1 |
56 |
Agner |
/**************************** emulator5.cpp ********************************
|
2 |
|
|
* Author: Agner Fog
|
3 |
|
|
* date created: 2018-02-18
|
4 |
|
|
* Last modified: 2021-06-30
|
5 |
|
|
* Version: 1.11
|
6 |
|
|
* Project: Binary tools for ForwardCom instruction set
|
7 |
|
|
* Description:
|
8 |
|
|
* Emulator: Execution functions for single format instructions, continued
|
9 |
|
|
*
|
10 |
|
|
* Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses
|
11 |
|
|
*****************************************************************************/
|
12 |
|
|
|
13 |
|
|
#include "stdafx.h"
|
14 |
|
|
|
15 |
|
|
// Format 1.3 B. Two vector registers and a broadcast 8-bit immediate operand.
|
16 |
|
|
|
17 |
|
|
static uint64_t gp2vec (CThread * t) {
|
18 |
|
|
// Move value of general purpose register RS to scalar in vector register RD.
|
19 |
|
|
uint8_t rd = t->operands[0];
|
20 |
|
|
uint8_t rs = t->operands[4];
|
21 |
|
|
uint64_t result = t->registers[rs]; // read general purpose register
|
22 |
|
|
t->vectorLength[rd] = dataSizeTable[t->operandType]; // set length of destination
|
23 |
|
|
t->vect = 4; // stop vector loop
|
24 |
|
|
return result;
|
25 |
|
|
}
|
26 |
|
|
|
27 |
|
|
static uint64_t vec2gp (CThread * t) {
|
28 |
|
|
// Move value of first element of vector register RS to general purpose register RD.
|
29 |
|
|
uint8_t rd = t->operands[0];
|
30 |
|
|
uint8_t rs = t->operands[4];
|
31 |
|
|
uint8_t size = dataSizeTable[t->operandType];
|
32 |
|
|
if (size > t->vectorLength[rs]) size = t->vectorLength[rs]; // limit size to vector length
|
33 |
|
|
uint64_t result = *(uint64_t*)(t->vectors.buf() + t->MaxVectorLength*rs); // read directly from vector
|
34 |
|
|
if (size < 8) result &= ((uint64_t)1 << size*8) - 1; // mask off to size
|
35 |
|
|
t->registers[rd] = result; // write to general purpose register
|
36 |
|
|
t->vect = 4; // stop vector loop
|
37 |
|
|
t->running = 2; // don't save RD
|
38 |
|
|
t->returnType &= ~ 0x100; // debug return type not vector
|
39 |
|
|
return result;
|
40 |
|
|
}
|
41 |
|
|
|
42 |
|
|
static uint64_t make_sequence (CThread * t) {
|
43 |
|
|
// Make a vector with RS sequential numbers. First value is IM1.
|
44 |
|
|
uint8_t rd = t->operands[0];
|
45 |
|
|
uint8_t rs = t->operands[4];
|
46 |
|
|
int32_t val = int8_t(t->pInstr->b[0]); // immediate operand, sign extended integer
|
47 |
|
|
uint64_t num = t->registers[rs]; // number of elements
|
48 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType];
|
49 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
50 |
|
|
SNum temp;
|
51 |
|
|
// limit length
|
52 |
|
|
uint64_t length = num << dsizelog;
|
53 |
|
|
if (length > t->MaxVectorLength) {
|
54 |
|
|
length = t->MaxVectorLength; num = length >> dsizelog;
|
55 |
|
|
}
|
56 |
|
|
// set length of rd
|
57 |
|
|
t->vectorLength[rd] = (uint32_t)length;
|
58 |
|
|
// loop through destination vector
|
59 |
|
|
for (uint32_t pos = 0; pos < length; pos += elementSize) {
|
60 |
|
|
switch (t->operandType) {
|
61 |
|
|
case 0: case 1: case 2: case 3:
|
62 |
|
|
t->writeVectorElement(rd, (uint64_t)(int64_t)val, pos); break;
|
63 |
|
|
case 4:
|
64 |
|
|
t->writeVectorElement(rd, (uint64_t)(int64_t)val, pos); // int128
|
65 |
|
|
t->writeVectorElement(rd, (uint64_t)((int64_t)val >> 63), pos+8); break;
|
66 |
|
|
case 5: // float
|
67 |
|
|
temp.f = float(val); // convert to float
|
68 |
|
|
t->writeVectorElement(rd, temp.q, pos);
|
69 |
|
|
break;
|
70 |
|
|
case 6: // double
|
71 |
|
|
temp.d = double(val); // convert to double
|
72 |
|
|
t->writeVectorElement(rd, temp.q, pos);
|
73 |
|
|
break;
|
74 |
|
|
default:
|
75 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
76 |
|
|
}
|
77 |
|
|
val++; // increment value
|
78 |
|
|
}
|
79 |
|
|
t->vect = 4; // stop vector loop
|
80 |
|
|
t->running = 2; // don't save RD
|
81 |
|
|
return 0;
|
82 |
|
|
}
|
83 |
|
|
|
84 |
|
|
static uint64_t compress(CThread * t) {
|
85 |
|
|
// Compress vector RT of length RS to a vector of half the length and half the element size.
|
86 |
|
|
// Double precision -> single precision, 64-bit integer -> 32-bit integer, etc.
|
87 |
|
|
|
88 |
|
|
// operands:
|
89 |
|
|
uint8_t rd = t->operands[0];
|
90 |
|
|
uint8_t rs = t->operands[4];
|
91 |
|
|
uint8_t IM1 = t->parm[4].b;
|
92 |
|
|
if (IM1 & 0xC0) t->interrupt(INT_WRONG_PARAMETERS);
|
93 |
|
|
//uint32_t initLength = t->vectorLength[rt];
|
94 |
|
|
uint32_t oldLength = t->vectorLength[rs]; // (uint32_t)t->registers[rs];
|
95 |
|
|
uint32_t newLength = oldLength / 2;
|
96 |
|
|
uint32_t pos; // position in destination vector
|
97 |
|
|
uint8_t overflowU = 0; // unsigned overflow in current element
|
98 |
|
|
uint8_t overflowS = 0; // signed overflow in current element
|
99 |
|
|
uint8_t overflowU2 = 0; // unsigned overflow in any element
|
100 |
|
|
uint8_t overflowS2 = 0; // signed overflow in any element
|
101 |
|
|
uint8_t overflowF2 = 0; // floating point overflow in any element
|
102 |
|
|
SNum mask = t->parm[3]; // options mask
|
103 |
|
|
int8_t * source = t->vectors.buf() + (uint64_t)rs * t->MaxVectorLength; // address of RS data
|
104 |
|
|
int8_t * destination = t->vectors.buf() + (uint64_t)rd * t->MaxVectorLength; // address of RD data
|
105 |
|
|
|
106 |
|
|
uint8_t roundingMode = (IM1 >> 3) & 7; // floating point rounding mode
|
107 |
|
|
if (roundingMode == 0) roundingMode = ((t->parm[3].i >> MSKI_ROUNDING) & 7) | 4;
|
108 |
|
|
uint8_t exceptionControl = IM1 & 7; // floating point exception enable bits:
|
109 |
|
|
// 1: overflow, 2: underflow, 4: inexact
|
110 |
|
|
if (exceptionControl == 0) { // floating point exception control
|
111 |
|
|
exceptionControl = mask.i >> (MSKI_EXCEPTIONS + 1) & 7; // exceptions from NUMCONTR
|
112 |
|
|
}
|
113 |
|
|
else if (exceptionControl == 7) {
|
114 |
|
|
exceptionControl = 0; // 7 means none (5 means all)
|
115 |
|
|
}
|
116 |
|
|
|
117 |
|
|
switch (t->operandType) { // source operand type
|
118 |
|
|
case 0: // int8 -> int4
|
119 |
|
|
for (pos = 0; pos < newLength; pos += 1) {
|
120 |
|
|
union {
|
121 |
|
|
uint16_t s;
|
122 |
|
|
uint8_t b[2];
|
123 |
|
|
} u;
|
124 |
|
|
u.s = *(uint16_t*)(source + 2*pos); // two values to convert to one byte
|
125 |
|
|
for (int i = 0; i < 2; i++) { // loop for two bytes to convert
|
126 |
|
|
uint8_t val = u.b[i];
|
127 |
|
|
overflowU = val > 0x0F; // unsigned overflow
|
128 |
|
|
overflowS = val - 0xF8 > 0x0F; // signed overflow
|
129 |
|
|
overflowU2 |= overflowU; overflowS2 |= overflowS;
|
130 |
|
|
switch (IM1 & 7) {
|
131 |
|
|
case 0: default: // wrap around
|
132 |
|
|
break;
|
133 |
|
|
case 4: // signed integer overflow gives zero
|
134 |
|
|
if (overflowS) val = 0;
|
135 |
|
|
break;
|
136 |
|
|
case 5: // signed integer overflow gives signed saturation
|
137 |
|
|
if (overflowS) val = 0x7 + (val >> 7);
|
138 |
|
|
break;
|
139 |
|
|
case 6: // unsigned integer overflow gives zero
|
140 |
|
|
if (overflowU) val = 0;
|
141 |
|
|
break;
|
142 |
|
|
case 7: // unsigned integer overflow gives unsigned saturation
|
143 |
|
|
if (overflowU) val = 0xF;
|
144 |
|
|
break;
|
145 |
|
|
}
|
146 |
|
|
u.b[i] = val;
|
147 |
|
|
}
|
148 |
|
|
uint8_t val2 = (u.b[0] & 0xF) | u.b[1] << 4;
|
149 |
|
|
*(uint8_t*)(destination + pos) = val2; // store two values
|
150 |
|
|
}
|
151 |
|
|
t->returnType = 0x110;
|
152 |
|
|
break;
|
153 |
|
|
case 1: // int16 -> int8
|
154 |
|
|
for (pos = 0; pos < newLength; pos += 1) {
|
155 |
|
|
uint16_t val = *(uint16_t*)(source + 2*pos); // value to convert
|
156 |
|
|
overflowU = val > 0xFF; // unsigned overflow
|
157 |
|
|
overflowS = val - 0xFF80 > 0xFF; // signed overflow
|
