1 |
55 |
Agner |
/**************************** emulator4.cpp ********************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* date created: 2018-02-18
|
4 |
|
|
* Last modified: 2021-08-05
|
5 |
|
|
* Version: 1.11
|
6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
7 |
|
|
* Description:
|
8 |
|
|
* Emulator: Execution functions for single format instructions, part 1
|
9 |
|
|
*
|
10 |
|
|
* Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses
|
11 |
|
|
*****************************************************************************/
|
12 |
|
|
|
13 |
|
|
#include "stdafx.h"
|
14 |
|
|
|
15 |
|
|
|
16 |
|
|
// Format 1.0 A. Three general purpose registers
|
17 |
|
|
|
18 |
|
|
// Currently no instructions with format 1.0
|
19 |
|
|
|
20 |
|
|
|
21 |
|
|
// Format 1.1 C. One general purpose register and a 16 bit immediate operand. int64
|
22 |
|
|
|
23 |
|
|
static uint64_t move_16s(CThread * t) {
|
24 |
|
|
// Move 16-bit sign-extended constant to general purpose register.
|
25 |
|
|
return t->parm[2].q;
|
26 |
|
|
}
|
27 |
|
|
|
28 |
|
|
static uint64_t move_16u(CThread * t) {
|
29 |
|
|
// Move 16-bit zero-extended constant to general purpose register.
|
30 |
|
|
return t->parm[2].s;
|
31 |
|
|
}
|
32 |
|
|
|
33 |
|
|
static uint64_t shift16_add(CThread * t) {
|
34 |
|
|
// Shift 16-bit unsigned constant left by 16 and add.
|
35 |
|
|
t->parm[2].q <<= 16;
|
36 |
|
|
return f_add(t);
|
37 |
|
|
}
|
38 |
|
|
|
39 |
|
|
static uint64_t shifti1_move(CThread * t) {
|
40 |
|
|
// RD = IM2 << IM1. Sign-extend IM2 to 32/64 bits and shift left by the unsigned value IM1
|
41 |
|
|
return (t->parm[2].qs >> 8) << t->parm[2].b;
|
42 |
|
|
}
|
43 |
|
|
|
44 |
|
|
static uint64_t shifti1_add(CThread * t) {
|
45 |
|
|
// RD += IM2 << IM1. Sign-extend IM2 to 32/64 bits and shift left by the unsigned value IM1 and add
|
46 |
|
|
t->parm[2].q = (t->parm[2].qs >> 8) << t->parm[2].b;
|
47 |
|
|
return f_add(t);
|
48 |
|
|
}
|
49 |
|
|
|
50 |
|
|
static uint64_t shifti1_and(CThread * t) {
|
51 |
|
|
// RD &= IM2 << IM1
|
52 |
|
|
return t->parm[1].q & ((t->parm[2].qs >> 8) << t->parm[2].b);
|
53 |
|
|
}
|
54 |
|
|
|
55 |
|
|
static uint64_t shifti1_or(CThread * t) {
|
56 |
|
|
// RD |= IM2 << IM1
|
57 |
|
|
return t->parm[1].q | ((t->parm[2].qs >> 8) << t->parm[2].b);
|
58 |
|
|
}
|
59 |
|
|
|
60 |
|
|
static uint64_t shifti1_xor(CThread * t) {
|
61 |
|
|
// RD ^= IM2 << IM1
|
62 |
|
|
return t->parm[1].q ^ ((t->parm[2].qs >> 8) << t->parm[2].b);
|
63 |
|
|
}
|
64 |
|
|
|
65 |
|
|
// Format 1.8 B. Two general purpose registers and an 8-bit immediate operand. int64
|
66 |
|
|
|
67 |
|
|
static uint64_t abs_64(CThread * t) {
|
68 |
|
|
// Absolute value of signed integer.
|
69 |
|
|
// IM1 determines handling of overflow: 0: wrap around, 1: saturate, 2: zero.
|
70 |
|
|
SNum a = t->parm[1];
|
71 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
72 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
73 |
|
|
if ((a.q & sizeMask) == signBit) { // overflow
|
74 |
|
|
if (t->parm[2].b & 4) t->interrupt(INT_OVERFL_SIGN);
|
75 |
|
|
switch (t->parm[2].b & ~4) {
|
76 |
|
|
case 0: return a.q; // wrap around
|
77 |
|
|
case 1: return sizeMask >> 1; // saturate
|
78 |
|
|
case 2: return 0; // zero
|
79 |
|
|
default: t->interrupt(INT_WRONG_PARAMETERS);
|
80 |
|
|
}
|
81 |
|
|
}
|
82 |
|
|
if (a.q & signBit) { // negative
|
83 |
|
|
a.qs = - a.qs; // change sign
|
84 |
|
|
}
|
85 |
|
|
return a.q;
|
86 |
|
|
}
|
87 |
|
|
|
88 |
|
|
static uint64_t shifti_add(CThread * t) {
|
89 |
|
|
// Shift and add. RD += RS << IM1
|
90 |
|
|
SNum a = t->parm[0];
|
91 |
|
|
SNum b = t->parm[1];
|
92 |
|
|
SNum c = t->parm[2];
|
93 |
|
|
SNum r1, r2; // result
|
94 |
|
|
r1.q = b.q << c.b; // shift left
|
95 |
|
|
uint8_t nbits = dataSizeTableBits[t->operandType];
|
96 |
|
|
if (c.q >= nbits) r1.q = 0; // shift out of range gives zero
|
97 |
|
|
r2.q = a.q + r1.q; // add
|
98 |
|
|
/*
|
99 |
|
|
if (t->numContr & MSK_OVERFL_I) { // check for overflow
|
100 |
|
|
if (t->numContr & MSK_OVERFL_SIGN) { // check for signed overflow
|
101 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
102 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
103 |
|
|
uint64_t ovfl = ~(a.q ^ r1.q) & (a.q ^ r2.q); // overflow if a and b have same sign and result has opposite sign
|
104 |
|
|
if (r1.qs >> c.b != b.qs || (ovfl & signBit) || c.q >= nbits) t->interrupt(INT_OVERFL_SIGN); // signed overflow
|
105 |
|
|
}
|
106 |
|
|
else if (t->numContr & MSK_OVERFL_UNSIGN) { // check for unsigned overflow
|
107 |
|
|
if (r2.q < a.q || r1.q >> c.b != b.q || c.q >= nbits) t->interrupt(INT_OVERFL_UNSIGN); // unsigned overflow
|
108 |
|
|
}
|
109 |
|
|
} */
|
110 |
|
|
return r2.q; // add
|
111 |
|
|
}
|
112 |
|
|
|
113 |
|
|
uint64_t bitscan_ (CThread * t) {
|
114 |
|
|
// Bit scan forward or reverse. Find index to first or last set bit in RS
|
115 |
|
|
SNum a = t->parm[1]; // input value
|
116 |
|
|
uint8_t IM1 = t->parm[2].b; // immediate operand
|
117 |
|
|
a.q &= dataSizeMask[t->operandType]; // mask for operand size
|
118 |
|
|
if (a.q == 0) {
|
119 |
|
|
a.qs = (IM1 & 0x10) ? -1 : 0; // return 0 or -1 if intput is 0
|
120 |
|
|
}
|
121 |
|
|
else if (IM1 & 1) {
|
122 |
|
|
// reverse
|
123 |
|
|
a.q = bitScanReverse(a.q);
|
124 |
|
|
}
|
125 |
|
|
else {
|
126 |
|
|
// forward
|
127 |
|
|
a.q = bitScanForward(a.q);
|
128 |
|
|
}
|
129 |
|
|
return a.q;
|
130 |
|
|
}
|
131 |
|
|
|
132 |
|
|
static uint64_t roundp2(CThread * t) {
|
133 |
|
|
// Round up or down to nearest power of 2.
|
134 |
|
|
SNum a = t->parm[1]; // input operand
|
135 |
|
|
uint8_t IM1 = t->parm[2].b; // immediate operand
|
136 |
|
|
a.q &= dataSizeMask[t->operandType]; // mask off unused bits
|
137 |
|
|
if (dataSizeTable[t->operandType] > 8) t->interrupt(INT_WRONG_PARAMETERS); // illegal operand type
|
138 |
|
|
if (a.q == 0) {
|
139 |
|
|
a.qs = IM1 & 0x10 ? -1 : 0; // return 0 or -1 if the intput is 0
|
140 |
|
|
}
|
141 |
|
|
else if (!(a.q & (a.q-1))) {
|
142 |
|
|
return a.q; // the number is a power of 2. Return unchanged
|
143 |
|
|
}
|
144 |
|
|
else if (IM1 & 1) {
|
145 |
|
|
// round up to nearest power of 2
|
146 |
|
|
uint32_t s = bitScanReverse(a.q); // highest set bit
|
147 |
|
|
if (s+1 >= dataSizeTableBits[t->operandType]) { // overflow
|
148 |
|
|
a.qs = IM1 & 0x20 ? -1 : 0; // return 0 or -1 on overflow
|
149 |
|
|
}
|
150 |
|
|
else {
|
151 |
|
|
a.q = (uint64_t)1 << (s+1); // round up
|
152 |
|
|
}
|
153 |
|
|
}
|
154 |
|
|
else {
|
155 |
|
|
// round down to nearest power of 2
|
156 |
|
|
a.q = (uint64_t)1 << bitScanReverse(a.q);
|
157 |
|
|
}
|
158 |
|
|
return a.q;
|
159 |
|
|
}
|
160 |
|
|
|
161 |
|
|
static uint32_t popcount32(uint32_t x) { // count bits in 32 bit integer. used by popcount_ function
|
162 |
|
|
x = x - ((x >> 1) & 0x55555555);
|
163 |
|
|
x = (x >> 2 & 0x33333333) + (x & 0x33333333);
|
164 |
|
|
x = (x + (x >> 4)) & 0x0F0F0F0F;
|
165 |
|
|
x = (x + (x >> 8)) & 0x00FF00FF;
|
166 |
|
|
x = uint16_t(x + (x >> 16));
|
167 |
|
|
return x;
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
uint64_t popcount_ (CThread * t) {
|
171 |
|
|
// Count the number of bits in RS that are 1
|
172 |
|
|
SNum a = t->parm[1]; // value
|
173 |
|
|
a.q &= dataSizeMask[t->operandType]; // mask for operand size
|
174 |
|
|
return popcount32(a.i) + popcount32(a.q >> 32);
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
static uint64_t read_spec(CThread * t) {
|
178 |
|
|
// Read special register RS into g. p. register RD.
