.s);
|
2351 |
|
|
|
2352 |
|
|
uint16_t result = double2half(resultd);
|
2353 |
|
|
uint32_t nans = 0; bool parmInf = false;
|
2354 |
|
|
|
2355 |
|
|
if (isnan_or_inf_h(result)) { // check for overflow and nan
|
2356 |
|
|
for (int i = 0; i < 3; i++) { // loop through input operands
|
2357 |
|
|
uint32_t tmp = t->parm[i].s & 0x7FFF; // ignore sign bit
|
2358 |
|
|
if (tmp > nans) nans = tmp; // get the biggest if there are multiple NANs
|
2359 |
|
|
if (tmp == inf_h) parmInf = true; // OR of all INFs
|
2360 |
|
|
}
|
2361 |
|
|
if (nans > inf_h) return nans; // there is at least one NAN. return the biggest (sign bit is lost)
|
2362 |
|
|
else if (isnan_h(result)) {
|
2363 |
|
|
// result is NAN, but no input is NAN. This can be 0*INF or INF-INF
|
2364 |
|
|
if ((a.s << 1 == 0 || b.s << 1 == 0) && parmInf) result = (uint16_t)t->makeNan(nan_invalid_0mulinf, 1);
|
2365 |
|
|
else result = (uint16_t)t->makeNan(nan_invalid_sub, 1);
|
2366 |
|
|
}
|
2367 |
|
|
}
|
2368 |
|
|
else if ((mask & (1<<MSK_OVERFLOW)) && isinf_h(result) && !parmInf) result = (uint16_t)t->makeNan(nan_overflow_mul, 1);
|
2369 |
|
|
else if ((mask & (1<<MSK_UNDERFLOW)) && is_zero_or_subnormal_h(result) && resultd != 0.0) result = (uint16_t)t->makeNan(nan_underflow, 1);
|
2370 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && ((getExceptionFlags() & 0x20) != 0 || half2float(result) != resultd)) result = (uint16_t)t->makeNan(nan_inexact, 1);
|
2371 |
|
|
|
2372 |
|
|
uint8_t roundingMode = mask >> MSKI_ROUNDING & 3;
|
2373 |
|
|
if (roundingMode != 0 && !isnan_or_inf_h(result)) {
|
2374 |
|
|
float r = half2float(result);
|
2375 |
|
|
// non-standard rounding mode
|
2376 |
|
|
switch (roundingMode) {
|
2377 |
|
|
case 1: // down
|
2378 |
|
|
if (r > resultd && result != 0xFBFF) {
|
2379 |
|
|
if (result == 0) result = 0x8001;
|
2380 |
|
|
else if ((int16_t)result > 0) result--;
|
2381 |
|
|
else result++;
|
2382 |
|
|
}
|
2383 |
|
|
break;
|
2384 |
|
|
case 2: // up
|
2385 |
|
|
if (r < resultd && result != 0x7BFF) {
|
2386 |
|
|
if ((int16_t)result > 0) result++;
|
2387 |
|
|
else result--;
|
2388 |
|
|
}
|
2389 |
|
|
break;
|
2390 |
|
|
case 3: // towards zero
|
2391 |
|
|
if ((int16_t)result > 0 && r > resultd) result--;
|
2392 |
|
|
else if ((int16_t)result < 0 && r < resultd) result--;
|
2393 |
|
|
}
|
2394 |
|
|
}
|
2395 |
|
|
t->returnType = 0x118;
|
2396 |
|
|
return result;
|
2397 |
|
|
}
|
2398 |
|
|
|
2399 |
|
|
|
2400 |
|
|
// Tables of function pointers
|
2401 |
|
|
|
2402 |
|
|
// multiformat instructions
|
2403 |
|
|
PFunc funcTab1[64] = {
|
2404 |
|
|
f_nop, f_store, f_move, f_prefetch, f_sign_extend, f_sign_extend_add, 0, f_compare, // 0 - 7
|
2405 |
|
|
f_add, f_sub, f_sub_rev, f_mul, f_mul_hi, f_mul_hi_u, f_div, f_div_u, // 8 - 15
|
2406 |
|
|
f_div_rev, 0, f_rem, f_rem_u, f_min, f_min_u, f_max, f_max_u, // 16 - 23
|
2407 |
|
|
0, 0, f_and, f_or, f_xor, 0, 0, 0, // 24 - 31
|
2408 |
|
|
f_shift_left, f_rotate, f_shift_right_s, f_shift_right_u, f_clear_bit, f_set_bit, f_toggle_bit, f_test_bit, // 32 - 39
|
2409 |
|
|
f_test_bits_and, f_test_bits_or, 0, 0, f_add_h, f_sub_h, f_mul_h, 0, // 40 - 47
|
2410 |
|
|
f_mul_add_h, f_mul_add, f_mul_add, f_add_add, f_select_bits, f_funnel_shift, 0, 0, // 48 - 55
|
2411 |
|
|
0, 0, 0, 0, 0, 0, 0, 0 // 56 - 63
|
2412 |
|
|
};
|
2413 |
|
|
|