158 |
|
|
overflowU2 |= overflowU; overflowS2 |= overflowS;
|
159 |
|
|
switch (IM1 & 7) {
|
160 |
|
|
case 0: default: // wrap around
|
161 |
|
|
break;
|
162 |
|
|
case 4: // signed integer overflow gives zero
|
163 |
|
|
if (overflowS) val = 0;
|
164 |
|
|
break;
|
165 |
|
|
case 5: // signed integer overflow gives signed saturation
|
166 |
|
|
if (overflowS) val = 0x7F + (val >> 15);
|
167 |
|
|
break;
|
168 |
|
|
case 6: // unsigned integer overflow gives zero
|
169 |
|
|
if (overflowU) val = 0;
|
170 |
|
|
break;
|
171 |
|
|
case 7: // unsigned integer overflow gives unsigned saturation
|
172 |
|
|
if (overflowU) val = 0xFF;
|
173 |
|
|
break;
|
174 |
|
|
}
|
175 |
|
|
*(uint8_t*)(destination + pos) = (uint8_t)val; // store value
|
176 |
|
|
}
|
177 |
|
|
t->returnType = 0x110;
|
178 |
|
|
break;
|
179 |
|
|
case 2: // int32 -> int16
|
180 |
|
|
for (pos = 0; pos < newLength; pos += 2) {
|
181 |
|
|
uint32_t val = *(uint32_t*)(source + 2*pos); // value to convert
|
182 |
|
|
overflowU = val > 0xFFFF; // unsigned overflow
|
183 |
|
|
overflowS = val - 0xFFFF8000 > 0xFFFF; // signed overflow
|
184 |
|
|
switch (IM1 & 7) {
|
185 |
|
|
case 0: default: // wrap around
|
186 |
|
|
break;
|
187 |
|
|
case 4: // signed integer overflow gives zero
|
188 |
|
|
if (overflowS) val = 0;
|
189 |
|
|
break;
|
190 |
|
|
case 5: // signed integer overflow gives signed saturation
|
191 |
|
|
if (overflowS) val = 0x7FFF + (val >> 31);
|
192 |
|
|
break;
|
193 |
|
|
case 6: // unsigned integer overflow gives zero
|
194 |
|
|
if (overflowU) val = 0;
|
195 |
|
|
break;
|
196 |
|
|
case 7: // unsigned integer overflow gives unsigned saturation
|
197 |
|
|
if (overflowU) val = 0xFFFF;
|
198 |
|
|
break;
|
199 |
|
|
}
|
200 |
|
|
*(uint16_t*)(destination + pos) = (uint16_t)val; // store value
|
201 |
|
|
}
|
202 |
|
|
t->returnType = 0x111;
|
203 |
|
|
break;
|
204 |
|
|
case 3: // int64 -> int32
|
205 |
|
|
for (pos = 0; pos < newLength; pos += 4) {
|
206 |
|
|
uint64_t val = *(uint64_t*)(source + 2*pos); // value to convert
|
207 |
|
|
overflowU = val > 0xFFFFFFFFU; // unsigned overflow
|
208 |
|
|
overflowS = val - 0xFFFFFFFF80000000 > 0xFFFFFFFFU; // signed overflow
|
209 |
|
|
switch (IM1 & 7) {
|
210 |
|
|
case 0: default: // wrap around
|
211 |
|
|
break;
|
212 |
|
|
case 4: // signed integer overflow gives zero
|
213 |
|
|
if (overflowS) val = 0;
|
214 |
|
|
break;
|
215 |
|
|
case 5: // signed integer overflow gives signed saturation
|
216 |
|
|
if (overflowS) val = 0x7FFFFFFF + (val >> 63);
|
217 |
|
|
break;
|
218 |
|
|
case 6: // unsigned integer overflow gives zero
|
219 |
|
|
if (overflowU) val = 0;
|
220 |
|
|
break;
|
221 |
|
|
case 7: // unsigned integer overflow gives unsigned saturation
|
222 |
|
|
if (overflowU) val = 0xFFFFFFFF;
|
223 |
|
|
break;
|
224 |
|
|
}
|
225 |
|
|
*(uint32_t*)(destination + pos) = (uint32_t)val; // store value
|
226 |
|
|
}
|
227 |
|
|
t->returnType = 0x112;
|
228 |
|
|
break;
|
229 |
|
|
case 4: // int128 -> int64
|
230 |
|
|
for (pos = 0; pos < newLength; pos += 8) {
|
231 |
|
|
uint64_t valLo = *(uint64_t*)(source + 2*pos); // value to convert, low part
|
232 |
|
|
uint64_t valHi = *(uint64_t*)(source + 2*pos + 8); // value to convert, high part
|
233 |
|
|
overflowU = valHi != 0; // unsigned overflow
|
234 |
|
|
if ((int64_t)valLo < 0) overflowS = valHi+1 != 0; // signed overflow
|
235 |
|
|
else overflowS = valHi != 0;
|
236 |
|
|
overflowU2 |= overflowU; overflowS2 |= overflowS;
|
237 |
|
|
switch (IM1 & 7) {
|
238 |
|
|
case 0: default: // wrap around
|
239 |
|
|
break;
|
240 |
|
|
case 4: // signed integer overflow gives zero
|
241 |
|
|
if (overflowS) valLo = 0;
|
242 |
|
|
break;
|
243 |
|
|
case 5: // signed integer overflow gives signed saturation
|
244 |
|
|
if (overflowS) valLo = nsign_d + (valHi >> 63);
|
245 |
|
|
break;
|
246 |
|
|
case 6: // unsigned integer overflow gives zero
|
247 |
|
|
if (overflowU) valHi = valLo = 0;
|
248 |
|
|
break;
|
249 |
|
|
case 7: // unsigned integer overflow gives unsigned saturation
|
250 |
|
|
if (overflowU) valLo = 0xFFFFFFFFFFFFFFFF;
|
251 |
|
|
break;
|
252 |
|
|
}
|
253 |
|
|
}
|
254 |
|
|
t->returnType = 0x113;
|
255 |
|
|
break;
|
256 |
|
|
case 5: // float -> float16
|
257 |
|
|
for (pos = 0; pos < newLength; pos += 2) {
|
258 |
|
|
SNum val;
|
259 |
|
|
val.i = *(uint32_t*)(source + 2 * pos); // value to convert
|
260 |
|
|
uint16_t val2 = float2half(val.f); // convert to half precision
|
261 |
|
|
if (!isnan_or_inf_f(val.i)) {
|
262 |
|
|
// check rounding mode
|
263 |
|
|
switch (roundingMode) {
|
264 |
|
|
case 1: // odd if not exact
|
265 |
|
|
if (half2float(val2) != val.f) val2 |= 1;
|
266 |
|
|
break;
|
267 |
|
|
case 4: default: // nearest or even
|
268 |
|
|
break;
|
269 |
|
|
case 5: // down
|
270 |
|
|
if (half2float(val2) > val.f) {
|
271 |
|
|
if (val2 << 1 == 0) val2 = 0x8001; // 0 -> subnormal negative
|
272 |
|
|
else if (int16_t(val2) > 0) val2--;
|
273 |
|
|
else val2++;
|
274 |
|
|
}
|
275 |
|
|
break;
|
276 |
|
|
case 6: // up
|
277 |
|
|
if (half2float(val2) < val.f) {
|
278 |
|
|
if (val2 << 1 == 0) val2 = 0x0001; // 0 -> subnormal positive
|
279 |
|
|
else if (int16_t(val2) > 0) val2++;
|
280 |
|
|
else val2--;
|
281 |
|
|
}
|
282 |
|
|
break;
|
283 |
|
|
case 7: // towards zero
|
284 |
|
|
if (half2float(val2) != val.f && (val2 << 1 != 0)) {
|
285 |
|
|
val2--;
|
286 |
|
|
}
|
287 |
|
|
break;
|
288 |
|
|
}
|
289 |
|
|
// check overflow
|
290 |
|
|
overflowS = (val2 & 0x7FFF) == 0x7C00 && !isinf_f(val.i);// detect overflow
|
291 |
|
|
overflowF2 |= overflowS;
|
292 |
|
|
if (overflowS) { // check for overflow
|
293 |
|
|
if (exceptionControl & 1) { // overflow exception -> NAN
|
294 |
|
|
val2 = (uint16_t)t->makeNan(nan_overflow_conv, 1); // overflow
|
295 |
|
|
}
|
296 |
|
|
}
|
297 |
|
|
else if ((exceptionControl & 6) && val2 << 1 == 0 && val.f != 0.f) {
|
298 |
|
|
val2 = (uint16_t)t->makeNan(nan_underflow, 1); // underflow exception (inexact implies underflow)
|
299 |
|
|
}
|
300 |
|
|
else if ((exceptionControl & 4) && half2float(val2) != val.f) {
|
301 |
|
|
val2 = (uint16_t)t->makeNan(nan_inexact, 1); // inexact exception
|
302 |
|
|
}
|
303 |
|
|
}
|
304 |
|
|
*(uint16_t*)(destination + pos) = val2; // store value
|
305 |
|
|
}
|
306 |
|
|
t->returnType = 0x118;
|
307 |
|
|
break;
|
308 |
|
|
case 6: // double -> float
|
309 |
|
|
for (pos = 0; pos < newLength; pos += 4) {
|
310 |
|
|
SNum val1, val2;
|
311 |
|
|
val1.q = *(uint64_t*)(source + 2 * pos); // value to convert
|
312 |
|
|
// check NAN and INF
|
313 |
|
|
if (isnan_or_inf_d(val1.q)) {
|
314 |
|
|
union { // single precision float
|
315 |
|
|
float f;
|
316 |
|
|
struct { // structure of a NAN
|
317 |
|
|
uint32_t payload : 22;
|
318 |
|
|
uint32_t quiet : 1;
|
319 |
|
|
uint32_t expo : 8;
|
320 |
|
|
uint32_t sign : 1;
|
321 |
|
|
};
|
322 |
|
|
} u;
|
323 |
|
|
u.payload = val1.i & ((1 << 22) - 1); // ForwardCom has right-justified NAN payload, unlike other binary systems
|
324 |
|
|
u.quiet = val1.q >> 51 & 1;
|
325 |
|
|
u.expo = 0xFF;
|
326 |
|
|
u.sign = val1.q >> 63 & 1;
|
327 |
|
|
val2.f = u.f;
|
328 |
|
|
}
|
329 |
|
|
else {
|
330 |
|
|
val2.f = float(val1.d); // convert to single precision
|
331 |
|
|
// check rounding mode
|
332 |
|
|
uint8_t roundingMode = (IM1 >> 3) & 7;
|
333 |
|
|
if (roundingMode == 0) roundingMode = ((t->parm[3].i >> MSKI_ROUNDING) & 7) | 4;
|
334 |
|
|
switch (roundingMode) {
|
335 |
|
|
case 1: // odd if not exact
|
336 |
|
|
if (val2.f != val1.d) {
|
337 |
|
|
val2.i |= 1;
|
338 |
|
|
}
|
339 |
|
|
break;
|
340 |
|
|
case 4: default: // nearest or even
|
341 |
|
|
break;
|
342 |
|
|