|
179 |
|
|
uint8_t rs = t->operands[4]; // source register
|
180 |
|
|
uint64_t retval = 0;
|
181 |
|
|
|
182 |
|
|
switch (rs) {
|
183 |
|
|
case REG_NUMCONTR & 0x1F: // numcontr register
|
184 |
|
|
retval = t->numContr;
|
185 |
|
|
break;
|
186 |
|
|
|
187 |
|
|
case REG_THREADP & 0x1F: // threadp register
|
188 |
|
|
retval = t->threadp;
|
189 |
|
|
break;
|
190 |
|
|
|
191 |
|
|
case REG_DATAP & 0x1F: // datap register
|
192 |
|
|
retval = t->datap;
|
193 |
|
|
break;
|
194 |
|
|
|
195 |
|
|
default: // other register not implemented
|
196 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
197 |
|
|
}
|
198 |
|
|
return retval;
|
199 |
|
|
}
|
200 |
|
|
|
201 |
|
|
static uint64_t write_spec(CThread * t) {
|
202 |
|
|
// Write g. p. register RS to special register RD
|
203 |
|
|
uint8_t rd = t->operands[0]; // destination register
|
204 |
|
|
SNum a = t->parm[1]; // value
|
205 |
|
|
switch (rd) {
|
206 |
|
|
case REG_NUMCONTR & 0x1F: // numcontr register
|
207 |
|
|
t->numContr = a.i | 1; // bit 0 must be set
|
208 |
|
|
if (((t->numContr ^ t->lastMask) & (1<<MSK_SUBNORMAL)) != 0) {
|
209 |
|
|
// subnormal status changed
|
210 |
|
|
enableSubnormals(t->numContr & (1<<MSK_SUBNORMAL));
|
211 |
|
|
}
|
212 |
|
|
t->lastMask = t->numContr;
|
213 |
|
|
break;
|
214 |
|
|
|
215 |
|
|
case REG_THREADP & 0x1F: // threadp register
|
216 |
|
|
t->threadp = a.q;
|
217 |
|
|
break;
|
218 |
|
|
|
219 |
|
|
case REG_DATAP & 0x1F: // datap register
|
220 |
|
|
t->datap = a.q;
|
221 |
|
|
break;
|
222 |
|
|
|
223 |
|
|
default: // other register not implemented
|
224 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
t->returnType = 0;
|
228 |
|
|
return 0;
|
229 |
|
|
}
|
230 |
|
|
|
231 |
|
|
static uint64_t read_capabilities(CThread * t) {
|
232 |
|
|
// Read capabilities register into g. p. register RD
|
233 |
|
|
uint8_t capabreg = t->operands[4]; // capabilities register number
|
234 |
|
|
if (capabreg < number_of_capability_registers) {
|
235 |
|
|
return t->capabilyReg[capabreg];
|
236 |
|
|
}
|
237 |
|
|
else {
|
238 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
239 |
|
|
}
|
240 |
|
|
return 0;
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
static uint64_t write_capabilities(CThread * t) {
|
244 |
|
|
// Write g. p. register to capabilities register RD
|
245 |
|
|
uint8_t capabreg = t->operands[0]; // capabilities register number
|
246 |
|
|
uint64_t value = t->parm[1].q;
|
247 |
|
|
if (capabreg < number_of_capability_registers) {
|
248 |
|
|
t->capabilyReg[capabreg] = value;
|
249 |
|
|
}
|
250 |
|
|
else {
|
251 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
252 |
|
|
}
|
253 |
|
|
t->returnType = 0;
|
254 |
|
|
return 0;
|
255 |
|
|
}
|
256 |
|
|
|
257 |
|
|
static uint64_t read_perf(CThread * t) {
|
258 |
|
|
// Read performance counter
|
259 |
|
|
uint8_t parfreg = t->operands[4]; // performance register number
|
260 |
|
|
uint8_t par2 = t->parm[2].b; // second operand
|
261 |
|
|
uint64_t result = 0;
|
262 |
|
|
switch (parfreg) {
|
263 |
|
|
case 0: // reset all performance counters
|
264 |
|
|
if (par2 & 1) {
|
265 |
|
|
t->perfCounters[perf_cpu_clock_cycles] = 0;
|
266 |
|
|
}
|
267 |
|
|
if (par2 & 2) {
|
268 |
|
|
t->perfCounters[perf_instructions] = 0;
|
269 |
|
|
t->perfCounters[perf_2size_instructions] = 0;
|
270 |
|
|
t->perfCounters[perf_3size_instructions] = 0;
|
271 |
|
|
t->perfCounters[perf_gp_instructions] = 0;
|
272 |
|
|
t->perfCounters[perf_gp_instructions_mask0] = 0;
|
273 |
|
|
}
|
274 |
|
|
if (par2 & 4) {
|
275 |
|
|
t->perfCounters[perf_vector_instructions] = 0;
|
276 |
|
|
}
|
277 |
|
|
if (par2 & 8) {
|
278 |
|
|
t->perfCounters[perf_control_transfer_instructions] = 0;
|
279 |
|
|
t->perfCounters[perf_direct_jumps] = 0;
|
280 |
|
|
t->perfCounters[perf_indirect_jumps] = 0;
|
281 |
|
|
t->perfCounters[perf_cond_jumps] = 0;
|
282 |
|
|
}
|
283 |
|
|
break;
|
284 |
|
|
|
285 |
|
|
case 1: // CPU clock cycles
|
286 |
|
|
result = t->perfCounters[perf_cpu_clock_cycles];
|
287 |
|
|
if (par2 == 0) t->perfCounters[perf_cpu_clock_cycles] = 0;
|
288 |
|
|
break;
|
289 |
|
|
|
290 |
|
|
case 2: // number of instructions
|
291 |
|
|
switch (par2) {
|
292 |
|
|
case 0:
|
293 |
|
|
result = t->perfCounters[perf_instructions];
|
294 |
|
|
t->perfCounters[perf_instructions] = 0;
|
295 |
|
|
t->perfCounters[perf_2size_instructions] = 0;
|
296 |
|
|
t->perfCounters[perf_3size_instructions] = 0;
|
297 |
|
|
t->perfCounters[perf_gp_instructions] = 0;
|
298 |
|
|
t->perfCounters[perf_gp_instructions_mask0] = 0;
|
299 |
|
|
break;
|
300 |
|
|
case 1:
|
301 |
|
|
result = t->perfCounters[perf_instructions];
|
302 |
|
|
break;
|
303 |
|
|
case 2:
|
304 |
|
|
result = t->perfCounters[perf_2size_instructions];
|
305 |
|
|
break;
|
306 |
|
|
case 3:
|
307 |
|
|
result = t->perfCounters[perf_3size_instructions];
|
308 |
|
|
break;
|
309 |
|
|
case 4:
|
310 |
|
|
result = t->perfCounters[perf_gp_instructions];
|
311 |
|
|
break;
|
312 |
|
|
case 5:
|
313 |
|
|
result = t->perfCounters[perf_gp_instructions_mask0];
|
314 |
|
|
break;
|
315 |
|
|
}
|
316 |
|
|
break;
|
317 |
|
|
|
318 |
|
|
case 3: // number of vector instructions
|
319 |
|
|
result = t->perfCounters[perf_vector_instructions];
|
320 |
|
|
if (par2 == 0) t->perfCounters[perf_vector_instructions] = 0;
|
321 |
|
|
break;
|
322 |
|
|
|
323 |
|
|
case 4: // vector registers in use
|
324 |
|
|
for (int iv = 0; iv < 32; iv++) {
|
325 |
|
|
if (t->vectorLength[iv] > 0) result |= (uint64_t)1 << iv;
|
326 |
|
|
}
|
327 |
|
|
break;
|
328 |
|
|
|
329 |
|
|
case 5: // jumps, calls, and returns
|
330 |
|
|
switch (par2) {
|
331 |
|
|
case 0:
|
332 |
|
|
result = t->perfCounters[perf_control_transfer_instructions];
|
333 |
|
|
t->perfCounters[perf_control_transfer_instructions] = 0;
|
334 |
|
|
t->perfCounters[perf_direct_jumps] = 0;
|
335 |
|
|
t->perfCounters[perf_indirect_jumps] = 0;
|
336 |
|
|
t->perfCounters[perf_cond_jumps] = 0;
|
337 |
|
|
break;
|
338 |
|
|
case 1: // all jumps, calls, returns
|
339 |
|
|
result = t->perfCounters[perf_control_transfer_instructions];
|
340 |
|
|
break;
|
341 |
|
|
case 2: // direct unconditional jumps, calls, returns
|
342 |
|
|
result = t->perfCounters[perf_direct_jumps];
|
343 |
|
|
break;
|
344 |
|
|
case 3:
|
345 |
|
|
result = t->perfCounters[perf_indirect_jumps];
|
346 |
|
|
break;
|
347 |
|
|
case 4:
|
348 |
|
|
result = t->perfCounters[perf_cond_jumps];
|
349 |
|
|
break;
|
350 |
|
|
}
|
351 |
|
|
break;
|
352 |
|
|
case 16: // errors counters
|
353 |
|
|
switch (par2) {
|
354 |
|
|
case 0:
|
355 |
|
|
result = 0;
|
356 |
|
|
t->perfCounters[perf_unknown_instruction] = 0;
|
357 |
|
|
t->perfCounters[perf_wrong_operands] = 0;
|
358 |
|
|
t->perfCounters[perf_array_overflow] = 0;
|
359 |
|
|
t->perfCounters[perf_read_violation] = 0;
|
360 |
|
|
t->perfCounters[perf_write_violation] = 0;
|
361 |
|
|
t->perfCounters[perf_misaligned] = 0;
|
362 |
|
|
t->perfCounters[perf_address_of_first_error] = 0;
|
363 |
|
|
t->perfCounters[perf_type_of_first_error] = 0;
|
364 |
|
|
break;
|
365 |
|
|
case 1: // unknown instructions
|
366 |
|
|
result = t->perfCounters[perf_unknown_instruction];
|
367 |
|
|
break;
|
368 |
|
|
case 2: // wrong operands for instruction
|
369 |
|
|
result = t->perfCounters[perf_wrong_operands];
|
370 |
|
|
break;
|
371 |
|
|
case 3: // array index out of bounds
|
372 |
|
|
result = t->perfCounters[perf_array_overflow];
|
373 |
|
|
break;
|
374 |
|
|
case 4: // memory read access violation
|
375 |
|
|
result = t->perfCounters[perf_read_violation];
|
376 |
|
|
break;
|
377 |
|
|
case 5: // memory write access violation
|
378 |
|
|
result = t->perfCounters[perf_write_violation];
|
379 |
|
|
break;
|
380 |
|
|
case 6: // memory access misaligned
|
381 |
|
|
result = t->perfCounters[perf_misaligned];
|
382 |
|
|
break;
|
383 |
|
|
case 62: // address of first error
|
384 |
|
|
result = t->perfCounters[perf_address_of_first_error];
|
385 |
|
|
break;
|
386 |
|
|
case 63: // type of first error
|
387 |
|
|
result = t->perfCounters[perf_type_of_first_error];
|
388 |
|
|
break;
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
break;
|
392 |
|
|
default:
|
393 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
394 |
|
|
}
|
395 |
|
|
|
396 |
|
|
return result;
|
397 |
|
|
}
|
398 |
|
|
|
399 |
|
|
static uint64_t read_sys(CThread * t) {
|
400 |
|
|
// Read system register RS into g. p. register RD
|
401 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); // not supported yet
|
402 |
|
|
return 0;
|
403 |
|
|
}
|
404 |
|
|
|
405 |
|
|
static uint64_t write_sys(CThread * t) {
|
406 |
|
|
// Write g. p. register RS to system register RD
|
407 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); // not supported yet
|
408 |
|
|
t->returnType = 0;
|
409 |
|
|
return 0;
|
410 |
|
|
}
|
411 |
|
|
|
412 |
|
|
static uint64_t push_r(CThread * t) {
|
413 |
|
|
// push one or more g.p. registers on a stack pointed to by rd
|
414 |
|
|
int32_t step = dataSizeTable[t->operandType];
|
415 |
|
|
if (!(t->parm[4].i & 0x80)) step = -step;
|
416 |
|
|
uint8_t reg0 = t->operands[0] & 0x1F; // pointer register
|
417 |
|
|
uint8_t reg1 = t->operands[4] & 0x1F; // first push register
|
418 |
|
|
uint8_t reglast = t->parm[4].i & 0x1F; // last push register
|
419 |
|
|
uint8_t reg;
|
420 |
|
|
uint64_t pointer = t->registers[reg0];
|
421 |
|
|
// loop through registers to push
|
422 |
|
|
for (reg = reg1; reg <= reglast; reg++) {
|
423 |
|
|
pointer += (int64_t)step;
|
424 |
|
|
uint64_t value = t->registers[reg];
|
425 |
|
|
t->writeMemoryOperand(value, pointer);
|
426 |
|
|
t->listResult(value);
|
427 |
|
|
}
|
428 |
|
|
t->registers[reg0] = pointer;
|
429 |
|
|
return pointer;
|
430 |
|
|
}
|
431 |
|
|
|
432 |
|
|
static uint64_t pop_r(CThread * t) {
|
433 |
|
|
// pop one or more g.p. registers from a stack pointed to by rd
|
434 |
|
|
int32_t step = dataSizeTable[t->operandType];
|
435 |
|
|
if (t->parm[4].i & 0x80) step = -step;
|
436 |
|
|
uint8_t reg0 = t->operands[0] & 0x1F; // pointer register
|
437 |
|
|
uint8_t reg1 = t->operands[4] & 0x1F; // first push register
|
438 |
|
|
uint8_t reglast = t->parm[4].i & 0x1F; // last push register
|
439 |
|
|
uint8_t reg;
|
440 |
|
|
uint64_t pointer = t->registers[reg0];
|
441 |
|
|
// loop through registers to pop in reverse order
|
442 |
|
|
for (reg = reglast; reg >= reg1; reg--) {
|
443 |
|
|
uint64_t value = t->readMemoryOperand(pointer);
|
444 |
|
|
t->registers[reg] = value;
|
445 |
|
|
pointer += (int64_t)step;
|
446 |
|
|
t->listResult(value);
|
447 |
|
|
}
|
448 |
|
|
t->registers[reg0] = pointer;
|
449 |
|
|
return pointer;
|
450 |
|
|
}
|
451 |
|
|
|
452 |
|
|
|
453 |
|
|
// Format 2.9 A. Three general purpose registers and a 32-bit immediate operand
|
454 |
|
|
|
455 |
|
|
static uint64_t move_hi32(CThread * t) {
|
456 |
|
|
// Load 32-bit constant into the high part of a general purpose register. The low part is zero. RD = IM2 << 32.
|
457 |
|
|
return t->parm[2].q << 32;
|
458 |
|
|
}
|
459 |
|
|
|
460 |
|
|
static uint64_t insert_hi32(CThread * t) {
|
461 |
|
|
// Insert 32-bit constant into the high part of a general purpose register, leaving the low part unchanged.
|
462 |
|
|
return t->parm[2].q << 32 | t->parm[1].i;
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
static uint64_t add_32u(CThread * t) {
|
466 |
|
|
// Add zero-extended 32-bit constant to general purpose register
|
467 |
|
|
t->parm[2].q = t->parm[2].i;
|
468 |
|
|
return f_add(t);
|
469 |
|
|
}
|
470 |
|
|
|
471 |
|
|
static uint64_t sub_32u(CThread * t) {
|
472 |
|
|
// Subtract zero-extended 32-bit constant from general purpose register
|
473 |
|
|
t->parm[2].q = t->parm[2].i;
|
474 |
|
|
return f_sub(t);
|
475 |
|
|
}
|
476 |
|
|
|
477 |
|
|
static uint64_t add_hi32(CThread * t) {
|
478 |
|
|
// Add 32-bit constant to high part of general purpose register. RD = RT + (IM2 << 32).