case 5: // down
|
343 |
|
|
if (val2.f > val1.d) {
|
344 |
|
|
if (val2.f == 0.f) val2.i = 0x80000001; // 0 -> subnormal negative
|
345 |
|
|
else if (val2.i > 0) val2.i--;
|
346 |
|
|
else val2.i++;
|
347 |
|
|
}
|
348 |
|
|
break;
|
349 |
|
|
case 6: // up
|
350 |
|
|
if (val2.f < val1.d) {
|
351 |
|
|
if (val2.f == 0.f) val2.i = 0x00000001; // 0 -> subnormal positive
|
352 |
|
|
else if (val2.i > 0) val2.i++;
|
353 |
|
|
else val2.i--;
|
354 |
|
|
}
|
355 |
|
|
break;
|
356 |
|
|
case 7: // towards zero
|
357 |
|
|
if (val2.f != val1.d && val2.f != 0.f) {
|
358 |
|
|
val2.i--;
|
359 |
|
|
}
|
360 |
|
|
break;
|
361 |
|
|
}
|
362 |
|
|
// check overflow
|
363 |
|
|
overflowS = isinf_f(val2.i) && !isinf_d(val1.q); // detect overflow
|
364 |
|
|
overflowF2 |= overflowS;
|
365 |
|
|
if (overflowS) { // check for overflow
|
366 |
|
|
if (exceptionControl & 1) { // overflow exception -> NAN
|
367 |
|
|
val2.q = t->makeNan(nan_overflow_conv, 5); // overflow
|
368 |
|
|
}
|
369 |
|
|
}
|
370 |
|
|
else if ((exceptionControl & 6) && val2.f == 0.f && val1.d != 0.) {
|
371 |
|
|
val2.q = t->makeNan(nan_underflow, 5); // underflow exception
|
372 |
|
|
}
|
373 |
|
|
else if ((exceptionControl & 4) && val2.f != val1.d) {
|
374 |
|
|
val2.q = t->makeNan(nan_inexact, 5); // inexact exception
|
375 |
|
|
}
|
376 |
|
|
}
|
377 |
|
|
*(uint32_t*)(destination + pos) = val2.i; // store value
|
378 |
|
|
}
|
379 |
|
|
t->returnType = 0x115;
|
380 |
|
|
break;
|
381 |
|
|
default:
|
382 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
383 |
|
|
}
|
384 |
|
|
// check overflow traps
|
385 |
|
|
/*
|
386 |
|
|
if (mask.i & MSK_OVERFL_ALL) {
|
387 |
|
|
if ((mask.i & MSK_OVERFL_SIGN) && overflowS2) t->interrupt(INT_OVERFL_SIGN); // signed overflow
|
388 |
|
|
else if ((mask.i & MSK_OVERFL_UNSIGN) && overflowU2) t->interrupt(INT_OVERFL_UNSIGN); // unsigned overflow
|
389 |
|
|
else if ((mask.i & MSK_OVERFL_FLOAT) && overflowF2) t->interrupt(INT_OVERFL_FLOAT); // float overflow
|
390 |
|
|
} */
|
391 |
|
|
t->vectorLength[rd] = newLength; // save new vector length
|
392 |
|
|
t->vect = 4; // stop vector loop
|
393 |
|
|
t->running = 2; // don't save. result has already been saved
|
394 |
|
|
return 0;
|
395 |
|
|
}
|
396 |
|
|
|
397 |
|
|
static uint64_t expand(CThread * t) {
|
398 |
|
|
// Expand vector RS to a vector of the double length and the double element size.
|
399 |
|
|
// OT specifies the element size or precision of the destination.
|
400 |
|
|
// Half precision -> single precision, 32-bit integer -> 64-bit integer, etc.
|
401 |
|
|
|
402 |
|
|
// Operands:
|
403 |
|
|
uint8_t rd = t->operands[0];
|
404 |
|
|
uint8_t rs = t->operands[4];
|
405 |
|
|
uint8_t IM1 = t->parm[4].b;
|
406 |
|
|
if (IM1 & 0xFC) t->interrupt(INT_WRONG_PARAMETERS);
|
407 |
|
|
bool signExtend = (IM1 & 2) == 0;
|
408 |
|
|
|
409 |
|
|
uint32_t initLength = t->vectorLength[rs];
|
410 |
|
|
uint32_t newLength = 2 * initLength;
|
411 |
|
|
if (newLength > t->MaxVectorLength) newLength = t->MaxVectorLength;
|
412 |
|
|
// uint32_t oldLength = newLength / 2;
|
413 |
|
|
uint32_t pos; // position in source vector
|
414 |
|
|
int8_t * source = t->vectors.buf() + (uint32_t)rs * t->MaxVectorLength; // address of RT data
|
415 |
|
|
int8_t * destination = t->vectors.buf() + (uint32_t)rd * t->MaxVectorLength; // address of RD data
|
416 |
|
|
if (rd == rs) {
|
417 |
|
|
// source and destination are the same. Make a temporary copy of source to avoid overwriting
|
418 |
|
|
memcpy(t->tempBuffer, source, initLength);
|
419 |
|
|
source = t->tempBuffer;
|
420 |
|
|
}
|
421 |
|
|
switch (t->operandType) {
|
422 |
|
|
case 0: // int4 -> int8
|
423 |
|
|
for (pos = 0; pos < newLength; pos += 1) {
|
424 |
|
|
uint8_t val1 = *(uint8_t*)(source + pos); // values to convert
|
425 |
|
|
union {
|
426 |
|
|
uint16_t s;
|
427 |
|
|
uint8_t b[2];
|
428 |
|
|
int8_t bs[2];
|
429 |
|
|
} val2;
|
430 |
|
|
if (signExtend) {
|
431 |
|
|
val2.bs[0] = (int8_t)val1 << 4 >> 4; // sign extend
|
432 |
|
|
val2.bs[1] = (int8_t)val1 >> 4; // sign extend
|
433 |
|
|
}
|
434 |
|
|
else {
|
435 |
|
|
val2.b[0] = val1 & 0xF; // zero extend
|
436 |
|
|
val2.b[1] = val1 >> 4; // zero extend
|
437 |
|
|
}
|
438 |
|
|
*(uint16_t*)(destination + pos*2) = val2.s; // store value
|
439 |
|
|
}
|
440 |
|
|
break;
|
441 |
|
|
case 1: // int8 -> int16
|
442 |
|
|
for (pos = 0; pos < newLength; pos += 1) {
|
443 |
|
|
uint16_t val = *(uint8_t*)(source + pos); // value to convert
|
444 |
|
|
if (signExtend) val = uint16_t((int16_t)(val << 8) >> 8); // sign extend
|
445 |
|
|
*(uint16_t*)(destination + pos*2) = val; // store value
|
446 |
|
|
}
|
447 |
|
|
break;
|
448 |
|
|
case 2: // int16 -> int32
|
449 |
|
|
for (pos = 0; pos < newLength; pos += 2) {
|
450 |
|
|
uint32_t val = *(uint16_t*)(source + pos); // value to convert
|
451 |
|
|
if (signExtend) val = uint32_t((int32_t)(val << 16) >> 16); // sign extend
|
452 |
|
|
*(uint32_t*)(destination + pos*2) = val; // store value
|
453 |
|
|
}
|
454 |
|
|
break;
|
455 |
|
|
case 3: // int32 -> int64
|
456 |
|
|
for (pos = 0; pos < newLength; pos += 4) {
|
457 |
|
|
uint64_t val = *(uint32_t*)(source + pos); // value to convert
|
458 |
|
|
if (signExtend) val = uint64_t((int64_t)(val << 32) >> 32); // sign extend
|
459 |
|
|
*(uint64_t*)(destination + pos*2) = val; // store value
|
460 |
|
|
}
|
461 |
|
|
break;
|
462 |
|
|
case 4: // int64 -> int128
|
463 |
|
|
for (pos = 0; pos < newLength; pos += 8) {
|
464 |
|
|
uint64_t valLo = *(uint64_t*)(source + pos); // value to convert
|
465 |
|
|
uint64_t valHi = 0;
|
466 |
|
|
if (signExtend) valHi = uint64_t((int64_t)valLo >> 63); // sign extend
|
467 |
|
|
*(uint64_t*)(destination + pos*2) = valLo; // store low part
|
468 |
|
|
*(uint64_t*)(destination + pos*2 + 8) = valHi; // store high part
|
469 |
|
|
}
|
470 |
|
|
break;
|
471 |
|
|
case 5: // float16 -> float
|
472 |
|
|
for (pos = 0; pos < newLength; pos += 2) {
|
473 |
|
|
uint16_t val1 = *(uint16_t*)(source + pos); // value to convert
|
474 |
|
|
float val2 = half2float(val1); // convert half precision to float
|
475 |
|
|
*(float*)(destination + pos*2) = val2; // store value
|
476 |
|
|
}
|
477 |
|
|
break;
|
478 |
|
|
case 6: // float -> double
|
479 |
|
|
for (pos = 0; pos < newLength; pos += 4) {
|
480 |
|
|
SNum val1;
|
481 |
|
|
val1.i = *(uint32_t*)(source + pos); // value to convert
|
482 |
|
|
double val2 = val1.f; // convert to double precision
|
483 |
|
|
// check NAN
|
484 |
|
|
// ForwardCom has right-justified NAN payload, unlike other binary systems
|
485 |
|
|
if (isnan_f(val1.i)) {
|
486 |
|
|
union { // single precision float
|
487 |
|
|
double d;
|
488 |
|
|
struct { // structure of a NAN
|
489 |
|
|
uint64_t payload : 51;
|
490 |
|
|
uint64_t quiet : 1;
|
491 |
|
|
uint64_t expo : 11;
|
492 |
|
|
uint64_t sign : 1;
|
493 |
|
|
};
|
494 |
|
|
} u;
|
495 |
|
|
u.payload = val1.q & ((1 << 22) - 1);
|
496 |
|
|
u.quiet = val1.i >> 22 & 1;
|
497 |
|
|
u.expo = 0x7FF;
|
498 |
|
|
u.sign = val1.q >> 63 & 1;
|
499 |
|
|
val2 = u.d;
|
500 |
|
|
}
|
501 |
|
|
*(double*)(destination + pos*2) = val2; // store value
|
502 |
|
|
}
|
503 |
|
|
break;
|
504 |
|
|
default:
|
505 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
506 |
|
|
}
|
507 |
|
|
t->vectorLength[rd] = newLength; // save new vector length
|
508 |
|
|
t->vect = 4; // stop vector loop
|
509 |
|
|
t->running = 2; // don't save. result has already been saved
|
510 |
|
|
return 0;
|
511 |
|
|
}
|
512 |
|
|
|
513 |
|
|
static uint64_t float2int (CThread * t) {
|
514 |
|
|
// Conversion of floating point to signed or unsigned integer with the same operand size.
|
515 |
|
|
// The rounding mode and overflow control is specified in IM1.
|
516 |
|
|
SNum a = t->parm[1];
|
517 |
|
|
SNum b = t->parm[4];
|
518 |
|
|
int64_t result = 0;
|
519 |
|
|
uint32_t dataSize = dataSizeTable[t->operandType];
|
520 |
|
|
uint8_t roundingMode = b.b >> 3 & 3;
|
521 |
|
|
uint8_t signMode = roundingMode | (b.b & 2) << 1; // bit 0-1: rounding mode, bit 2: usigned
|
522 |
|
|
bool overflow = false;
|
523 |
|
|
bool invalid = false;
|
524 |
|
|
|
525 |
|
|
if (dataSize == 2) { // float16 -> int16
|
526 |
|
|
const float max = (float)(int32_t)0x7FFF;
|
527 |
|
|
const float min = -max - 1.0f;
|
528 |
|
|
const float umax = (float)(uint32_t)0xFFFFu;
|
529 |
|
|
if (isnan_h(a.s)) {
|
530 |
|
|
invalid = true;
|
531 |
|
|
}
|
532 |
|
|
else {
|
533 |
|
|
float f = half2float(a.s);
|
534 |
|
|
switch (signMode) { // rounding mode:
|
535 |
|
|
case 0: // nearest or even
|
536 |
|
|
if (f >= max + 0.5f || f < min - 0.5f) overflow = true;
|
537 |
|
|
result = (int)(nearbyint(f));
|
538 |
|
|
break;
|
539 |
|
|
case 1: // down
|
540 |
|
|
if (f >= max + 1.0f || f <= min) overflow = true;
|
541 |
|
|
result = (int)(floor(f));
|
542 |
|
|
break;
|
543 |
|
|
case 2: // up
|
544 |
|
|
if (f > max || f <= min - 1.0f) overflow = true;
|
545 |
|
|
result = (int)(ceil(f));
|
546 |
|
|
break;
|
547 |
|
|
case 3: // towards zero
|
548 |
|
|
if (f >= max + 1.0f || f <= min - 1.0f) overflow = true;
|
549 |
|
|
result = (int)(f);
|
550 |
|
|
break;
|
551 |
|
|
case 4: // unsigned nearest or even
|
552 |
|
|
if (f >= umax + 0.5f || f < - 0.5f) overflow = true;
|
553 |
|
|
result = (int)(nearbyint(f));
|
554 |
|
|
break;
|
555 |
|
|
case 5: case 7: // unsigned down
|
556 |
|
|
if (f >= umax + 1.0f || f < 0.0f) overflow = true;
|
557 |
|
|
result = (int)(floor(f));
|
558 |
|
|
break;
|
559 |
|
|
case 6: // unsigned up
|
560 |
|
|
if (f > umax || f <= -1.0f) overflow = true;
|
561 |
|
|
else result = (int)(ceil(f));
|
562 |
|
|
}
|
563 |
|
|
if (overflow) {
|
564 |
|
|
switch (b.b & 7) { // overflow options
|
565 |
|
|
case 0: default: // wrap around
|
566 |
|
|
result &= 0xFFFFu;
|
567 |
|
|
break;
|
568 |
|
|
case 4: case 6:
|
569 |
|
|
result = 0;
|
570 |
|
|
break;
|
571 |
|
|
case 5: // signed saturation
|
572 |
|
|
result = 0x7FFF + int(f < 0);
|
573 |
|
|
break;
|
574 |
|
|
case 7: // unsigned saturation
|
575 |
|
|
result = 0xFFFFu;
|
576 |
|
|
break;
|
577 |
|
|
}
|
578 |
|
|
}
|
579 |
|
|
if (invalid) {
|
580 |
|
|
result = (b.b & 0x20) ? 0x8000u : 0;
|
581 |
|
|
}
|
582 |
|
|
}
|
583 |
|
|
}
|
584 |
|
|
else if (dataSize == 4) { // float -> int32
|
585 |
|
|
const float max = (float)(int32_t)nsign_f;
|
586 |
|
|
const float min = -max - 1.0f;
|
587 |
|
|
const float umax = (float)(uint32_t)0xFFFFFFFFu;
|
588 |
|
|
if (isnan_f(a.i)) {
|
589 |
|
|
invalid = true;
|
590 |
|
|
}
|
591 |
|
|
else {
|
592 |
|
|
switch (signMode) { // rounding mode:
|
593 |
|
|
case 0: // nearest or even
|
594 |
|
|
if (a.f >= max + 0.5f || a.f < min - 0.5f) overflow = true;
|
595 |
|
|
result = (int64_t)(nearbyint(a.f));
|
596 |
|
|
break;
|
597 |
|
|
case 1: // down
|
598 |
|
|
if (a.f >= max + 1.0f || a.f <= min) overflow = true;
|
599 |
|
|
result = (int64_t)(floor(a.f));
|
600 |
|
|
break;
|
601 |
|
|
case 2: // up
|
602 |
|
|
if (a.f > max || a.f <= min - 1.0f) overflow = true;
|
603 |
|
|
result = (int64_t)(ceil(a.f));
|
604 |
|
|
break;
|
605 |
|
|
case 3: // towards zero
|
606 |
|
|
if (a.f >= max + 1.0f || a.f <= min - 1.0f) overflow = true;
|
607 |
|
|
result = (int64_t)(a.f);
|
608 |
|
|
break;
|
609 |
|
|
case 4: // unsigned nearest or even
|
610 |
|
|
if (a.f >= umax + 0.5f || a.f < - 0.5f) overflow = true;
|
611 |
|
|
result = (int64_t)(nearbyint(a.f));
|
612 |
|
|
break;
|
613 |
|
|
case 5: case 7: // unsigned down
|
614 |
|
|
if (a.f >= umax + 1.0f || a.f < 0.0f) overflow = true;
|
615 |
|
|
result = (int64_t)(floor(a.f));
|
616 |
|
|
break;
|
617 |
|
|
case 6: // unsigned up
|
618 |
|
|
if (a.f > umax || a.f <= -1.0f) overflow = true;
|
619 |
|
|
else result = (int64_t)(ceil(a.f));
|
620 |
|
|
}
|
621 |
|
|
if (overflow) {
|
622 |
|
|
switch (b.b & 7) { // overflow options
|
623 |
|
|
case 0: // wrap around
|
624 |
|
|
result &= 0xFFFFFFFFu;
|
625 |
|
|
break;
|
626 |
|
|
case 4: case 6:
|
627 |
|
|
result = 0;
|
628 |
|
|
break;
|
629 |
|
|
case 5: // signed saturation
|
630 |
|
|
result = 0x7FFFFFFF + int(a.f < 0);
|
631 |
|
|
break;
|
632 |
|
|
case 7: // unsigned saturation
|
633 |
|
|
result = 0xFFFFFFFFu;
|
634 |
|
|
break;
|
635 |
|
|
}
|
636 |
|
|
}
|
637 |
|
|
if (invalid) {
|
638 |
|
|
result = (b.b & 0x20) ? sign_f : 0;
|
639 |
|
|
}
|
640 |
|
|
}
|
641 |
|
|
}
|
642 |
|
|
else if (dataSize == 8) { // double -> int64
|
643 |
|
|
const double max = (double)(int64_t)nsign_d;
|
644 |
|
|
const double min = -max - 1.0f;
|
645 |
|
|
const double umax = (double)0xFFFFFFFFFFFFFFFFu;
|
646 |
|
|
if (isnan_d(a.q)) {
|
647 |
|
|
invalid = true;
|
648 |
|
|
}
|
649 |
|
|
else {
|
650 |
|
|
switch (signMode) { // rounding mode:
|
651 |
|
|
case 0: // nearest or even
|
652 |
|
|
if (a.d >= max + 0.5 || a.d < min - 0.5) overflow = true;
|
653 |
|
|
result = (int64_t)(nearbyint(a.d));
|
654 |
|
|
break;
|
655 |
|
|
case 1: // down
|
656 |
|
|
if (a.d >= max + 1.0 || a.d <= min) overflow = true;
|
657 |
|
|
result = (int64_t)(floor(a.d));
|
658 |
|
|
break;
|
659 |
|
|
case 2: // up
|
660 |
|
|
if (a.d > max || a.d <= min - 1.0) overflow = true;
|
661 |
|
|
result = (int64_t)(ceil(a.d));
|
662 |
|
|
break;
|
663 |
|
|
case 3: // towards zero
|
664 |
|
|
if (a.d >= max + 1.0 || a.d <= min - 1.0) overflow = true;
|
665 |
|
|
result = (int64_t)(a.d);
|
666 |
|
|
break;
|
667 |
|
|
case 4: // unsigned nearest or even
|
668 |
|
|
if (a.d >= umax + 0.5 || a.d < - 0.5) overflow = true;
|
669 |
|
|
result = (uint64_t)(nearbyint(a.d));
|
670 |
|
|
break;
|
671 |
|
|
case 5: case 7: // unsigned down
|
672 |
|
|
if (a.d >= umax + 1.0 || a.d < 0.0) overflow = true;
|
673 |
|
|
result = (uint64_t)(floor(a.d));
|
674 |
|
|
break;
|
675 |
|
|
case 6: // unsigned up
|
676 |
|
|
if (a.d > umax || a.d <= -1.0) overflow = true;
|
677 |
|
|
result = (uint64_t)(ceil(a.d));
|
678 |
|
|
}
|
679 |
|
|
}
|
680 |
|
|
if (overflow) {
|
681 |
|
|
switch (b.b & 7) { // overflow options
|
682 |
|
|
case 0: // wrap around
|
683 |
|
|
break;
|
684 |
|
|
case 4: case 6:
|
685 |
|
|
result = 0;
|
686 |
|
|
break;
|
687 |
|
|
case 5: // signed saturation
|
688 |
|
|
result = nsign_d + int(a.d < 0);
|
689 |
|
|
break;
|
690 |
|
|
case 7: // unsigned saturation
|
691 |
|
|
result = 0xFFFFFFFFFFFFFFFFu;
|
692 |
|
|
break;
|
693 |
|
|
}
|
694 |
|
|
}
|
695 |
|
|
if (invalid) {
|
696 |
|
|
result = (b.b & 0x20) ? sign_d : 0;
|
697 |
|
|
}
|
698 |
|
|
}
|
699 |
|
|
else t->interrupt(INT_WRONG_PARAMETERS);
|
700 |
|
|
/* Traps not supported
|
701 |
|
|
if (overflow && (mask.i & MSK_OVERFL_SIGN)) {
|
702 |
|
|
t->interrupt(INT_OVERFL_SIGN); // signed overflow
|
703 |
|
|
result = dataSizeMask[t->operandType] >> 1; // INT_MAX
|
704 |
|
|
}
|
705 |
|
|
if (invalid && (mask.i & MSK_FLOAT_NAN_LOSS)) {
|
706 |
|
|
t->interrupt(INT_FLOAT_NAN_LOSS); // nan converted to integer
|
707 |
|
|
result = dataSizeMask[t->operandType] >> 1; // INT_MAX
|
708 |
|
|
} */
|
709 |
|
|
if ((t->operandType & 7) >= 5) t->operandType -= 3; // debug return type is integer
|
710 |
|
|
return result;
|
711 |
|
|
}
|
712 |
|
|
|
713 |
|
|
static uint64_t int2float (CThread * t) {
|
714 |
|
|
// Conversion of signed or unsigned integer to floating point with same operand size.