|
479 |
|
|
t->parm[2].q <<= 32;
|
480 |
|
|
return f_add(t);
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
static uint64_t and_hi32(CThread * t) {
|
484 |
|
|
// AND high part of general purpose register with 32-bit constant. RD = RT & (IM2 << 32).
|
485 |
|
|
return t->parm[1].q & t->parm[2].q << 32;
|
486 |
|
|
}
|
487 |
|
|
|
488 |
|
|
static uint64_t or_hi32(CThread * t) {
|
489 |
|
|
// OR high part of general purpose register with 32-bit constant. RD = RT | (IM2 << 32).
|
490 |
|
|
return t->parm[1].q | t->parm[2].q << 32;
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
static uint64_t xor_hi32(CThread * t) {
|
494 |
|
|
// XOR high part of general purpose register with 32-bit constant. RD = RT ^ (IM2 << 32).
|
495 |
|
|
return t->parm[1].q ^ t->parm[2].q << 32;
|
496 |
|
|
}
|
497 |
|
|
|
498 |
|
|
static uint64_t replace_bits(CThread * t) {
|
499 |
|
|
// Replace a group of contiguous bits in RT by a specified constant
|
500 |
|
|
SNum a = t->parm[1];
|
501 |
|
|
SNum b = t->parm[2];
|
502 |
|
|
uint64_t val = b.s; // value to insert
|
503 |
|
|
uint8_t pos = uint8_t(b.i >> 16); // start position
|
504 |
|
|
uint8_t num = uint8_t(b.i >> 24); // number of bits to replace
|
505 |
|
|
if (num > 32 || pos + num > 64) t->interrupt(INT_WRONG_PARAMETERS);
|
506 |
|
|
uint64_t mask = ((uint64_t)1 << num) - 1; // mask with 'num' 1-bits
|
507 |
|
|
return (a.q & ~(mask << pos)) | ((val & mask) << pos);
|
508 |
|
|
}
|
509 |
|
|
|
510 |
|
|
static uint64_t address_(CThread * t) {
|
511 |
|
|
// RD = RT + IM2, RS can be THREADP (28), DATAP (29) or IP (30)
|
512 |
|
|
t->returnType = 0x13;
|
513 |
|
|
return t->memAddress;
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
// Format 1.2 A. Three vector register operands
|
517 |
|
|
|
518 |
|
|
static uint64_t set_len(CThread * t) {
|
519 |
|
|
// RD = vector register RS with length changed to value of g.p. register RT
|
520 |
|
|
// set_len: the new length is indicated in bytes
|
521 |
|
|
// set_num: the new length is indicated in elements
|
522 |
|
|
uint8_t rd = t->operands[0];
|
523 |
|
|
uint8_t rs = t->operands[4];
|
524 |
|
|
uint8_t rt = t->operands[5];
|
525 |
|
|
uint32_t oldLength = t->vectorLength[rs];
|
526 |
|
|
uint64_t newLength = t->registers[rt];
|
527 |
|
|
if (t->op & 1) newLength *= dataSizeTable[t->operandType]; // set_num: multiply by operand size
|
528 |
|
|
if (newLength > t->MaxVectorLength) newLength = t->MaxVectorLength;
|
529 |
|
|
if (newLength > oldLength) {
|
530 |
|
|
memcpy(t->vectors.buf() + rd*t->MaxVectorLength, t->vectors.buf() + rs*t->MaxVectorLength, oldLength); // copy first part from RT
|
531 |
|
|
memset(t->vectors.buf() + rd*t->MaxVectorLength + oldLength, 0, size_t(newLength - oldLength)); // set the rest to zero
|
532 |
|
|
}
|
533 |
|
|
else {
|
534 |
|
|
memcpy(t->vectors.buf() + rd*t->MaxVectorLength, t->vectors.buf() + rs*t->MaxVectorLength, size_t(newLength)); // copy newLength from RT
|
535 |
|
|
}
|
536 |
|
|
t->vectorLength[rd] = (uint32_t)newLength; // set new length
|
537 |
|
|
t->vect = 4; // stop vector loop
|
538 |
|
|
t->running = 2; // don't save RD
|
539 |
|
|
return 0;
|
540 |
|
|
}
|
541 |
|
|
|
542 |
|
|
static uint64_t get_len(CThread * t) {
|
543 |
|
|
// Get length of vector register RT into general purpose register RD
|
544 |
|
|
// get_len: get the length in bytes
|
545 |
|
|
// get_num: get the length in elements
|
546 |
|
|
uint8_t rd = t->operands[0];
|
547 |
|
|
uint8_t rt = t->operands[4];
|
548 |
|
|
uint32_t length = t->vectorLength[rt]; // length of RT
|
549 |
|
|
if (t->op & 1) length >>= dataSizeTableLog[t->operandType]; // get_num: divide by operand size (round down)
|
550 |
|
|
t->registers[rd] = length; // save in g.p. register, not vector register
|
551 |
|
|
t->vect = 4; // stop vector loop
|
552 |
|
|
t->running = 2; // don't save to vector register RD
|
553 |
|
|
t->returnType = 0x12; // debug return output
|
554 |
|
|
return length;
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
uint64_t insert_(CThread * t) {
|
558 |
|
|
// Replace one element in vector RD, starting at offset RT·OS, with scalar RS
|
559 |
|
|
uint64_t pos; // position of element insert
|
560 |
|
|
uint8_t rd = t->operands[3]; // source and destination register
|
561 |
|
|
uint8_t operandType = t->operandType; // operand type
|
562 |
|
|
uint64_t returnval;
|
563 |
|
|
uint8_t dsizelog = dataSizeTableLog[operandType]; // log2(elementsize)
|
564 |
|
|
t->vectorLengthR = t->vectorLength[rd];
|
565 |
|
|
uint8_t sourceVector = t->operands[4]; // source register
|
566 |
|
|
|
567 |
|
|
if (t->fInstr->format2 == 0x120) { // format 1.2A v1 = insert(v1, v2, r3)
|
568 |
|
|
uint8_t rt = t->operands[5]; // index register
|
569 |
|
|
pos = t->registers[rt] << dsizelog;
|
570 |
|
|
}
|
571 |
|
|
else { // format 1.3B v1 = insert(v1, v2, imm)
|
572 |
|
|
pos = t->parm[2].q << dsizelog;
|
573 |
|
|
}
|
574 |
|
|
if (pos == t->vectorOffset) {
|
575 |
|
|
if (dsizelog == 4) { // 128 bits.
|
576 |
|
|
t->parm[5].q = t->readVectorElement(sourceVector, 8); // high part of 128-bit result
|
577 |
|
|
}
|
578 |
|
|
returnval = t->readVectorElement(sourceVector, 0); // first element of sourceVector
|
579 |
|
|
}
|
580 |
|
|
else {
|
581 |
|
|
if (dsizelog == 4) { // 128 bits.
|
582 |
|
|
t->parm[5].q = t->readVectorElement(rd, t->vectorOffset + 8); // high part of 128-bit result
|
583 |
|
|
}
|
584 |
|
|
returnval = t->parm[0].q; // rd unchanged
|
585 |
|
|
}
|
586 |
|
|
return returnval;
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
uint64_t extract_(CThread * t) {
|
590 |
|
|
// Extract one element from vector RT, at offset RS·OS or IM1·OS, with size OS
|
591 |
|
|
// and broadcast into vector register RD.
|
592 |
|
|
uint8_t rd = t->operands[0]; // destination register
|
593 |
|
|
uint8_t operandType = t->operandType; // operand type
|
594 |
|
|
uint8_t dsizelog = dataSizeTableLog[operandType]; // log2(elementsize)
|
595 |
|
|
uint8_t rsource = t->operands[4]; // source vector
|
596 |
|
|
uint64_t pos; // position = index * OS
|
597 |
|
|
if (t->fInstr->format2 == 0x120) {
|
598 |
|
|
uint8_t rt = t->operands[5]; // index register
|
599 |
|
|
pos = t->registers[rt] << dsizelog;
|
600 |
|
|
}
|
601 |
|
|
else { // format 0x130
|
602 |
|
|
pos = t->parm[4].q << dsizelog;
|
603 |
|
|
}
|
604 |
|
|
uint32_t sourceLength = t->vectorLength[rsource]; // length of source vector
|
605 |
|
|
uint64_t result;
|
606 |
|
|
if (pos >= sourceLength) {
|
607 |
|
|
result = 0; // beyond end of source vector
|
608 |
|
|
}
|
609 |
|
|
else {
|
610 |
|
|
int8_t * source = t->vectors.buf() + (uint64_t)rsource * t->MaxVectorLength; // address of rsource data
|
611 |
|
|
result = *(uint64_t*)(source+pos); // no problem reading too much, it will be cut off later if the operand size is < 64 bits
|
612 |
|
|
if (dsizelog >= 4) { // 128 bits
|
613 |
|
|
t->parm[5].q = *(uint64_t*)(source+pos+8); // store high part of 128 bit element
|
614 |
|
|
}
|
615 |
|
|
}
|
616 |
|
|
t->vectorLength[rd] = t->vectorLengthR = sourceLength; // length of destination vector
|
617 |
|
|
return result;
|
618 |
|
|
}
|
619 |
|
|
|
620 |
|
|
|
621 |
|
|
|
622 |
|
|
static uint64_t compress_sparse(CThread * t) {
|
623 |
|
|
// Compress sparse vector elements indicated by mask bits into contiguous vector.
|
624 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
625 |
|
|
//uint8_t rt = t->operands[4]; // length of input vector not specified
|
626 |
|
|
uint8_t rt = t->operands[5]; // source vector
|
627 |
|
|
uint8_t rm = t->operands[1]; // mask vector
|
628 |
|
|
uint32_t sourceLength = t->vectorLength[rt]; // length of source vector
|
629 |
|
|
uint32_t maskLength = t->vectorLength[rm]; // length of mask vector
|
630 |
|
|
//uint64_t newLength = t->registers[rt]; // length of destination
|
631 |
|
|
uint64_t newLength = sourceLength; // length of destination
|
632 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
633 |
|
|
int8_t * source = t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data
|
634 |
|
|
int8_t * masksrc = t->vectors.buf() + rm*t->MaxVectorLength; // address of mask data
|
635 |
|
|
int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
636 |
|
|
// limit length
|
637 |
|
|
if (newLength > t->MaxVectorLength) newLength = t->MaxVectorLength;
|
638 |
|
|
if (newLength > maskLength) newLength = maskLength; // no reason to go beyond mask
|
639 |
|
|
if (newLength > sourceLength) { // reading beyond the end of the source vector
|
640 |
|
|
memset(source + sourceLength, 0, size_t(newLength - sourceLength)); // make sure the rest is zero
|
641 |
|
|
}
|
642 |
|
|
uint32_t pos1 = 0; // position in source vector
|
643 |
|
|
uint32_t pos2 = 0; // position in destination vector
|
644 |
|
|
// loop through mask register
|
645 |
|
|
for (pos1 = 0; pos1 < newLength; pos1 += elementSize) {
|
646 |
|
|
if (*(masksrc + pos1) & 1) { // check mask bit
|
647 |
|
|
// copy from pos1 in source to pos2 in destination
|
648 |
|
|
switch (elementSize) {
|
649 |
|
|
case 1: // int8
|
650 |
|
|
*(destination+pos2) = *(source+pos1);
|
651 |
|
|
break;
|
652 |
|
|
case 2: // int16
|
653 |
|
|
*(uint16_t*)(destination+pos2) = *(uint16_t*)(source+pos1);
|
654 |
|
|
break;
|
655 |
|
|
case 4: // int32, float
|
656 |
|
|
*(uint32_t*)(destination+pos2) = *(uint32_t*)(source+pos1);
|
657 |
|
|
break;
|
658 |
|
|
case 8: // int64, double
|
659 |
|
|
*(uint64_t*)(destination+pos2) = *(uint64_t*)(source+pos1);
|
660 |
|
|
break;
|
661 |
|
|
case 16: // int128, float128
|
662 |
|
|
*(uint64_t*)(destination+pos2) = *(uint64_t*)(source+pos1);
|
663 |
|
|
*(uint64_t*)(destination+pos2+8) = *(uint64_t*)(source+pos1+8);
|
664 |
|
|
break;
|
665 |
|
|
}
|
666 |
|
|
pos2 += elementSize;
|
667 |
|
|
}
|
668 |
|
|
}
|
669 |
|
|
// set new length of destination vector
|
670 |
|
|
t->vectorLength[rd] = pos2;
|
671 |
|
|
t->vect = 4; // stop vector loop
|
672 |
|
|
t->running = 2; // don't save. result has already been saved
|
673 |
|
|
return 0;
|
674 |
|
|
}
|
675 |
|
|
|
676 |
|
|
static uint64_t expand_sparse(CThread * t) {
|
677 |
|
|
// Expand contiguous vector into sparse vector with positions indicated by mask bits
|
678 |
|
|
// RS = length of output vector
|
679 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
680 |
|
|
uint8_t rs = t->operands[4]; // source vector
|
681 |
|
|
uint8_t rt = t->operands[5]; // length indicator
|
682 |
|
|
uint8_t rm = t->operands[1]; // mask vector
|
683 |
|
|
uint32_t sourceLength = t->vectorLength[rs]; // length of source vector
|
684 |
|
|
uint32_t maskLength = t->vectorLength[rm]; // length of mask vector
|
685 |
|
|
uint64_t newLength = t->registers[rt]; // length of destination
|
686 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType & 7]; // size of each element
|
687 |
|
|
int8_t * source = t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data
|
688 |
|
|
int8_t * masksrc = t->vectors.buf() + rm*t->MaxVectorLength; // address of mask data
|
689 |
|
|
int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
690 |
|
|
if (rd == rs) {
|
691 |
|
|
// source and destination are the same. Make a temporary copy of source to avoid overwriting
|
692 |
|
|
memcpy(t->tempBuffer, source, sourceLength);
|
693 |
|
|
source = t->tempBuffer;
|
694 |
|
|
}
|
695 |
|
|
// limit length
|
696 |
|
|
if (newLength > t->MaxVectorLength) newLength = t->MaxVectorLength;
|
697 |
|
|
if (newLength > maskLength) newLength = maskLength; // no reason to go beyond mask
|
698 |
|
|
if (newLength > sourceLength) { // reading beyond the end of the source vector
|
699 |
|
|
memset(source + sourceLength, 0, size_t(newLength - sourceLength)); // make sure the rest is zero
|
700 |
|
|
}
|
701 |
|
|
uint32_t pos1 = 0; // position in source vector
|
702 |
|
|
uint32_t pos2 = 0; // position in destination vector
|
703 |
|
|
|
704 |
|
|
// loop through mask register
|
705 |
|
|
for (pos2 = 0; pos2 < newLength; pos2 += elementSize) {
|
706 |
|
|
if (*(masksrc + pos2) & 1) { // check mask bit
|
707 |
|
|
// copy from pos1 in source to pos2 in destination
|
708 |
|
|
switch (elementSize) {
|
709 |
|
|
case 1: // int8
|
710 |
|
|
*(destination+pos2) = *(source+pos1);
|
711 |
|
|
break;
|
712 |
|
|
case 2: // int16
|
713 |
|
|
*(uint16_t*)(destination+pos2) = *(uint16_t*)(source+pos1);
|
714 |
|
|
break;
|
715 |
|
|
case 4: // int32, float
|
716 |
|
|
*(uint32_t*)(destination+pos2) = *(uint32_t*)(source+pos1);
|
717 |
|
|
break;
|
718 |
|
|
case 8: // int64, double
|
719 |
|
|
*(uint64_t*)(destination+pos2) = *(uint64_t*)(source+pos1);
|
720 |
|
|
break;
|
721 |
|
|
case 16: // int128, float128
|
722 |
|
|
*(uint64_t*)(destination+pos2) = *(uint64_t*)(source+pos1);
|
723 |
|
|
*(uint64_t*)(destination+pos2+8) = *(uint64_t*)(source+pos1+8);
|
724 |
|
|
break;
|
725 |
|
|
}
|
726 |
|
|
pos1 += elementSize;
|
727 |
|
|
}
|
728 |
|
|
else {
|
729 |
|
|
// mask is zero. insert zero
|
730 |
|
|
switch (elementSize) {
|
731 |
|
|
case 1: // int8
|
732 |
|
|
*(destination+pos2) = 0;
|
733 |
|
|
break;
|
734 |
|
|
case 2: // int16
|
735 |
|
|
*(uint16_t*)(destination+pos2) = 0;
|
736 |
|
|
break;
|
737 |
|
|
case 4: // int32, float
|
738 |
|
|
*(uint32_t*)(destination+pos2) = 0;
|
739 |
|
|
break;
|
740 |
|
|
case 8: // int64, double
|
741 |
|
|
*(uint64_t*)(destination+pos2) = 0;
|
742 |
|
|
break;
|
743 |
|
|
case 16: // int128, float128
|
744 |
|
|
*(uint64_t*)(destination+pos2) = 0;
|
745 |
|
|
*(uint64_t*)(destination+pos2+8) = 0;
|
746 |
|
|
break;
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
}
|
750 |
|
|
}
|
751 |
|
|
// set new length of destination vector
|
752 |
|
|
t->vectorLength[rd] = pos2;
|
753 |
|
|
t->vect = 4; // stop vector loop
|
754 |
|
|
t->running = 2; // don't save. result has already been saved
|
755 |
|
|
return 0;
|
756 |
|
|
}
|
757 |
|
|
|
758 |
|
|
static uint64_t broad_(CThread * t) {
|
759 |
|
|
// Broadcast first element of source vector into all elements of RD with specified length
|
760 |
|
|
uint8_t rlen; // g.p. register indicating length
|
761 |
|
|
uint64_t value; // value to broadcast
|
762 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
763 |
|
|
if (t->fInstr->format2 == 0x120) {
|
764 |
|
|
rlen = t->operands[5]; // RT = length
|
765 |
|
|
uint8_t rs = t->operands[4]; // source vector
|
766 |
|
|
value = t->readVectorElement(rs, 0); // first element of RS
|
767 |
|
|
}
|
768 |
|
|
else {
|
769 |
|
|
rlen = t->operands[4]; // first source operand = length
|
770 |
|
|
value = t->parm[2].q; // immediate operand
|
771 |
|
|
}
|
772 |
|
|
uint64_t destinationLength = t->registers[rlen]; // value of length register
|
773 |
|
|
if (destinationLength > t->MaxVectorLength) destinationLength = t->MaxVectorLength; // limit length
|
774 |
|
|
// set length of destination register, let vector loop continue to this length
|
775 |
|
|
t->vectorLength[rd] = t->vectorLengthR = (uint32_t)destinationLength;
|
776 |
|
|
return value;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
static uint64_t bits2bool(CThread * t) {
|
780 |
|
|
// The lower n bits of RT are unpacked into a boolean vector RD with length RS
|
781 |
|
|
// with one bit in each element, where n = RS / OS.
|
782 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
783 |
|
|
uint8_t rt = t->operands[5]; // RT = source vector
|
784 |
|
|
uint8_t rs = t->operands[4]; // RS indicates length
|
785 |
|
|
SNum mask = t->parm[3]; // mask
|
786 |
|
|
uint8_t * source = (uint8_t*)t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data
|
787 |
|
|
uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
788 |
|
|
uint64_t destinationLength = t->registers[rs]; // value of RS = length of destination
|
789 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
790 |
|
|
if (destinationLength > t->MaxVectorLength) destinationLength = t->MaxVectorLength; // limit length
|
791 |
|
|
// set length of destination register
|
792 |
|
|
t->vectorLength[rd] = (uint32_t)destinationLength;
|
793 |
|
|
uint32_t num = (uint32_t)destinationLength >> dsizelog; // number of elements
|
794 |
|
|
destinationLength = num << dsizelog; // round down length to nearest multiple of element size
|
795 |
|
|
// number of bits in source
|
796 |
|
|
uint32_t srcnum = t->vectorLength[rt] * 8;
|
797 |
|
|
if (num < srcnum) num = srcnum; // limit to the number of bits in source
|
798 |
|
|
mask.q &= -(int64_t)2; // remove lower bit of mask. it will be replaced by source bit
|
799 |
|
|
// loop through bits
|
800 |
|
|
for (uint32_t i = 0; i < num; i++) {
|
801 |
|
|
uint8_t bit = (source[i / 8] >> (i & 7)) & 1; // extract single bit from source
|
802 |
|
|
switch (dsizelog) {
|
803 |
|
|
case 0: // int8
|
804 |
|
|
*destination = mask.b | bit; break;
|
805 |
|
|
case 1: // int16
|
806 |
|
|
*(uint16_t*)destination = mask.s | bit; break;
|
807 |
|
|
case 2: // int32
|
808 |
|
|
*(uint32_t*)destination = mask.i | bit; break;
|
809 |
|
|
case 3: // int64
|
810 |
|
|
*(uint64_t*)destination = mask.q | bit; break;
|
811 |
|
|
case 4: // int128
|
812 |
|
|
*(uint64_t*)destination = mask.q | bit;
|
813 |
|
|
*(uint64_t*)(destination+8) = mask.q | bit;
|
814 |
|
|
break;
|
815 |
|
|
}
|
816 |
|
|
destination += (uint64_t)1 << dsizelog;
|
817 |
|
|
}
|
818 |
|
|
t->vect = 4; // stop vector loop
|
819 |
|
|
t->running = 2; // don't save RD
|
820 |
|
|
if ((t->returnType & 7) >= 5) t->returnType -= 3; // make return type integer
|
821 |
|
|
return 0;
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
|
825 |
|
|
static uint64_t shift_expand(CThread * t) {
|
826 |
|
|
// Shift vector RS up by RT bytes and extend the vector length by RT.
|
827 |
|
|
// The lower RT bytes of RD will be zero.
|
828 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
829 |
|
|
uint8_t rs = t->operands[4]; // RS = source vector
|
830 |
|
|
uint8_t rt = t->operands[5]; // RT indicates length
|
831 |
|
|
uint8_t * source = (uint8_t*)t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data
|
832 |
|
|
uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
833 |
|
|
uint64_t shiftCount = t->registers[rt]; // value of RT = shift count
|
834 |
|
|
if (shiftCount > t->MaxVectorLength) shiftCount = t->MaxVectorLength; // limit length
|
835 |
|
|
uint32_t sourceLength = t->vectorLength[rs]; // length of source vector
|
836 |
|
|
uint32_t destinationLength = sourceLength + (uint32_t)shiftCount; // length of destination vector
|
837 |
|
|
if (destinationLength > t->MaxVectorLength) destinationLength = t->MaxVectorLength; // limit length
|
838 |
|
|
// set length of destination vector
|
839 |
|
|
t->vectorLength[rd] = destinationLength;
|
840 |
|
|
// set lower part of destination to zero
|
841 |
|
|
memset(destination, 0, size_t(shiftCount));
|
842 |
|
|
// copy the rest from source
|
843 |
|
|
if (destinationLength > shiftCount) {
|
844 |
|
|
memmove(destination + shiftCount, source, size_t(destinationLength - shiftCount));
|
845 |
|
|
}
|
846 |
|
|
t->vect = 4; // stop vector loop
|
847 |
|
|
t->running = 2; // don't save RD. It has already been saved
|
848 |
|
|
return 0;
|
849 |
|
|
}
|
850 |
|
|
|
851 |
|
|
static uint64_t shift_reduce(CThread * t) {
|
852 |
|
|
// Shift vector RS down RT bytes and reduce the length by RT.
|
853 |
|
|
// The lower RT bytes of RS are lost
|
854 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
855 |
|
|
uint8_t rs = t->operands[4]; // RS = source vector
|
856 |
|
|
uint8_t rt = t->operands[5]; // RT indicates length
|
857 |
|
|
uint8_t * source = (uint8_t*)t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data
|
858 |
|
|
uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
859 |
|
|
uint32_t sourceLength = t->vectorLength[rs]; // length of source vector
|
860 |
|
|
uint64_t shiftCount = t->registers[rt]; // value of RT = shift count
|
861 |
|
|
if (shiftCount > sourceLength) shiftCount = sourceLength; // limit length
|
862 |
|
|
uint32_t destinationLength = sourceLength - (uint32_t)shiftCount; // length of destination vector
|
863 |
|
|
t->vectorLength[rd] = destinationLength; // set length of destination vector
|
864 |
|
|
// copy data from source
|
865 |
|
|
if (destinationLength > 0) {
|
866 |
|
|
memmove(destination, source + shiftCount, destinationLength);
|
867 |
|
|
}
|
868 |
|
|
t->vect = 4; // stop vector loop
|
869 |
|
|
t->running = 2; // don't save RD. It has already been saved
|
870 |
|
|
return 0;
|
871 |
|
|
}
|
872 |
|
|
|
873 |
|
|
static uint64_t shift_up(CThread * t) {
|
874 |
|
|
// Shift elements of vector RS up RT elements.
|
875 |
|
|
// The lower RT elements of RD will be zero, the upper RT elements of RS are lost.