|
715 |
|
|
SNum a = t->parm[1];
|
716 |
|
|
SNum IM1 = t->parm[4];
|
717 |
|
|
bool isSigned = (IM1.b & 1) == 0; // signed integer
|
718 |
|
|
bool inexactX = (IM1.b & 4) != 0; // make NAN exception if inexact
|
719 |
|
|
|
720 |
|
|
SNum result;
|
721 |
|
|
uint32_t dataSize = dataSizeTable[t->operandType];
|
722 |
|
|
switch (dataSize) {
|
723 |
|
|
case 2: // int16 -> float16
|
724 |
|
|
if (isSigned) {
|
725 |
|
|
result.s = float2half(float(a.ss));
|
726 |
|
|
if (inexactX && int32_t(half2float(result.s)) != a.ss) {
|
727 |
|
|
result.q = t->makeNan(nan_inexact, 1);
|
728 |
|
|
}
|
729 |
|
|
}
|
730 |
|
|
else { // unsigned
|
731 |
|
|
result.s = float2half(float(a.s));
|
732 |
|
|
if (inexactX && uint32_t(half2float(result.s)) != a.s) {
|
733 |
|
|
result.q = t->makeNan(nan_inexact, 1);
|
734 |
|
|
}
|
735 |
|
|
}
|
736 |
|
|
t->returnType = 0x118; // debug return type is float16
|
737 |
|
|
break;
|
738 |
|
|
|
739 |
|
|
case 4: // int32 -> float
|
740 |
|
|
if (isSigned) {
|
741 |
|
|
result.f = (float)a.is;
|
742 |
|
|
if (inexactX && int32_t(result.f) != a.is) {
|
743 |
|
|
result.q = t->makeNan(nan_inexact, 5);
|
744 |
|
|
}
|
745 |
|
|
}
|
746 |
|
|
else {
|
747 |
|
|
result.f = (float)a.i;
|
748 |
|
|
if (inexactX && uint32_t(result.f) != a.i) {
|
749 |
|
|
result.q = t->makeNan(nan_inexact, 5);
|
750 |
|
|
}
|
751 |
|
|
}
|
752 |
|
|
t->returnType = 0x115; // debug return type is float
|
753 |
|
|
break;
|
754 |
|
|
|
755 |
|
|
case 8: // int64 -> double
|
756 |
|
|
if (isSigned) {
|
757 |
|
|
result.d = (double)a.qs;
|
758 |
|
|
if (inexactX && int64_t(result.d) != a.qs) {
|
759 |
|
|
result.q = t->makeNan(nan_inexact, 6);
|
760 |
|
|
}
|
761 |
|
|
}
|
762 |
|
|
else {
|
763 |
|
|
result.d = (double)a.q;
|
764 |
|
|
if (inexactX && uint64_t(result.d) != a.q) {
|
765 |
|
|
result.q = t->makeNan(nan_inexact, 6);
|
766 |
|
|
}
|
767 |
|
|
}
|
768 |
|
|
t->returnType = 0x116; // debug return type is double
|
769 |
|
|
break;
|
770 |
|
|
|
771 |
|
|
default:
|
772 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
773 |
|
|
result.q = 0;
|
774 |
|
|
}
|
775 |
|
|
return result.q;
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
static uint64_t round_ (CThread * t) {
|
779 |
|
|
// Round floating point to integer in floating point representation.
|
780 |
|
|
// The rounding mode is specified in IM1.
|
781 |
|
|
// Conversion of floating point to signed integer with the same operand size.
|
782 |
|
|
// The rounding mode is specified in IM1.
|
783 |
|
|
SNum a = t->parm[1];
|
784 |
|
|
SNum b = t->parm[4];
|
785 |
|
|
SNum result;
|
786 |
|
|
uint32_t dataSize = dataSizeTable[t->operandType];
|
787 |
|
|
if (dataSize == 4) { // float -> int32
|
788 |
|
|
switch (b.b) { // rounding mode:
|
789 |
|
|
case 0: // nearest or even
|
790 |
|
|
result.f = nearbyintf(a.f);
|
791 |
|
|
break;
|
792 |
|
|
case 1: // down
|
793 |
|
|
result.f = floorf(a.f);
|
794 |
|
|
break;
|
795 |
|
|
case 2: // up
|
796 |
|
|
result.f = ceilf(a.f);
|
797 |
|
|
break;
|
798 |
|
|
case 3: // towards zero
|
799 |
|
|
result.f = truncf(a.f);
|
800 |
|
|
break;
|
801 |
|
|
default: t->interrupt(INT_WRONG_PARAMETERS);
|
802 |
|
|
}
|
803 |
|
|
}
|
804 |
|
|
else if (dataSize == 8) { // double -> int64
|
805 |
|
|
switch (b.b) { // rounding mode:
|
806 |
|
|
case 0: // nearest or even
|
807 |
|
|
result.d = nearbyint(a.d);
|
808 |
|
|
break;
|
809 |
|
|
case 1: // down
|
810 |
|
|
result.d = floor(a.d);
|
811 |
|
|
break;
|
812 |
|
|
case 2: // up
|
813 |
|
|
result.d = ceil(a.d);
|
814 |
|
|
break;
|
815 |
|
|
case 3: // towards zero
|
816 |
|
|
result.d = trunc(a.d);
|
817 |
|
|
break;
|
818 |
|
|
default: t->interrupt(INT_WRONG_PARAMETERS);
|
819 |
|
|
}
|
820 |
|
|
}
|
821 |
|
|
return result.q;
|
822 |
|
|
}
|
823 |
|
|
|
824 |
|
|
static uint64_t round2n (CThread * t) {
|
825 |
|
|
// Round to nearest multiple of 2n.
|
826 |
|
|
// RD = 2^n * round(2^(−n)*RS).
|
827 |
|
|
// n is a signed integer constant in IM1
|
828 |
|
|
SNum b = t->parm[4]; // n
|
829 |
|
|
//SNum mask = t->parm[3];
|
830 |
|
|
uint32_t exponent1;
|
831 |
|
|
uint64_t result = 0;
|
832 |
|
|
if (t->operandType == 5) { // float
|
833 |
|
|
union {
|
834 |
|
|
uint32_t i;
|
835 |
|
|
float f;
|
836 |
|
|
struct {
|
837 |
|
|
uint32_t mantissa : 23;
|
838 |
|
|
uint32_t exponent : 8;
|
839 |
|
|
uint32_t sign : 1;
|
840 |
|
|
};
|
841 |
|
|
} u;
|
842 |
|
|
u.i = t->parm[1].i; // input a
|
843 |
|
|
if (isnan_f(u.i)) return u.i; // a is nan
|
844 |
|
|
exponent1 = u.exponent;
|
845 |
|
|
if (exponent1 == 0) {
|
846 |
|
|
u.mantissa = 0; // a is zero or subnormal. return zero
|
847 |
|
|
return u.i;
|
848 |
|
|
}
|
849 |
|
|
exponent1 -= b.i; // subtract b from exponent
|
850 |
|
|
if ((int32_t)exponent1 <= 0) { // underflow
|
851 |
|
|
//if (mask.i & MSK_FLOAT_UNDERFL) t->interrupt(INT_FLOAT_UNDERFL);
|
852 |
|
|
return 0;
|
853 |
|
|
}
|
854 |
|
|
else if ((int32_t)exponent1 >= 0xFF) { // overflow
|
855 |
|
|
//if (mask.i & MSK_OVERFL_FLOAT) t->interrupt(INT_OVERFL_FLOAT);
|
856 |
|
|
return inf_f;
|
857 |
|
|
}
|
858 |
|
|
u.exponent = exponent1;
|
859 |
|
|
u.f = nearbyintf(u.f); // round
|
860 |
|
|
if (u.f != 0) u.exponent += b.i; // add b to exponent
|
861 |
|
|
result = u.i;
|
862 |
|
|
}
|
863 |
|
|
else if (t->operandType == 6) { // double
|
864 |
|
|
union {
|
865 |
|
|
uint64_t q;
|
866 |
|
|
double d;
|
867 |
|
|
struct {
|
868 |
|
|
uint64_t mantissa : 52;
|
869 |
|
|
uint64_t exponent : 11;
|
870 |
|
|
uint64_t sign : 1;
|
871 |
|
|
};
|
872 |
|
|
} u;
|
873 |
|
|
u.q = t->parm[1].q; // input a
|
874 |
|
|
if (isnan_d(u.q)) return u.q; // a is nan
|
875 |
|
|
exponent1 = u.exponent;
|
876 |
|
|
if (exponent1 == 0) {
|
877 |
|
|
u.mantissa = 0; // a is zero or subnormal. return zero
|
878 |
|
|
return u.q;
|
879 |
|
|
}
|
880 |
|
|
exponent1 -= b.i; // subtract b from exponent
|
881 |
|
|
if ((int32_t)exponent1 <= 0) { // underflow
|
882 |
|
|
//if (mask.i & MSK_FLOAT_UNDERFL) t->interrupt(INT_FLOAT_UNDERFL);
|
883 |
|
|
return 0;
|
884 |
|
|
}
|
885 |
|
|
else if ((int32_t)exponent1 >= 0x7FF) { // overflow
|
886 |
|
|
//if (mask.i & MSK_OVERFL_FLOAT) t->interrupt(INT_OVERFL_FLOAT);
|
887 |
|
|
return inf_d;
|
888 |
|
|
}
|
889 |
|
|
u.exponent = exponent1;
|
890 |
|
|
u.d = nearbyint(u.d); // round
|
891 |
|
|
if (u.d != 0) u.exponent += b.i; // add b to exponent
|
892 |
|
|
result = u.q;
|
893 |
|
|
}
|
894 |
|
|
else t->interrupt(INT_WRONG_PARAMETERS);
|
895 |
|
|
return result;
|
896 |
|
|
}
|
897 |
|
|
|
898 |
|
|
static uint64_t abs_ (CThread * t) {
|
899 |
|
|
// Absolute value of integer.