|
876 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
877 |
|
|
uint8_t rs = t->operands[4]; // RS = source vector
|
878 |
|
|
uint8_t rt = t->operands[5]; // RT indicates length
|
879 |
|
|
uint8_t * source = (uint8_t*)t->vectors.buf() + rs * t->MaxVectorLength; // address of RS data
|
880 |
|
|
uint8_t * destination = (uint8_t*)t->vectors.buf() + rd * t->MaxVectorLength; // address of RD data
|
881 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
882 |
|
|
uint64_t shiftCount = t->registers[rt] << dsizelog; // value of TS = shift count, elements
|
883 |
|
|
if (shiftCount > t->MaxVectorLength) shiftCount = t->MaxVectorLength; // limit length
|
884 |
|
|
uint32_t sourceLength = t->vectorLength[rs]; // length of source vector
|
885 |
|
|
t->vectorLength[rd] = sourceLength; // set length of destination vector to the same as source vector
|
886 |
|
|
// copy from source
|
887 |
|
|
if (sourceLength > shiftCount) {
|
888 |
|
|
memmove(destination + shiftCount, source, size_t(sourceLength - shiftCount));
|
889 |
|
|
}
|
890 |
|
|
// set lower part of destination to zero
|
891 |
|
|
memset(destination, 0, size_t(shiftCount));
|
892 |
|
|
t->vect = 4; // stop vector loop
|
893 |
|
|
t->running = 2; // don't save RD. It has already been saved
|
894 |
|
|
return 0;
|
895 |
|
|
}
|
896 |
|
|
|
897 |
|
|
static uint64_t shift_down(CThread * t) {
|
898 |
|
|
// Shift elements of vector RS down RT elements.
|
899 |
|
|
// The upper RT elements of RD will be zero, the lower RT elements of RS are lost.
|
900 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
901 |
|
|
uint8_t rs = t->operands[4]; // RS = source vector
|
902 |
|
|
uint8_t rt = t->operands[5]; // RT indicates length
|
903 |
|
|
uint8_t * source = (uint8_t*)t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data
|
904 |
|
|
uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
905 |
|
|
uint32_t sourceLength = t->vectorLength[rs]; // length of source vector
|
906 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
907 |
|
|
uint64_t shiftCount = t->registers[rt] << dsizelog; // value of RT = shift count, elements
|
908 |
|
|
if (shiftCount > sourceLength) shiftCount = sourceLength; // limit length
|
909 |
|
|
t->vectorLength[rd] = sourceLength; // set length of destination vector
|
910 |
|
|
if (sourceLength > shiftCount) { // copy data from source
|
911 |
|
|
memmove(destination, source + shiftCount, size_t(sourceLength - shiftCount));
|
912 |
|
|
}
|
913 |
|
|
if (shiftCount > 0) { // set the rest to zero
|
914 |
|
|
memset(destination + sourceLength - shiftCount, 0, size_t(shiftCount));
|
915 |
|
|
}
|
916 |
|
|
t->vect = 4; // stop vector loop
|
917 |
|
|
t->running = 2; // don't save RD. It has already been saved
|
918 |
|
|
return 0;
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
/*
|
922 |
|
|
static uint64_t rotate_up (CThread * t) {
|
923 |
|
|
// Rotate vector RT up one element.
|
924 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
925 |
|
|
uint8_t rt = t->operands[5]; // RT = source vector
|
926 |
|
|
//uint8_t rs = t->operands[4]; // RS indicates length
|
927 |
|
|
int8_t * source = t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data
|
928 |
|
|
int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
929 |
|
|
//uint64_t length = t->registers[rs]; // value of RS = vector length
|
930 |
|
|
//if (length > t->MaxVectorLength) length = t->MaxVectorLength; // limit length
|
931 |
|
|
uint32_t sourceLength = t->vectorLength[rt]; // length of source vector
|
932 |
|
|
uint32_t length = sourceLength;
|
933 |
|
|
if (rd == rt) {
|
934 |
|
|
// source and destination are the same. Make a temporary copy of source to avoid overwriting
|
935 |
|
|
memcpy(t->tempBuffer, source, length);
|
936 |
|
|
source = t->tempBuffer;
|
937 |
|
|
}
|
938 |
|
|
if (length > sourceLength) { // reading beyond the end of the source vector. make sure the rest is zero
|
939 |
|
|
memset(source + sourceLength, 0, size_t(length - sourceLength));
|
940 |
|
|
}
|
941 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
942 |
|
|
if (elementSize > length) elementSize = (uint32_t)length;
|
943 |
|
|
t->vectorLength[rd] = (uint32_t)length; // set length of destination vector
|
944 |
|
|
memcpy(destination, source + length - elementSize, elementSize); // copy top element to bottom
|
945 |
|
|
memcpy(destination + elementSize, source, size_t(length - elementSize)); // copy the rest
|
946 |
|
|
t->vect = 4; // stop vector loop
|
947 |
|
|
t->running = 2; // don't save RD. It has already been saved
|
948 |
|
|
return 0;
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
static uint64_t rotate_down (CThread * t) {
|
952 |
|
|
// Rotate vector RT down one element.
|
953 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
954 |
|
|
uint8_t rt = t->operands[5]; // RT = source vector
|
955 |
|
|
//uint8_t rs = t->operands[4]; // RS indicates length
|
956 |
|
|
int8_t * source = t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data
|
957 |
|
|
int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
958 |
|
|
//uint64_t length = t->registers[rs]; // value of RS = vector length
|
959 |
|
|
uint32_t sourceLength = t->vectorLength[rt]; // length of source vector
|
960 |
|
|
uint32_t length = sourceLength;
|
961 |
|
|
//if (length > t->MaxVectorLength) length = t->MaxVectorLength; // limit length
|
962 |
|
|
if (rd == rt) {
|
963 |
|
|
// source and destination are the same. Make a temporary copy of source to avoid overwriting
|
964 |
|
|
memcpy(t->tempBuffer, source, length);
|
965 |
|
|
source = t->tempBuffer;
|
966 |
|
|
}
|
967 |
|
|
if (length > sourceLength) { // reading beyond the end of the source vector. make sure the rest is zero
|
968 |
|
|
memset(source + sourceLength, 0, size_t(length - sourceLength));
|
969 |
|
|
}
|
970 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
971 |
|
|
if (elementSize > length) elementSize = (uint32_t)length;
|
972 |
|
|
t->vectorLength[rd] = (uint32_t)length; // set length of destination vector
|
973 |
|
|
memcpy(destination, source + elementSize, size_t(length - elementSize)); // copy down
|
974 |
|
|
memcpy(destination + length - elementSize, source, elementSize); // copy the bottom element to top
|
975 |
|
|
t->vect = 4; // stop vector loop
|
976 |
|
|
t->running = 2; // don't save RD. It has already been saved
|
977 |
|
|
return 0;
|
978 |
|
|
}*/
|
979 |
|
|
|
980 |
|
|
static uint64_t div_ex (CThread * t) {
|
981 |
|
|
// Divide vector of double-size integers RS by integers RT.
|
982 |
|
|
// RS has element size 2·OS. These are divided by the even numbered elements of RT with size OS.
|
983 |
|
|
// The truncated results are stored in the even-numbered elements of RD.
|
984 |
|
|
// The remainders are stored in the odd-numbered elements of RD
|
985 |
|
|
// op = 24: signed, 25: unsigned
|
986 |
|
|
SNum result; // quotient
|
987 |
|
|
SNum remainder; // remainder
|
988 |
|
|
SNum a_lo = t->parm[1]; // low part of dividend
|
989 |
|
|
SNum b = t->parm[2]; // divisor
|
990 |
|
|
uint8_t rs = t->operands[4]; // RS indicates length
|
991 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
992 |
|
|
SNum a_hi;
|
993 |
|
|
a_hi.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of dividend
|
994 |
|
|
uint64_t sizemask = dataSizeMask[t->operandType]; // mask for operand size
|
995 |
|
|
uint64_t signbit = (sizemask >> 1) + 1; // mask indicating sign bit
|
996 |
|
|
//SNum mask = t->parm[3]; // mask register value or NUMCONTR
|
997 |
|
|
bool isUnsigned = t->op & 1; // 24: signed, 25: unsigned
|
998 |
|
|
bool overflow = false;
|
999 |
|
|
int sign = 0; // 1 if result is negative
|
1000 |
|
|
|
1001 |
|
|
if (!isUnsigned) { // convert signed division to unsigned
|
1002 |
|
|
if (b.q & signbit) { // b is negative. make it positive
|
1003 |
|
|
b.qs = -b.qs; sign = 1;
|
1004 |
|
|
}
|
1005 |
|
|
if (a_hi.q & signbit) { // a is negative. make it positive
|
1006 |
|
|
a_lo.qs = - a_lo.qs;
|
1007 |
|
|
a_hi.q = ~ a_hi.q;
|
1008 |
|
|
if ((a_lo.q & sizemask) == 0) a_hi.q++; // carry from low to high part
|
1009 |
|
|
sign ^= 1; // invert sign
|
1010 |
|
|
}
|
1011 |
|
|
}
|
1012 |
|
|
// limit data size
|
1013 |
|
|
b.q &= sizemask;
|
1014 |
|
|
a_hi.q &= sizemask;
|
1015 |
|
|
a_lo.q &= sizemask;
|
1016 |
|
|
result.q = 0;
|
1017 |
|
|
remainder.q = 0;
|
1018 |
|
|
// check for overflow
|
1019 |
|
|
if (a_hi.q >= b.q || b.q == 0) {
|
1020 |
|
|
overflow = true;
|
1021 |
|
|
}
|
1022 |
|
|
else {
|
1023 |
|
|
switch (t->operandType) {
|
1024 |
|
|
case 0: // int8
|
1025 |
|
|
a_lo.s |= a_hi.s << 8;
|
1026 |
|
|
result.s = a_lo.s / b.s;
|
1027 |
|
|
remainder.s = a_lo.s % b.s;
|
1028 |
|
|
break;
|
1029 |
|
|
case 1: // int16
|
1030 |
|
|
a_lo.i |= a_hi.i << 16;
|
1031 |
|
|
result.i = a_lo.i / b.i;
|
1032 |
|
|
remainder.i = a_lo.i % b.i;
|
1033 |
|
|
break;
|
1034 |
|
|
case 2: // int32
|
1035 |
|
|
a_lo.q |= a_hi.q << 32;
|
1036 |
|
|
result.q = a_lo.q / b.q;
|
1037 |
|
|
remainder.q = a_lo.q % b.q;
|
1038 |
|
|
break;
|
1039 |
|
|
case 3: // int64
|
1040 |
|
|
// to do: implement 128/64 -> 64 division by intrinsic or inline assembly
|
1041 |
|
|
// or bit shift method (other methods are too complex)
|
1042 |
|
|
default:
|
1043 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1044 |
|
|
}
|
1045 |
|
|
}
|
1046 |
|
|
// check sign
|
1047 |
|
|
if (sign) {
|
1048 |
|
|
if (result.q == signbit) overflow = true;
|
1049 |
|
|
result.qs = - result.qs;
|
1050 |
|
|
if (remainder.q == signbit) overflow = true;
|
1051 |
|
|
remainder.qs = - remainder.qs;
|
1052 |
|
|
}
|
1053 |
|
|
if (overflow) {
|
1054 |
|
|
if (isUnsigned) { // unsigned overflow
|
1055 |
|
|
//if (mask.i & MSK_OVERFL_UNSIGN) t->interrupt(INT_OVERFL_UNSIGN); // unsigned overflow
|
1056 |
|
|
result.q = sizemask;
|
1057 |
|
|
remainder.q = 0;
|
1058 |
|
|
}
|
1059 |
|
|
else { // signed overflow
|
1060 |
|
|
//if (mask.i & MSK_OVERFL_SIGN) t->interrupt(INT_OVERFL_SIGN); // signed overflow
|
1061 |
|
|
result.q = signbit;
|
1062 |
|
|
remainder.q = 0;
|
1063 |
|
|
}
|
1064 |
|
|
}
|
1065 |
|
|
t->parm[5].q = remainder.q; // save remainder
|
1066 |
|
|
return result.q;
|
1067 |
|
|
}
|
1068 |
|
|
|
1069 |
|
|
static uint64_t f_mul_ex(CThread * t) {
|
1070 |
|
|
// extended signed multiply. result uses two consecutive array elements
|
1071 |
|
|
if (!t->vect) {
|
1072 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); return 0;
|
1073 |
|
|
}
|
1074 |
|
|
SNum result;
|
1075 |
|
|
switch (t->operandType) {
|
1076 |
|
|
case 0: // int8
|
1077 |
|
|
result.is = ((int32_t)t->parm[1].bs * (int32_t)t->parm[2].bs);
|
1078 |
|
|
t->parm[5].is = result.is >> 8; // store high part in parm[q]
|
1079 |
|
|
break;
|
1080 |
|
|
case 1: // int16
|
1081 |
|
|
result.is = ((int32_t)t->parm[1].ss * (int32_t)t->parm[2].ss);
|
1082 |
|
|
t->parm[5].is = result.is >> 16; // store high part in parm[5]
|
1083 |
|
|
break;
|
1084 |
|
|
case 2: // int32
|
1085 |
|
|
result.qs = ((int64_t)t->parm[1].is * (int64_t)t->parm[2].is);
|
1086 |
|
|
t->parm[5].qs = result.qs >> 32; // store high part in parm[5]
|
1087 |
|
|
break;
|
1088 |
|
|
case 3: // int64
|
1089 |
|
|
result.qs = mul64_128s(&t->parm[5].q, t->parm[1].qs, t->parm[2].qs);
|
1090 |
|
|
break;
|
1091 |
|
|
default:
|
1092 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1093 |
|
|
result.i = 0;
|
1094 |
|
|
}
|
1095 |
|
|
return result.q;
|
1096 |
|
|
}
|
1097 |
|
|
|
1098 |
|
|
static uint64_t f_mul_ex_u(CThread * t) {
|
1099 |
|
|
// extended unsigned multiply. result uses two consecutive array elements
|
1100 |
|
|
if (!t->vect) {
|
1101 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); return 0;
|
1102 |
|
|
}
|
1103 |
|
|
SNum result;
|
1104 |
|
|
switch (t->operandType) {
|
1105 |
|
|
case 0: // int8
|
1106 |
|
|
result.i = ((uint32_t)t->parm[1].b * (uint32_t)t->parm[2].b);
|
1107 |
|
|
t->parm[5].i = result.i >> 8; // store high part in parm[5]
|
1108 |
|
|
break;
|
1109 |
|
|
case 1: // int16
|
1110 |
|
|
result.i = ((uint32_t)t->parm[1].s * (uint32_t)t->parm[2].s);
|
1111 |
|
|
t->parm[5].i = result.i >> 16; // store high part in parm[5]
|
1112 |
|
|
break;
|
1113 |
|
|
case 2: // int32
|
1114 |
|
|
result.q = ((uint64_t)t->parm[1].i * (uint64_t)t->parm[2].i);
|
1115 |
|
|
t->parm[5].q = result.q >> 32; // store high part in parm[5]
|
1116 |
|
|
break;
|
1117 |
|
|
case 3: // int64
|
1118 |
|
|
result.q = mul64_128u(&t->parm[5].q, t->parm[1].q, t->parm[2].q);
|
1119 |
|
|
break;
|
1120 |
|
|
default:
|
1121 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1122 |
|
|
result.i = 0;
|
1123 |
|
|
}
|
1124 |
|
|
return result.q;
|
1125 |
|
|
}
|
1126 |
|
|
|
1127 |
|
|
static uint64_t sqrt_ (CThread * t) {
|
1128 |
|
|
// square root
|
1129 |
|
|
SNum a = t->parm[2]; // input operand
|
1130 |
|
|
SNum result; result.q = 0;
|
1131 |
|
|
uint32_t mask = t->parm[3].i;
|
1132 |
|
|
uint8_t operandType = t->operandType;
|
1133 |
|
|
bool detectExceptions = (mask & (0xF << MSKI_EXCEPTIONS)) != 0; // make NAN if exceptions
|
1134 |
|
|
bool roundingMode = (mask & (3 << MSKI_ROUNDING)) != 0; // non-standard rounding mode
|
1135 |
|
|
bool error = false;
|
1136 |
|
|
switch (operandType) {
|
1137 |
|
|
case 0: // int8
|
1138 |
|
|
if (a.bs < 0) error = true;
|
1139 |
|
|
else result.b = (int8_t)sqrtf(a.bs);
|
1140 |
|
|
break;
|
1141 |
|
|
case 1: // int16
|
1142 |
|
|
if (a.ss < 0) error = true;
|
1143 |
|
|
else result.s = (int16_t)sqrtf(a.bs);
|
1144 |
|
|
break;
|
1145 |
|
|
case 2: // int32
|
1146 |
|
|
if (a.is < 0) error = true;
|
1147 |
|
|
else result.i = (int32_t)sqrt(a.bs);
|
1148 |
|
|
break;
|
1149 |
|
|
case 3: // int64
|
1150 |
|
|
if (a.qs < 0) error = true;
|
1151 |
|
|
else result.q = (int64_t)sqrt(a.bs);
|
1152 |
|
|
break;
|
1153 |
|
|
case 5: // float
|
1154 |
|
|
if (a.f < 0) {
|
1155 |
|
|
result.q = t->makeNan(nan_invalid_sqrt, operandType);
|
1156 |
|
|
}
|
1157 |
|
|
else {
|
1158 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
1159 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
1160 |
|
|
result.f = sqrtf(a.f); // calculate square root
|
1161 |
|
|
if (roundingMode) setRoundingMode(0);
|
1162 |
|
|
if (detectExceptions) {
|
1163 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
1164 |
|
|
if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
1165 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
1166 |
|
|
}
|
1167 |
|
|
}
|
1168 |
|
|
break;
|
1169 |
|
|
case 6: // double
|
1170 |
|
|
if (a.d < 0) {
|
1171 |
|
|
result.q = t->makeNan(nan_invalid_sqrt, operandType);
|
1172 |
|
|
}
|
1173 |
|
|
else {
|
1174 |
|
|
if (detectExceptions) clearExceptionFlags(); // clear previous exceptions
|
1175 |
|
|
if (roundingMode) setRoundingMode(mask >> MSKI_ROUNDING);
|
1176 |
|
|
result.d = sqrt(a.d); // calculate square root
|
1177 |
|
|
if (roundingMode) setRoundingMode(0);
|
1178 |
|
|
if (detectExceptions) {
|
1179 |
|
|
uint32_t x = getExceptionFlags(); // read exceptions
|
1180 |
|
|
if ((mask & (1<<MSK_UNDERFLOW)) && (x & 0x10)) result.q = t->makeNan(nan_underflow, operandType);
|
1181 |
|
|
else if ((mask & (1<<MSK_INEXACT)) && (x & 0x20)) result.q = t->makeNan(nan_inexact, operandType);
|
1182 |
|
|
}
|
1183 |
|
|
}
|
1184 |
|
|
break;
|
1185 |
|
|
default:
|
1186 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1187 |
|
|
}
|
1188 |
|
|
return result.q;
|
1189 |
|
|
}
|
1190 |
|
|
|
1191 |
|
|
static uint64_t add_c (CThread * t) {
|
1192 |
|
|
// Add with carry. Vector has two elements.
|
1193 |
|
|
// The upper element is used as carry on input and output
|
1194 |
|
|
SNum a = t->parm[1]; // input operand
|
1195 |
|
|
SNum b = t->parm[2]; // input operand
|
1196 |
|
|
SNum result;
|
1197 |
|
|
uint8_t rs = t->operands[4]; // RS is first input vector
|
1198 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
1199 |
|
|
SNum carry;
|
1200 |
|
|
carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector
|
1201 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1202 |
|
|
result.q = a.q + b.q; // add
|
1203 |
|
|
uint8_t newCarry = (result.q & sizeMask) < (a.q & sizeMask); // get new carry
|
1204 |
|
|
result.q += carry.q & 1; // add carry
|
1205 |
|
|
if ((result.q & sizeMask) == 0) newCarry = 1;// carry
|
1206 |
|
|
t->parm[5].q = newCarry; // save new carry
|
1207 |
|
|
return result.q;
|
1208 |
|
|
}
|
1209 |
|
|
|
1210 |
|
|
static uint64_t sub_b (CThread * t) {
|
1211 |
|
|
// Subtract with borrow. Vector has two elements.
|
1212 |
|
|
// The upper element is used as borrow on input and output
|
1213 |
|
|
SNum a = t->parm[1]; // input operand
|
1214 |
|
|
SNum b = t->parm[2]; // input operand
|
1215 |
|
|
SNum result;
|
1216 |
|
|
uint8_t rs = t->operands[4]; // RS is first input vector
|
1217 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
1218 |
|
|
SNum carry;
|
1219 |
|
|
carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector
|
1220 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1221 |
|
|
result.q = a.q - b.q; // subtract
|
1222 |
|
|
uint8_t newCarry = (result.q & sizeMask) > (a.q & sizeMask); // get new carry
|
1223 |
|
|
result.q -= carry.q & 1; // subtract borrow
|
1224 |
|
|
if ((result.q & sizeMask) == sizeMask) newCarry = 1;// borrow
|
1225 |
|
|
t->parm[5].q = newCarry; // save new borrow
|
1226 |
|
|
return result.q;
|
1227 |
|
|
}
|
1228 |
|
|
|
1229 |
|
|
static uint64_t add_ss (CThread * t) {
|
1230 |
|
|
// Add integer vectors, signed with saturation
|
1231 |
|
|
SNum a = t->parm[1]; // input operand
|
1232 |
|
|
SNum b = t->parm[2]; // input operand
|
1233 |
|
|
SNum result;
|
1234 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1235 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
1236 |
|
|
result.q = a.q + b.q; // add
|
1237 |
|
|
uint64_t overfl = ~(a.q ^ b.q) & (a.q ^ result.q); // overflow if a and b have same sign and result has opposite sign
|
1238 |
|
|
if (overfl & signBit) { // overflow
|
1239 |
|
|
result.q = (sizeMask >> 1) + ((a.q & signBit) != 0); // INT_MAX or INT_MIN
|
1240 |
|
|
}
|
1241 |
|
|
return result.q;
|
1242 |
|
|
}
|
1243 |
|
|
|
1244 |
|
|
static uint64_t sub_ss (CThread * t) {
|
1245 |
|
|
// subtract integer vectors, signed with saturation
|
1246 |
|
|
SNum a = t->parm[1]; // input operand
|
1247 |
|
|
SNum b = t->parm[2]; // input operand
|
1248 |
|
|
SNum result;
|
1249 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1250 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
1251 |
|
|
result.q = a.q - b.q; // subtract
|
1252 |
|
|
uint64_t overfl = (a.q ^ b.q) & (a.q ^ result.q); // overflow if a and b have different sign and result has opposite sign of a
|
1253 |
|
|
if (overfl & signBit) { // overflow
|
1254 |
|
|
result.q = (sizeMask >> 1) + ((a.q & signBit) != 0); // INT_MAX or INT_MIN
|
1255 |
|
|
}
|
1256 |
|
|
return result.q;
|
1257 |
|
|
}
|
1258 |
|
|
|
1259 |
|
|
static uint64_t add_us (CThread * t) {
|
1260 |
|
|
// Add integer vectors, unsigned with saturation
|
1261 |
|
|
SNum a = t->parm[1]; // input operand
|
1262 |
|
|
SNum b = t->parm[2]; // input operand
|
1263 |
|
|
SNum result;
|
1264 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1265 |
|
|
result.q = a.q + b.q; // add
|
1266 |
|
|
if ((result.q & sizeMask) < (a.q & sizeMask)) { // overflow
|
1267 |
|
|
result.q = sizeMask; // UINT_MAX
|
1268 |
|
|
}
|
1269 |
|
|
return result.q;
|
1270 |
|
|
}
|
1271 |
|
|
|
1272 |
|
|
static uint64_t sub_us (CThread * t) {
|
1273 |
|
|
// subtract integer vectors, unsigned with saturation
|
1274 |
|
|
SNum a = t->parm[1]; // input operand
|
1275 |
|
|
SNum b = t->parm[2]; // input operand
|
1276 |
|
|
SNum result;
|
1277 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1278 |
|
|
result.q = a.q - b.q; // add
|
1279 |
|
|
if ((result.q & sizeMask) > (a.q & sizeMask)) { // overflow
|
1280 |
|
|
result.q = 0; // 0
|
1281 |
|
|
}
|
1282 |
|
|
return result.q;
|
1283 |
|
|
}
|
1284 |
|
|
|
1285 |
|
|
static uint64_t mul_ss (CThread * t) {
|
1286 |
|
|
// multiply integer vectors, signed with saturation
|
1287 |
|
|
SNum a = t->parm[1]; // input operand
|
1288 |
|
|
SNum b = t->parm[2]; // input operand
|
1289 |
|
|
SNum result;
|
1290 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1291 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
1292 |
|
|
|
1293 |
|
|
// check for overflow
|
1294 |
|
|
bool overflow = false;
|
1295 |
|
|
switch (t->operandType) {
|
1296 |
|
|
case 0: // int8
|
1297 |
|
|
result.is = (int32_t)a.bs * (int32_t)b.bs; // multiply
|
1298 |
|
|
overflow = result.bs != result.is; break;
|
1299 |
|
|
case 1: // int16
|
1300 |
|
|
result.is = (int32_t)a.ss * (int32_t)b.ss; // multiply
|