|
900 |
|
|
// IM1 determines handling of overflow: 0: wrap around, 1: saturate, 2: zero, 3: trap
|
901 |
|
|
SNum a = t->parm[1]; // x
|
902 |
|
|
SNum b = t->parm[4]; // option
|
903 |
|
|
uint64_t sizemask = dataSizeMask[t->operandType]; // mask for operand size
|
904 |
|
|
uint64_t signbit = (sizemask >> 1) + 1; // just the sign bit
|
905 |
|
|
if (a.q & signbit) {
|
906 |
|
|
// a is negative
|
907 |
|
|
if (t->operandType > 4) { // floating point types
|
908 |
|
|
return a.q & ~signbit; // just remove sign bit
|
909 |
|
|
}
|
910 |
|
|
if ((a.q & sizemask) == signbit) {
|
911 |
|
|
// overflow
|
912 |
|
|
switch (b.b & ~4) {
|
913 |
|
|
case 0: // wrap around
|
914 |
|
|
break;
|
915 |
|
|
case 1: // saturate
|
916 |
|
|
return a.q - 1;
|
917 |
|
|
case 2: // zero
|
918 |
|
|
return 0;
|
919 |
|
|
default:
|
920 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
921 |
|
|
}
|
922 |
|
|
if ((b.b & 4) /* && (t->parm[3].i & MSK_OVERFL_SIGN)*/) { // trap
|
923 |
|
|
t->interrupt(INT_OVERFL_SIGN); // signed overflow
|
924 |
|
|
}
|
925 |
|
|
}
|
926 |
|
|
a.qs = - a.qs; // change sign
|
927 |
|
|
}
|
928 |
|
|
return a.q;
|
929 |
|
|
}
|
930 |
|
|
|
931 |
|
|
static uint64_t fp_category (CThread * t) {
|
932 |
|
|
// Check if floating point numbers belong to the categories indicated by constant
|
933 |
|
|
// 0 ± NAN, 1 ± Zero, 2 −Subnormal, 3 +Subnormal, 4 −Normal, 5 +Normal, 6 −Infinite, 7 +Infinite
|
934 |
|
|
SNum a = t->parm[1]; // x
|
935 |
|
|
SNum b = t->parm[4]; // option
|
936 |
|
|
uint32_t exponent;
|
937 |
|
|
uint8_t category = 0; // detected category bits
|
938 |
|
|
switch (t->operandType) {
|
939 |
|
|
case 2: case 5: // float
|
940 |
|
|
exponent = a.i >> 23 & 0xFF; // isolate exponent
|
941 |
|
|
if (exponent == 0xFF) { // nan or inf
|
942 |
|
|
if (a.i << 9) category = 1; // nan
|
943 |
|
|
else if (a.i >> 31) category = 0x40; // -inf
|
944 |
|
|
else category = 0x80; // + inf
|
945 |
|
|
}
|
946 |
|
|
else if (exponent == 0) {
|
947 |
|
|
if ((a.i << 9) == 0) category = 2; // zero
|
948 |
|
|
else if (a.i >> 31) category = 4; // - subnormal
|
949 |
|
|
else category = 8; // + subnormal
|
950 |
|
|
}
|
951 |
|
|
else if (a.i >> 31) category = 0x10; // - normal
|
952 |
|
|
else category = 0x20; // + normal
|
953 |
|
|
break;
|
954 |
|
|
case 3: case 6: // double
|
955 |
|
|
exponent = a.q >> 52 & 0x7FF; // isolate exponent
|
956 |
|
|
if (exponent == 0x7FF) { // nan or inf
|
957 |
|
|
if (a.q << 12) category = 1; // nan
|
958 |
|
|
else if (a.q >> 63) category = 0x40; // -inf
|
959 |
|
|
else category = 0x80; // + inf
|
960 |
|
|
}
|
961 |
|
|
else if (exponent == 0) {
|
962 |
|
|
if ((a.q << 12) == 0) category = 2; // zero
|
963 |
|
|
else if (a.q >> 63) category = 4; // - subnormal
|
964 |
|
|
else category = 8; // + subnormal
|
965 |
|
|
}
|
966 |
|
|
else if (a.q >> 63) category = 0x10; // - normal
|
967 |
|
|
else category = 0x20; // + normal
|
968 |
|
|
break;
|
969 |
|
|
default:
|
970 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
971 |
|
|
}
|
972 |
|
|
uint8_t result = (category & b.b) != 0; // test if a belongs to any of the indicated categories
|
973 |
|
|
if ((t->operandType & 7) >= 5) t->operandType -= 3; // debug return type is integer
|
974 |
|
|
return (t->numContr & ~(uint64_t)1) | result; // get remaining bits from NUMCONTR
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
static uint64_t broad_ (CThread * t) {
|
978 |
|
|
// 18: Broadcast 8-bit signed constant into all elements of RD with length RS (31 in RS field gives scalar output).
|
979 |
|
|
// 19: broadcast_max. Broadcast 8-bit constant into all elements of RD with maximum vector length.
|
980 |
|
|
uint8_t rd = t->operands[0];
|
981 |
|
|
uint8_t rs = t->operands[4];
|
982 |
|
|
uint8_t rm = t->operands[1]; // mask register
|
983 |
|
|
SNum b = t->parm[2]; // constant
|
984 |
|
|
uint64_t length; // length of destination vector
|
985 |
|
|
if (t->op == 18) { // length given by RS
|
986 |
|
|
length = t->registers[rs];
|
987 |
|
|
if (length > t->MaxVectorLength) length = t->MaxVectorLength;
|
988 |
|
|
}
|
989 |
|
|
else { // length is maximum
|
990 |
|
|
length = t->MaxVectorLength;
|
991 |
|
|
}
|
992 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
993 |
|
|
length = length >> dsizelog << dsizelog; // round down to nearest multiple of operand size
|
994 |
|
|
// set length of destination vector
|
995 |
|
|
t->vectorLength[rd] = (uint32_t)length;
|
996 |
|
|
// loop to set all elements
|
997 |
|
|
for (uint32_t pos = 0; pos < (uint32_t)length; pos += 1 << dsizelog) {
|
998 |
|
|
if ((rm & 0x1F) != 0x1F && !(t->readVectorElement(rm, pos) & 1)) { // mask is zero. get fallback
|
999 |
|
|
if (t->op == 18 || rs >= 31) b.q = 0; // threre is no fallback. write zero
|
1000 |
|
|
else b.q = t->readVectorElement(rs, pos); // rs is fallback
|
1001 |
|
|
}
|
1002 |
|
|
t->writeVectorElement(rd, b.q, pos); // write vector element
|
1003 |
|
|
}
|
1004 |
|
|
t->vect = 4; // stop vector loop
|
1005 |
|
|
t->running = 2; // don't save RD
|
1006 |
|
|
return 0;
|
1007 |
|
|
}
|
1008 |
|
|
|
1009 |
|
|
static uint32_t byteSwap(uint32_t x) { // swap bytes, used by byte_reverse function
|
1010 |
|
|
union {
|
1011 |
|
|
uint32_t i;
|
1012 |
|
|
uint8_t b[4];
|
1013 |
|
|
} a, b;
|
1014 |
|
|
a.i = x;
|
1015 |
|
|
b.b[0] = a.b[3]; b.b[1] = a.b[2]; b.b[2] = a.b[1]; b.b[3] = a.b[0];
|
1016 |
|
|
return b.i;
|
1017 |
|
|
}
|
1018 |
|
|
|
1019 |
|
|
static uint8_t bitSwap(uint8_t x) { // swap bits, used by bit_reverse function
|
1020 |
|
|
x = x >> 4 | x << 4; // swap 4-bit nipples
|
1021 |
|
|
x = (x >> 2 & 0x33) | (x << 2 & 0xCC); // swap 2-bit groups
|
1022 |
|
|
x = (x >> 1 & 0x55) | (x << 1 & 0xAA); // swap single bits
|
1023 |
|
|
return x;
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
static uint64_t byte_reverse (CThread * t) {
|
1027 |
|
|
// Reverse the order of bits or bytes in each element of vector
|
1028 |
|
|
SNum a = t->parm[1]; // value
|
1029 |
|
|
uint8_t IM1 = t->parm[2].b; // immediate operand
|
1030 |
|
|
if (IM1 & 1) {
|
1031 |
|
|
// bit reverse: Reverse the order of bits in each element of vector
|
1032 |
|
|
union {
|
1033 |
|
|
uint64_t q;
|
1034 |
|
|
uint32_t i[2];
|
1035 |
|
|
uint8_t b[8];
|
1036 |
|
|
} u;
|
1037 |
|
|
u.q = a.q;
|
1038 |
|
|
uint8_t t1; uint32_t t2;
|
1039 |
|
|
switch (dataSizeTableLog[t->operandType]) {
|
1040 |
|
|
case 0: // 8 bit
|
1041 |
|
|
u.b[0] = bitSwap(u.b[0]); break;
|
1042 |
|
|
case 1: // 16 bit
|
1043 |
|
|
t1 = bitSwap(u.b[0]); u.b[0] = bitSwap(u.b[1]); u.b[1] = t1; break;
|
1044 |
|
|
case 2: // 32 bit
|
1045 |
|
|
u.i[0] = byteSwap(u.i[0]);
|
1046 |
|
|
for (t1 = 0; t1 < 4; t1++) u.b[t1] = bitSwap(u.b[t1]);
|
1047 |
|
|
break;
|
1048 |
|
|
case 3: // 64 bit
|
1049 |
|
|
t2 = byteSwap(u.i[0]); u.i[0] = byteSwap(u.i[1]); u.i[1] = t2;
|
1050 |
|
|
for (t1 = 0; t1 < 8; t1++) u.b[t1] = bitSwap(u.b[t1]);
|
1051 |
|
|
break;
|
1052 |
|
|
case 4: // 128 bit
|
1053 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1054 |
|
|
}
|
1055 |
|
|
return u.q;
|
1056 |
|
|
}
|
1057 |
|
|
else {
|
1058 |
|
|
// byte reverse: Reverse the order of bytes in each element of a vector
|
1059 |
|
|
uint8_t rs = t->operands[4];
|
1060 |
|
|
uint32_t tmp;
|
1061 |
|
|
switch (dataSizeTableLog[t->operandType]) {
|
1062 |
|
|
case 0: // 8 bit
|
1063 |
|
|
break;
|
1064 |
|
|
case 1: // 16 bit
|
1065 |
|
|
a.s = a.s >> 8 | a.b << 8; break; // swap bytes
|
1066 |
|
|
case 2: // 32 bit
|
1067 |
|
|
a.i = byteSwap(a.i); break;
|
1068 |
|
|
case 3: // 64 bit
|
1069 |
|
|
tmp = byteSwap(a.i); a.q = byteSwap(a.q >> 32) | (uint64_t)tmp << 32;
|
1070 |
|
|
break;
|
1071 |
|
|
case 4: // 128 bit
|
1072 |
|
|
tmp = byteSwap(a.i); t->parm[5].q = byteSwap(a.q >> 32) | (uint64_t)tmp << 32;
|
1073 |
|
|
a.q = t->readVectorElement(rs, t->vectorOffset + 8); // high part of input
|
1074 |
|
|
tmp = byteSwap(a.i); a.q = byteSwap(a.q >> 32) | (uint64_t)tmp << 32;
|
1075 |
|
|
break;
|
1076 |
|
|
}
|
1077 |
|
|
return a.q;
|
1078 |
|
|
}
|
1079 |
|
|
}
|
1080 |
|
|
|
1081 |
|
|
/*
|
1082 |
|
|
static uint64_t truth_tab2 (CThread * t) {
|
1083 |
|
|
// Boolean function of two inputs, given by a truth table
|
1084 |
|
|
SNum a = t->parm[0]; // value
|
1085 |
|
|
SNum b = t->parm[1]; // value
|
1086 |
|
|
SNum c = t->parm[4]; // truth table
|
1087 |
|
|
return ((c.b >> ((a.b & 1) | (b.b & 1) << 1)) & 1) | (a.q & ~uint64_t(1));
|
1088 |
|
|
} */
|
1089 |
|
|
|
1090 |
|
|
static uint64_t bool2bits(CThread * t) {
|
1091 |
|
|
// The boolean vector RT is packed into the lower n bits of RD,
|
1092 |
|
|
// taking bit 0 of each element
|
1093 |
|
|
// The length of RD will be at least sufficient to contain n bits.