1301 |
|
|
overflow = result.ss != result.is; break;
|
1302 |
|
|
case 2: // int32
|
1303 |
|
|
result.qs = (int64_t)a.is * (int64_t)b.is; // multiply
|
1304 |
|
|
overflow = result.is != result.qs; break;
|
1305 |
|
|
case 3: // int64
|
1306 |
|
|
result.qs = a.qs * b.qs; // multiply
|
1307 |
|
|
overflow = fabs((double)a.qs * (double)b.qs - (double)result.qs) > 1.E8;
|
1308 |
|
|
break;
|
1309 |
|
|
default:
|
1310 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1311 |
|
|
}
|
1312 |
|
|
if (overflow) {
|
1313 |
|
|
result.q = (sizeMask >> 1) + (((a.q ^ b.q) & signBit) != 0); // INT_MAX or INT_MIN
|
1314 |
|
|
}
|
1315 |
|
|
return result.q;
|
1316 |
|
|
}
|
1317 |
|
|
|
1318 |
|
|
static uint64_t mul_us (CThread * t) {
|
1319 |
|
|
// multiply integer vectors, unsigned with saturation
|
1320 |
|
|
SNum a = t->parm[1]; // input operand
|
1321 |
|
|
SNum b = t->parm[2]; // input operand
|
1322 |
|
|
SNum result;
|
1323 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1324 |
|
|
|
1325 |
|
|
// check for overflow
|
1326 |
|
|
bool overflow = false;
|
1327 |
|
|
switch (t->operandType) {
|
1328 |
|
|
case 0:
|
1329 |
|
|
result.i = (uint32_t)a.b * (uint32_t)b.b; // multiply
|
1330 |
|
|
overflow = result.b != result.i; break;
|
1331 |
|
|
case 1:
|
1332 |
|
|
result.i = (uint32_t)a.s * (uint32_t)b.s;
|
1333 |
|
|
overflow = result.s != result.i; break;
|
1334 |
|
|
case 2:
|
1335 |
|
|
result.q = (uint64_t)a.i * (uint64_t)b.i;
|
1336 |
|
|
overflow = result.i != result.q; break;
|
1337 |
|
|
case 3:
|
1338 |
|
|
result.q = a.q * b.q;
|
1339 |
|
|
overflow = fabs((double)a.q * (double)b.q - (double)result.q) > 1.E8;
|
1340 |
|
|
break;
|
1341 |
|
|
default:
|
1342 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1343 |
|
|
}
|
1344 |
|
|
if (overflow) {
|
1345 |
|
|
result.q = sizeMask;
|
1346 |
|
|
}
|
1347 |
|
|
return result.q;
|
1348 |
|
|
}
|
1349 |
|
|
|
1350 |
|
|
/*
|
1351 |
|
|
static uint64_t shift_ss (CThread * t) {
|
1352 |
|
|
// Shift left integer vectors, signed with saturation
|
1353 |
|
|
SNum a = t->parm[1]; // input operand
|
1354 |
|
|
SNum b = t->parm[2]; // input operand
|
1355 |
|
|
SNum result;
|
1356 |
|
|
result.q = a.q << b.i; // shift left
|
1357 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1358 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
1359 |
|
|
uint32_t bits1 = bitScanReverse(a.q & sizeMask) + 1; // number of bits in a
|
1360 |
|
|
uint32_t bitsMax = dataSizeTable[t->operandType]; // maximum number of bits if negative
|
1361 |
|
|
uint8_t negative = (a.q & signBit) != 0; // a is negative
|
1362 |
|
|
if (!negative) bitsMax--; // maximum number of bits if positive
|
1363 |
|
|
if ((a.q & sizeMask) != 0 && bits1 + (b.q & sizeMask) > bitsMax) { // overflow
|
1364 |
|
|
result.q = (sizeMask >> 1) + negative; // INT_MAX or INT_MIN
|
1365 |
|
|
}
|
1366 |
|
|
return result.q;
|
1367 |
|
|
}
|
1368 |
|
|
|
1369 |
|
|
static uint64_t shift_us (CThread * t) {
|
1370 |
|
|
// Shift left integer vectors, unsigned with saturation
|
1371 |
|
|
SNum a = t->parm[1]; // input operand
|
1372 |
|
|
SNum b = t->parm[2]; // input operand
|
1373 |
|
|
SNum result;
|
1374 |
|
|
result.q = a.q << b.i; // shift left
|
1375 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1376 |
|
|
uint32_t bits1 = bitScanReverse(a.q & sizeMask) + 1; // number of bits in a
|
1377 |
|
|
uint32_t bitsMax = dataSizeTable[t->operandType]; // maximum number of bits
|
1378 |
|
|
if ((a.q & sizeMask) != 0 && bits1 + (b.q & sizeMask) > bitsMax) { // overflow
|
1379 |
|
|
result.q = sizeMask; // UINT_MAX
|
1380 |
|
|
}
|
1381 |
|
|
return result.q;
|
1382 |
|
|
} */
|
1383 |
|
|
|
1384 |
|
|
/*
|
1385 |
|
|
Instructions with overflow check use the even-numbered vector elements for arithmetic instructions.
|
1386 |
|
|
Each following odd-numbered vector element is used for overflow detection. If the first source operand
|
1387 |
|
|
is a scalar then the result operand will be a vector with two elements.
|
1388 |
|
|
Overflow conditions are indicated with the following bits:
|
1389 |
|
|
bit 0. Unsigned integer overflow (carry).
|
1390 |
|
|
bit 1. Signed integer overflow.
|
1391 |
|
|
The values are propagated so that the overflow result of the operation is OR’ed with the corresponding
|
1392 |
|
|
values of both input operands. */
|
1393 |
|
|
|
1394 |
|
|
static uint64_t add_oc (CThread * t) {
|
1395 |
|
|
// add with overflow check
|
1396 |
|
|
SNum a = t->parm[1]; // input operand
|
1397 |
|
|
SNum b = t->parm[2]; // input operand
|
1398 |
|
|
uint8_t rs = t->operands[4]; // RS is first input vector
|
1399 |
|
|
uint8_t rt = t->operands[5]; // RT is first input vector
|
1400 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
1401 |
|
|
SNum carry;
|
1402 |
|
|
carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector
|
1403 |
|
|
carry.q |= t->readVectorElement(rt, t->vectorOffset + elementSize); // high part of second input vector
|
1404 |
|
|
SNum result;
|
1405 |
|
|
|
1406 |
|
|
if (t->operandType < 4) {
|
1407 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1408 |
|
|
result.q = a.q + b.q; // add
|
1409 |
|
|
if ((result.q & sizeMask) < (a.q & sizeMask)) { // unsigned overflow
|
1410 |
|
|
carry.b |= 1;
|
1411 |
|
|
}
|
1412 |
|
|
// signed overflow if a and b have same sign and result has opposite sign
|
1413 |
|
|
uint64_t signedOverflow = ~(a.q ^ b.q) & (a.q ^ result.q);
|
1414 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
1415 |
|
|
if (signedOverflow & signBit) {
|
1416 |
|
|
carry.b |= 2;
|
1417 |
|
|
}
|
1418 |
|
|
}
|
1419 |
|
|
else {
|
1420 |
|
|
// unsupported operand type
|
1421 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); result.q = 0;
|
1422 |
|
|
}
|
1423 |
|
|
t->parm[5].q = carry.q & 3; // return carry
|
1424 |
|
|
return result.q; // return result
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
static uint64_t sub_oc (CThread * t) {
|
1428 |
|
|
// subtract with overflow check
|
1429 |
|
|
SNum a = t->parm[1]; // input operand
|
1430 |
|
|
SNum b = t->parm[2]; // input operand
|
1431 |
|
|
uint8_t rs = t->operands[4]; // RS is first input vector
|
1432 |
|
|
uint8_t rt = t->operands[5]; // RT is second input vector
|
1433 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
1434 |
|
|
SNum carry;
|
1435 |
|
|
carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector
|
1436 |
|
|
carry.q |= t->readVectorElement(rt, t->vectorOffset + elementSize); // high part of second input vector
|
1437 |
|
|
SNum result;
|
1438 |
|
|
if (t->operandType < 4) {
|
1439 |
|
|
uint64_t sizeMask = dataSizeMask[t->operandType]; // mask for data size
|
1440 |
|
|
result.q = a.q - b.q; // add
|
1441 |
|
|
if ((result.q & sizeMask) > (a.q & sizeMask)) { // unsigned overflow
|
1442 |
|
|
carry.b |= 1;
|
1443 |
|
|
}
|
1444 |
|
|
// signed overflow if a and b have opposite sign and result has opposite sign of a
|
1445 |
|
|
uint64_t signedOverflow = (a.q ^ b.q) & (a.q ^ result.q);
|
1446 |
|
|
uint64_t signBit = (sizeMask >> 1) + 1; // sign bit
|
1447 |
|
|
if (signedOverflow & signBit) {
|
1448 |
|
|
carry.b |= 2;
|
1449 |
|
|
}
|
1450 |
|
|
}
|
1451 |
|
|
else {
|
1452 |
|
|
// unsupported operand type
|
1453 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); result.q = 0;
|
1454 |
|
|
}
|
1455 |
|
|
t->parm[5].q = carry.q & 3; // return carry
|
1456 |
|
|
return result.q; // return result
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
static uint64_t mul_oc (CThread * t) {
|
1460 |
|
|
// multiply with overflow check
|
1461 |
|
|
SNum a = t->parm[1]; // input operand
|
1462 |
|
|
SNum b = t->parm[2]; // input operand
|
1463 |
|
|
uint8_t rs = t->operands[4]; // RS is first input vector
|
1464 |
|
|
uint8_t rt = t->operands[5]; // RT is second input vector
|
1465 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
1466 |
|
|
SNum carry;
|
1467 |
|
|
carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector
|
1468 |
|
|
carry.q |= t->readVectorElement(rt, t->vectorOffset + elementSize); // high part of second input vector
|
1469 |
|
|
SNum result;
|
1470 |
|
|
bool signedOverflow = false;
|
1471 |
|
|
bool unsignedOverflow = false;
|
1472 |
|
|
|
1473 |
|
|
// multiply and check for signed and unsigned overflow
|
1474 |
|
|
switch (t->operandType) {
|
1475 |
|
|
case 0:
|
1476 |
|
|
result.is = (int32_t)a.bs * (int32_t)b.bs; // multiply
|
1477 |
|
|
unsignedOverflow = result.b != result.i;
|
1478 |
|
|
signedOverflow = result.bs != result.is;
|
1479 |
|
|
break;
|
1480 |
|
|
case 1:
|
1481 |
|
|
result.is = (int32_t)a.ss * (int32_t)b.ss;
|
1482 |
|
|
unsignedOverflow = result.s != result.i;
|
1483 |
|
|
signedOverflow = result.ss != result.is;
|
1484 |
|
|
break;
|
1485 |
|
|
case 2:
|
1486 |
|
|
result.qs = (int64_t)a.is * (int64_t)b.is;
|
1487 |
|
|
unsignedOverflow = result.q != result.i;
|
1488 |
|
|
signedOverflow = result.qs != result.is;
|
1489 |
|
|
break;
|
1490 |
|
|
case 3:
|
1491 |
|
|
result.qs = a.qs * b.qs;
|
1492 |
|
|
unsignedOverflow = fabs((double)a.q * (double)b.q - (double)result.q) > 1.E8;
|
1493 |
|
|
signedOverflow = fabs((double)a.qs * (double)b.qs - (double)result.qs) > 1.E8;
|
1494 |
|
|
break;
|
1495 |
|
|
default:
|
1496 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1497 |
|
|
}
|
1498 |
|
|
if (unsignedOverflow) carry.b |= 1; // unsigned overflow
|
1499 |
|
|
if (signedOverflow) carry.b |= 2; // signed overflow
|
1500 |
|
|
t->parm[5].q = carry.q & 3; // return carry
|
1501 |
|
|
return result.q; // return result
|
1502 |
|
|
}
|
1503 |
|
|
|
1504 |
|
|
static uint64_t div_oc (CThread * t) {
|
1505 |
|
|
// signed divide with overflow check
|
1506 |
|
|
SNum a = t->parm[1]; // input operand
|
1507 |
|
|
SNum b = t->parm[2]; // input operand
|
1508 |
|
|
uint8_t rs = t->operands[4]; // RS is first input vector
|
1509 |
|
|
uint8_t rt = t->operands[5]; // RT is second input vector
|
1510 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // size of each element
|
1511 |
|
|
SNum carry;
|
1512 |
|
|
carry.q = t->readVectorElement(rs, t->vectorOffset + elementSize); // high part of first input vector
|
1513 |
|
|
carry.q |= t->readVectorElement(rt, t->vectorOffset + elementSize); // high part of second input vector
|
1514 |
|
|
SNum result;
|
1515 |
|
|
|
1516 |
|
|
// to do: rounding mode!