|
1094 |
|
|
|
1095 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
1096 |
|
|
uint8_t rt = t->operands[4]; // RT = source vector
|
1097 |
|
|
//uint8_t rs = t->operands[4]; // RS indicates length
|
1098 |
|
|
uint8_t * destination = (uint8_t*)t->vectors.buf() + (int64_t)rd * t->MaxVectorLength; // address of RD data
|
1099 |
|
|
//uint64_t length = t->registers[rs]; // value of RS = length of destination
|
1100 |
|
|
uint32_t length = t->vectorLength[rt]; // length of source
|
1101 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1102 |
|
|
//if (length > t->MaxVectorLength) length = t->MaxVectorLength; // limit length
|
1103 |
|
|
uint32_t num = length >> dsizelog; // number of elements
|
1104 |
|
|
length = num << dsizelog; // round down length to nearest multiple of element size
|
1105 |
|
|
// collect bits into blocks of 32 bits
|
1106 |
|
|
uint32_t bitblock = 0;
|
1107 |
|
|
// loop through elements of source vector
|
1108 |
|
|
for (uint32_t i = 0; i < num; i++) {
|
1109 |
|
|
uint8_t bit = t->readVectorElement(rt, i << dsizelog) & 1;
|
1110 |
|
|
uint8_t bitindex = i & 31; // bit position with 32 bit block of destination
|
1111 |
|
|
bitblock |= bit << bitindex; // add bit to bitblock
|
1112 |
|
|
if (bitindex == 31 || i == num - 1) { // last bit in this block
|
1113 |
|
|
*(uint32_t*)(destination + (i/8 & -4)) = bitblock; // write 32 bit block to destination
|
1114 |
|
|
bitblock = 0; // start next block
|
1115 |
|
|
}
|
1116 |
|
|
}
|
1117 |
|
|
// round up length of destination to multiple of 4 bytes
|
1118 |
|
|
uint32_t destinationLength = ((num+7)/8 + 3) & -4;
|
1119 |
|
|
if (destinationLength == 0) {
|
1120 |
|
|
destinationLength = 4; *(uint32_t*)destination = 0;
|
1121 |
|
|
}
|
1122 |
|
|
// set length of destination vector (must be done after reading source because source and destination may be the same)
|
1123 |
|
|
t->vectorLength[rd] = destinationLength;
|
1124 |
|
|
t->vect = 4; // stop vector loop
|
1125 |
|
|
t->running = 2; // don't save RD
|
1126 |
|
|
if ((t->returnType & 7) >= 5) t->returnType -= 3; // make return type integer
|
1127 |
|
|
return 0;
|
1128 |
|
|
}
|
1129 |
|
|
|
1130 |
|
|
static uint64_t bool_reduce(CThread * t) {
|
1131 |
|
|
// integer vector: bool_reduce. The boolean vector RT is reduced by combining bit 0 of all elements.
|
1132 |
|
|
// The output is a scalar integer where bit 0 is the AND combination of all the bits,
|
1133 |
|
|
// and bit 1 is the OR combination of all the bits.
|
1134 |
|
|
// The remaining bits are reserved for future use
|
1135 |
|
|
// float vector: category_reduce: Each bit in RD indicates that at least one element in RT belongs
|
1136 |
|
|
// to a certain category:
|
1137 |
|
|
// bit 0: NAN, bit 1: zero, bit 2: - subnormal, bitt 3: + subnormal,
|
1138 |
|
|
// bit 4: - normal, bit 5: + normal, bit 6: - INF, bit 7: + INF
|
1139 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
1140 |
|
|
uint8_t rt = t->operands[4]; // RT = source vector
|
1141 |
|
|
//uint8_t rs = t->operands[4]; // RS indicates length
|
1142 |
|
|
uint8_t bitOR = 0; // OR combination of all bits
|
1143 |
|
|
uint8_t bitAND = 1; // AND combination of all bits
|
1144 |
|
|
uint64_t result = 0; // result value
|
1145 |
|
|
uint8_t * source = (uint8_t*)t->vectors.buf() + rt*t->MaxVectorLength; // address of RT data
|
1146 |
|
|
//if (length > t->MaxVectorLength) length = t->MaxVectorLength; // limit length
|
1147 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType]; // vector element size
|
1148 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1149 |
|
|
uint32_t sourceLength = t->vectorLength[rt]; // length of source vector
|
1150 |
|
|
//uint64_t length = t->registers[rs]; // value of RS = length of destination
|
1151 |
|
|
uint32_t length = sourceLength; // length of source vector
|
1152 |
|
|
length = length >> dsizelog << dsizelog; // round down to nearest multiple of element size
|
1153 |
|
|
/*if (length > sourceLength) {
|
1154 |
|
|
length = sourceLength; // limit to length of source vector
|
1155 |
|
|
bitAND = 0; // bits beyond vector are 0
|
1156 |
|
|
} */
|
1157 |
|
|
switch (t->operandType) {
|
1158 |
|
|
case 0: case 1: case 2: case 3: case 4: // integer types: bool_reduce
|
1159 |
|
|
for (uint32_t pos = 0; pos < length; pos += elementSize) { // loop through elements of source vector
|
1160 |
|
|
uint8_t bit = *(source + pos) & 1; // get bit from source vector element
|
1161 |
|
|
bitOR |= bit; bitAND &= bit;
|
1162 |
|
|
}
|
1163 |
|
|
result = bitAND | bitOR << 1;
|
1164 |
|
|
break;
|
1165 |
|
|
case 5: // float type: category_reduce
|
1166 |
|
|
for (uint32_t pos = 0; pos < length; pos += elementSize) { // loop through elements of source vector
|
1167 |
|
|
uint32_t val = *(int32_t*)(source + pos);
|
1168 |
|
|
uint8_t exponent = val >> 23 & 0xFF; // isolate exponent
|
1169 |
|
|
uint8_t category;
|
1170 |
|
|
if (exponent == 0xFF) { // nan or inf
|
1171 |
|
|
if (val << 9) category = 1; // nan
|
1172 |
|
|
else if (val >> 31) category = 0x40; // -inf
|
1173 |
|
|
else category = 0x80; // + inf
|
1174 |
|
|
}
|
1175 |
|
|
else if (exponent == 0) {
|
1176 |
|
|
if ((val << 9) == 0) category = 2; // zero
|
1177 |
|
|
else if (val >> 31) category = 4; // - subnormal
|
1178 |
|
|
else category = 8; // + subnormal
|
1179 |
|
|
}
|
1180 |
|
|
else if (val >> 31) category = 0x10; // - normal
|
1181 |
|
|
else category = 0x20; // + normal
|
1182 |
|
|
result |= category; // combine categories
|
1183 |
|
|
}
|
1184 |
|
|
break;
|
1185 |
|
|
case 6: // double type: category_reduce
|
1186 |
|
|
for (uint32_t pos = 0; pos < length; pos += elementSize) { // loop through elements of source vector
|
1187 |
|
|
uint64_t val = *(int64_t*)(source + pos);
|
1188 |
|
|
uint32_t exponent = val >> 52 & 0x7FF; // isolate exponent
|
1189 |
|
|
uint8_t category;
|
1190 |
|
|
if (exponent == 0x7FF) { // nan or inf
|
1191 |
|
|
if (val << 12) category = 1; // nan
|
1192 |
|
|
else if (val >> 63) category = 0x40; // -inf
|
1193 |
|
|
else category = 0x80; // + inf
|
1194 |
|
|
}
|
1195 |
|
|
else if (exponent == 0) {
|
1196 |
|
|
if ((val << 12) == 0) category = 2; // zero
|
1197 |
|
|
else if (val >> 63) category = 4; // - subnormal
|
1198 |
|
|
else category = 8; // + subnormal
|
1199 |
|
|
}
|
1200 |
|
|
else if (val >> 63) category = 0x10; // - normal
|
1201 |
|
|
else category = 0x20; // + normal
|
1202 |
|
|
result |= category; // combine categories
|
1203 |
|
|
}
|
1204 |
|
|
break;
|
1205 |
|
|
default:
|
1206 |
|
|
t->interrupt(INT_WRONG_PARAMETERS);
|
1207 |
|
|
}
|
1208 |
|
|
t->vectorLength[rd] = 8; // set length of destination vector to 64 bits
|
1209 |
|
|
uint8_t * destination = (uint8_t*)t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
1210 |
|
|
*(uint64_t*)destination = result; // write 64 bits to destination
|
1211 |
|
|
// (using writeVectorElement would possibly write less than 64 bits, leaving some of the destination vector unchanged)
|
1212 |
|
|
t->vect = 4; // stop vector loop
|
1213 |
|
|
t->running = 2; // don't save RD. It has already been saved
|
1214 |
|
|
if ((t->returnType & 7) >= 5) t->returnType -= 3; // make return type integer
|
1215 |
|
|
return result;
|
1216 |
|
|
}
|
1217 |
|
|
|
1218 |
|
|
|
1219 |
|
|
static uint64_t push_v(CThread * t) {
|
1220 |
|
|
// push one or more vector registers on a stack pointed to by rd
|
1221 |
|
|
if (t->parm[2].i & 0xE0) {
|
1222 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); return 0; // forward-growing stack not supported for vector registers
|
1223 |
|
|
}
|
1224 |
|
|
uint8_t reg0 = t->operands[0] & 0x1F; // pointer register
|
1225 |
|
|
uint8_t reg1 = t->operands[4] & 0x1F; // first push register
|
1226 |
|
|
uint8_t reglast = t->parm[2].i & 0x1F; // last push register
|
1227 |
|
|
uint8_t reg; // current regiser
|
1228 |
|
|
uint32_t length; // length of current register
|
1229 |
|
|
uint32_t length2; // length rounded up to nearest multiple of stack word size
|
1230 |
|
|
uint64_t pointer = t->registers[reg0];
|
1231 |
|
|
const int stack_word_size = 8;
|
1232 |
|
|
t->operandType = 3; // must be 64 bits.