|
1517 |
|
|
|
1518 |
|
|
switch (t->operandType) {
|
1519 |
|
|
case 0: // int8
|
1520 |
|
|
if (b.b == 0) {
|
1521 |
|
|
result.i = 0x80; carry.b |= 3; // signed and unsigned overflow
|
1522 |
|
|
}
|
1523 |
|
|
else if (a.b == 0x80 && b.bs == -1) {
|
1524 |
|
|
result.i = 0x80; carry.b |= 2; // signed overflow
|
1525 |
|
|
}
|
1526 |
|
|
else result.i = a.bs / b.bs;
|
1527 |
|
|
break;
|
1528 |
|
|
case 1: // int16
|
1529 |
|
|
if (b.s == 0) {
|
1530 |
|
|
result.i = 0x8000; carry.b |= 3; // signed and unsigned overflow
|
1531 |
|
|
}
|
1532 |
|
|
else if (a.s == 0x8000 && b.ss == -1) {
|
1533 |
|
|
result.i = 0x8000; carry.b |= 2; // signed overflow
|
1534 |
|
|
}
|
1535 |
|
|
else result.i = a.ss / b.ss;
|
1536 |
|
|
break;
|
1537 |
|
|
case 2: // int32
|
1538 |
|
|
if (b.i == 0) {
|
1539 |
|
|
result.i = sign_f; carry.b |= 3; // signed and unsigned overflow
|
1540 |
|
|
}
|
1541 |
|
|
else if (a.i == sign_f && b.is == -1) {
|
1542 |
|
|
result.i = sign_f; carry.b |= 2; // signed overflow
|
1543 |
|
|
}
|
1544 |
|
|
else result.i = a.is / b.is;
|
1545 |
|
|
break;
|
1546 |
|
|
case 3: // int64
|
1547 |
|
|
if (b.q == 0) {
|
1548 |
|
|
result.q = sign_d; carry.b |= 3; // signed and unsigned overflow
|
1549 |
|
|
}
|
1550 |
|
|
else if (a.q == sign_d && b.qs == int64_t(-1)) {
|
1551 |
|
|
result.q = sign_d; carry.b |= 2; // signed overflow
|
1552 |
|
|
}
|
1553 |
|
|
else result.qs = a.qs / b.qs;
|
1554 |
|
|
break;
|
1555 |
|
|
default:
|
1556 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1557 |
|
|
}
|
1558 |
|
|
t->parm[5].q = carry.q & 3; // return carry
|
1559 |
|
|
return result.q; // return result
|
1560 |
|
|
}
|
1561 |
|
|
|
1562 |
|
|
static uint64_t read_spev (CThread * t) {
|
1563 |
|
|
// Read special register RS into vector register RD with length RT.
|
1564 |
|
|
// to do
|
1565 |
|
|
return 0;
|
1566 |
|
|
}
|
1567 |
|
|
|
1568 |
|
|
static uint64_t read_call_stack (CThread * t) {
|
1569 |
|
|
// read internal call stack. RD = vector register destination of length RS, RT-RS = internal address
|
1570 |
|
|
return 0; // to do
|
1571 |
|
|
}
|
1572 |
|
|
|
1573 |
|
|
static uint64_t write_call_stack (CThread * t) {
|
1574 |
|
|
// write internal call stack. RD = vector register source of length RS, RT-RS = internal address
|
1575 |
|
|
return 0; // to do
|
1576 |
|
|
}
|
1577 |
|
|
|
1578 |
|
|
static uint64_t read_memory_map (CThread * t) {
|
1579 |
|
|
// read memory map. RD = vector register destination of length RS, RT-RS = internal address
|
1580 |
|
|
return 0; // to do
|
1581 |
|
|
}
|
1582 |
|
|
|
1583 |
|
|
static uint64_t write_memory_map (CThread * t) {
|
1584 |
|
|
// write memory map. RD = vector register
|
1585 |
|
|
return 0; // to do
|
1586 |
|
|
}
|
1587 |
|
|
|
1588 |
|
|
/* Input ports to match soft core
|
1589 |
|
|
Note: serial input from stdin in windows and Linux is messy. Emulation will have quirks.
|
1590 |
|
|
|
1591 |
|
|
Input port 8. Serial input:
|
1592 |
|
|
Read one byte from RS232 serial input. The value is
|
1593 |
|
|
bit 0-7: Received data (zero if input buffer empty)
|
1594 |
|
|
bit 8: Data valid. Will be 0 if the input buffer is empty. It will not wait for data if the system allows polling
|
1595 |
|
|
bit 9: More data ready: The input buffer contains at least one more byte ready to read
|
1596 |
|
|
bit 12: Buffer overflow error. Data has been lost due to input buffer overflow
|
1597 |
|
|
bit 13: Frame error. Error detected in start bit or stop bit. May be due to noise or wrong BAUD rate
|
1598 |
|
|
|
1599 |
|
|
Input port 9. Serial input status:
|
1600 |
|
|
bit 0-15: Number of bytes currently in input buffer
|
1601 |
|
|
bit 16: Buffer overflow error. Data has been lost due to input buffer overflow
|
1602 |
|
|
bit 17: Frame error. Error detected in start bit or stop bit. May be due to noise or wrong BAUD rate
|
1603 |
|
|
|
1604 |
|
|
Input port 11. Serial output status:
|
1605 |
|
|
bit 0-15: Number of bytes currently in output buffer
|
1606 |
|
|
bit 16: Buffer overflow error. Data has been lost due to output buffer overflow
|
1607 |
|
|
bit 18: Ready. The output buffer has enough space to receive at least one more byte
|
1608 |
|
|
|
1609 |
|
|
*/
|
1610 |
|
|
|
1611 |
|
|
static uint64_t input_ (CThread * t) {
|
1612 |
|
|
// read from input port.
|
1613 |
|
|
// vector version: RD = vector register, RS = port address, RT = vector length
|
1614 |
|
|
// g.p. version: RD = g.p. register, RS = port address, IM1 = port address
|
1615 |
|
|
using namespace std; // some compilers have getchar and putchar in namespace std, some not
|
1616 |
|
|
if (t->vect) { // vector version not implemented yet
|
1617 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1618 |
|
|
return 0;
|
1619 |
|
|
}
|
1620 |
|
|
uint32_t port = t->parm[2].i; // immediate operand contains port number
|
1621 |
|
|
if (port == 255) port = t->parm[1].i; // register operand contains port number
|
1622 |
|
|
|
1623 |
|
|
switch (port) {
|
1624 |
|
|
#if defined (__WINDOWS__) || defined (_WIN32) || defined (_WIN64)
|
1625 |
|
|
case 8: // port 8: read serial input
|
1626 |
|
|
if (_kbhit()) {
|
1627 |
|
|
//int res = getchar(); // read character from stdin. waits for enter
|
1628 |
|
|
int res = _getch(); // read character from stdin. does not wait for enter
|
1629 |
|
|
if (res < 0) return 0; // error or end of file (EOF = -1)
|
1630 |
|
|
else return (res | 0x100); // input valid
|
1631 |
|
|
}
|
1632 |
|
|
else return 0;
|
1633 |
|
|
case 9: // port 9: read serial input status. Only in systems that allow polling
|
1634 |
|
|
return _kbhit();
|
1635 |
|
|
#else // Other operating systems
|
1636 |
|
|
// Why is there no portable way of non-blocking read or polling a serial input?
|
1637 |
|
|
//case 8: case 9:
|
1638 |
|
|
// return 0; // to do: implement for Linux using curses.h or something
|
1639 |
|
|
#endif
|
1640 |
|
|
case 11: // port 11: get serial output status.
|
1641 |
|
|
return 0;
|
1642 |
|
|
default:
|
1643 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1644 |
|
|
break;
|
1645 |
|
|
}
|
1646 |
|
|
return 0;
|
1647 |
|
|
}
|
1648 |
|
|
|
1649 |
|
|
/* Output ports to match soft core
|
1650 |
|
|
Output port 9. Serial input control:
|
1651 |
|
|
bit 0: Clear buffer. Delete all data currently in the input buffer, and clear error flags
|
1652 |
|
|
bit 1: Clear error flags but keep data.
|
1653 |
|
|
The error bits remain high after an error condition until reset by this or by system reset
|
1654 |
|
|
|
1655 |
|
|
Output port 10. Serial output:
|
1656 |
|
|
Write one byte to RS232 serial output.
|
1657 |
|
|
bit 0-7: Data to write
|
1658 |
|
|
Other bits are reserved.
|
1659 |
|
|
|
1660 |
|
|
Output port 11. Serial output control:
|
1661 |
|
|
bit 0: Clear buffer. Delete all data currently in the input buffer, and clear error flags
|
1662 |
|
|
bit 1: Clear error flags but keep data.
|
1663 |
|
|
The error bits remain high after an error condition until reset by this or by system reset
|
1664 |
|
|
*/
|
1665 |
|
|
|
1666 |
|
|
static uint64_t output_ (CThread * t) {
|
1667 |
|
|
// write to output port.
|
1668 |
|
|
// vector version: RD = vector register to write, RS = port address, RT = vector length
|
1669 |
|
|
// g.p. version: RD = g.p. register to wrote, RS = port address, IM1 = port address
|
1670 |
|
|
using namespace std; // some compilers have getchar and putchar in namespace std::, some not
|
1671 |
|
|
if (t->vect) { // vector version not implemented yet
|
1672 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1673 |
|
|
return 0;
|
1674 |
|
|
}
|
1675 |
|
|
uint32_t port = t->parm[2].i; // immediate operand contains port number
|
1676 |
|
|
if (port == 255) port = t->parm[1].i; // register operand contains port number
|
1677 |
|
|
uint32_t value = t->parm[0].i; // value to output
|
1678 |
|
|
switch (port) {
|
1679 |
|
|
case 9: // clear input buffer
|
1680 |
|
|
#if defined (__WINDOWS__) || defined (_WIN32) || defined (_WIN64)
|
1681 |
|
|
while (_kbhit()) (void)_getch();
|
1682 |
|
|
#endif
|
1683 |
|
|
break;
|
1684 |
|
|
case 10: // write character
|
1685 |
|
|
putchar(value);
|
1686 |
|
|
break;
|
1687 |
|
|
case 11: // serial output control. not possible in most operating systems
|
1688 |
|
|
break;
|
1689 |
|
|
default:
|
1690 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1691 |
|
|
break;
|
1692 |
|
|
}
|
1693 |
|
|
t->running = 2; // don't save to register RD
|
1694 |
|
|
return 0;
|
1695 |
|
|
}
|
1696 |
|
|
|
1697 |
|
|
|
1698 |
|
|
// tables of single format instructions
|
1699 |
|
|
// Format 1.0 A. Three general purpose registers
|
1700 |
|
|
PFunc funcTab4[64] = {
|
1701 |
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
1702 |
|
|
};
|
1703 |
|
|
|
1704 |
|
|
// Format 1.1 C. One general purpose register and a 16 bit immediate operand. int64
|
1705 |
|
|
PFunc funcTab5[64] = {
|
1706 |
|
|
move_16s, move_16s, 0, move_16u, shifti1_move, shifti1_move, f_add, 0, // 0 - 7
|
1707 |
|
|
f_mul, 0, shifti1_add, shifti1_add, shifti1_and, shifti1_and, shifti1_or, shifti1_or, // 8 - 15
|
1708 |
|
|
shifti1_xor, shifti1_xor, shift16_add, 0, 0, 0, 0, // 16 -23
|
1709 |
|
|
};
|
1710 |
|
|
|
1711 |
|
|
|
1712 |
|
|
// Format 1.2 A. Three vector register operands
|
1713 |
|
|
PFunc funcTab6[64] = {
|
1714 |
|
|
get_len, get_len, set_len, set_len, insert_, extract_, broad_, 0, // 0 - 7
|
1715 |
|
|
compress_sparse, expand_sparse, 0, 0, bits2bool, 0, 0, 0, // 8 - 15
|
1716 |
|
|
shift_expand, shift_reduce, shift_up, shift_down, 0, 0, 0, 0, // 16 - 23
|
1717 |
|
|
div_ex, div_ex, f_mul_ex, f_mul_ex_u, sqrt_, 0, 0, 0, // 24 - 31
|
1718 |
|
|
add_ss, add_us, sub_ss, sub_us, mul_ss, mul_us, add_oc, sub_oc, // 32 - 39
|
1719 |
|
|
mul_oc, div_oc, add_c, sub_b, 0, 0, 0, 0, // 40 - 47
|
1720 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 48 - 55
|
1721 |
|
|
read_spev, 0, read_call_stack, write_call_stack, read_memory_map, write_memory_map, input_, output_ // 56 - 63
|
1722 |
|
|
};
|
1723 |
|
|
|
1724 |
|
|
|
1725 |
|
|
// Format 1.8 B. Two general purpose registers and an 8-bit immediate operand. int64
|
1726 |
|
|
PFunc funcTab9[64] = {
|
1727 |
|
|
abs_64, shifti_add, bitscan_, roundp2, popcount_, 0, 0, 0, // 0 - 7
|
1728 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 8 - 15
|
1729 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 16 - 23
|
1730 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 24 - 31
|
1731 |
|
|
read_spec, write_spec, read_capabilities, write_capabilities, read_perf, read_perf, read_sys, write_sys, // 32 - 39
|
1732 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 40 - 47
|
1733 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 48 - 55
|
1734 |
|
|
push_r, pop_r, 0, 0, 0, 0, input_, output_ // 56 - 63
|
1735 |
|
|
};
|
1736 |
|
|
|
1737 |
|
|
// Format 2.9 A. Three general purpose registers and a 32-bit immediate operand
|
1738 |
|
|
PFunc funcTab12[64] = {
|
1739 |
|
|
move_hi32, insert_hi32, add_32u, sub_32u, add_hi32, and_hi32, or_hi32, xor_hi32, // 0 - 7
|
1740 |
|
|
0, replace_bits, 0, 0, 0, 0, 0, 0, // 8 - 15
|
1741 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 16 - 23
|
1742 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 24 - 31
|
1743 |
|
|
address_, 0, 0, 0, 0, 0, 0, 0, // 32 - 39
|
1744 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 40 - 47
|
1745 |
|
|
};
|