|
1233 |
|
|
// loop through registers to push
|
1234 |
|
|
for (reg = reg1; reg <= reglast; reg++) {
|
1235 |
|
|
length = t->vectorLength[reg];
|
1236 |
|
|
length2 = (length + stack_word_size - 1) & -stack_word_size; // round up to multiple of 8
|
1237 |
|
|
if (length != 0) {
|
1238 |
|
|
pointer -= length2;
|
1239 |
|
|
for (uint32_t j = 0; j < length2; j += 8) {
|
1240 |
|
|
uint64_t value = t->readVectorElement(reg, j);
|
1241 |
|
|
t->writeMemoryOperand(value, pointer + j); // write vector
|
1242 |
|
|
}
|
1243 |
|
|
t->returnType = 0x113;
|
1244 |
|
|
t->operands[0] = reg;
|
1245 |
|
|
t->listResult(0);
|
1246 |
|
|
}
|
1247 |
|
|
pointer -= stack_word_size;
|
1248 |
|
|
t->writeMemoryOperand(length, pointer); // write length
|
1249 |
|
|
t->returnType = 0x13;
|
1250 |
|
|
t->listResult(length);
|
1251 |
|
|
}
|
1252 |
|
|
t->registers[reg0] = pointer;
|
1253 |
|
|
t->returnType = 0x13;
|
1254 |
|
|
t->operands[0] = reg0;
|
1255 |
|
|
t->vect = 4; // stop vector loop
|
1256 |
|
|
t->running = 2; // don't store result register
|
1257 |
|
|
return pointer;
|
1258 |
|
|
}
|
1259 |
|
|
|
1260 |
|
|
static uint64_t pop_v(CThread * t) {
|
1261 |
|
|
// pop one or more vector registers from a stack pointed to by rd
|
1262 |
|
|
if (t->parm[2].i & 0xE0) {
|
1263 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); return 0; // forward-growing stack not supported for vector registers
|
1264 |
|
|
}
|
1265 |
|
|
uint8_t reg0 = t->operands[0] & 0x1F; // pointer register
|
1266 |
|
|
uint8_t reg1 = t->operands[4] & 0x1F; // first pop register
|
1267 |
|
|
uint8_t reglast = t->parm[2].i & 0x1F; // last pop register
|
1268 |
|
|
uint8_t reg; // current regiser
|
1269 |
|
|
uint32_t length; // length of current register
|
1270 |
|
|
uint32_t length2; // length rounded up to nearest multiple of stack word size
|
1271 |
|
|
uint64_t pointer = t->registers[reg0]; // value of stack pointer or pointer register
|
1272 |
|
|
const int stack_word_size = 8;
|
1273 |
|
|
t->operandType = 3; // must be 64 bits.
|
1274 |
|
|
// reverse loop through registers to pop
|
1275 |
|
|
for (reg = reglast; reg >= reg1; reg--) {
|
1276 |
|
|
length = (uint32_t)t->readMemoryOperand(pointer); // read length
|
1277 |
|
|
length2 = (length + stack_word_size - 1) & -stack_word_size; // round up to multiple of 8
|
1278 |
|
|
t->vectorLength[reg] = length; // set vector length
|
1279 |
|
|
pointer += stack_word_size; // pop length
|
1280 |
|
|
if (length != 0) {
|
1281 |
|
|
for (uint32_t j = 0; j < length2; j += 8) { // read vector
|
1282 |
|
|
uint64_t value = t->readMemoryOperand(pointer + j); // read from memory
|
1283 |
|
|
t->writeVectorElement(reg, value, j);
|
1284 |
|
|
}
|
1285 |
|
|
pointer += length2;
|
1286 |
|
|
t->returnType = 0x113;
|
1287 |
|
|
t->operands[0] = reg;
|
1288 |
|
|
t->listResult(0);
|
1289 |
|
|
}
|
1290 |
|
|
t->returnType = 0x13;
|
1291 |
|
|
t->listResult(length);
|
1292 |
|
|
}
|
1293 |
|
|
t->registers[reg0] = pointer;
|
1294 |
|
|
t->returnType = 0x13;
|
1295 |
|
|
t->operands[0] = reg0;
|
1296 |
|
|
t->vect = 4; // stop vector loop
|
1297 |
|
|
t->running = 2; // don't store result register
|
1298 |
|
|
return pointer;
|
1299 |
|
|
}
|
1300 |
|
|
|
1301 |
|
|
static uint64_t clear_(CThread * t) {
|
1302 |
|
|
// clear one or more vector registers
|
1303 |
|
|
uint8_t reg1 = t->operands[4] & 0x1F; // first register
|
1304 |
|
|
uint8_t reglast = t->parm[2].i & 0x1F; // last register
|
1305 |
|
|
uint8_t reg; // current regiser
|
1306 |
|
|
for (reg = reg1; reg <= reglast; reg++) {
|
1307 |
|
|
t->vectorLength[reg] = 0;
|
1308 |
|
|
}
|
1309 |
|
|
t->vect = 4; // stop vector loop
|
1310 |
|
|
t->running = 2; // don't store result register
|
1311 |
|
|
t->returnType = 0;
|
1312 |
|
|
return 0;
|
1313 |
|
|
}
|
1314 |
|
|
|
1315 |
|
|
|
1316 |
|
|
// Format 1.4 C. One vector register and a broadcast 16-bit immediate operand.
|
1317 |
|
|
|
1318 |
|
|
static uint64_t move_i16 (CThread * t) {
|
1319 |
|
|
// Move 16 bit integer constant to 16-bit scalar
|
1320 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
1321 |
|
|
t->vectorLength[rd] = 2; // set length of destination
|
1322 |
|
|
t->vect = 4; // stop vector loop
|
1323 |
|
|
return t->parm[2].q;
|
1324 |
|
|
}
|
1325 |
|
|
|
1326 |
|
|
//static uint64_t add_i16 (CThread * t) {return f_add(t);} // Add broadcasted 16 bit constant to 16-bit vector elements
|
1327 |
|
|
|
1328 |
|
|
static uint64_t and_i16 (CThread * t) {
|
1329 |
|
|
// AND broadcasted 16 bit constant
|
1330 |
|
|
return t->parm[1].q & t->parm[2].q;
|
1331 |
|
|
}
|
1332 |
|
|
|
1333 |
|
|
static uint64_t or_i16 (CThread * t) {
|
1334 |
|
|
// OR broadcasted 16 bit constant
|
1335 |
|
|
return t->parm[1].q | t->parm[2].q;
|
1336 |
|
|
}
|
1337 |
|
|
|
1338 |
|
|
static uint64_t xor_i16 (CThread * t) {
|
1339 |
|
|
// XOR broadcasted 16 bit constant
|
1340 |
|
|
return t->parm[1].q ^ t->parm[2].q;
|
1341 |
|
|
}
|
1342 |
|
|
|
1343 |
|
|
static uint64_t add_h16 (CThread * t) {
|
1344 |
|
|
// add constant to half precision vector
|
1345 |
|
|
return f_add_h(t);
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
static uint64_t mul_h16 (CThread * t) {
|
1349 |
|
|
// multiply half precision vector with constant
|
1350 |
|
|
return f_mul_h(t);
|
1351 |
|
|
}
|
1352 |
|
|
|
1353 |
|
|
static uint64_t move_8shift8 (CThread * t) {
|
1354 |
|
|
// RD = IM2 << IM1. Sign-extend IM2 and shift left by the unsigned value IM1 to make 32/64 bit scalar
|
1355 |
|
|
// 40: 32 bit, 41: 64 bit
|
1356 |
|
|
uint8_t rd = t->operands[0]; // destination vector
|
1357 |
|
|
t->vectorLength[rd] = (t->op & 1) ? 8 : 4; // set length of destination
|
1358 |
|
|
t->vect = 4; // stop vector loop
|
1359 |
|
|
return (uint64_t)(int64_t(t->parm[2].ss) >> 8 << t->parm[2].bs); // shift and sign extend
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
static uint64_t add_8shift8 (CThread * t) {
|
1363 |
|
|
// RD += IM2 << IM1. Sign-extend IM2 and shift left by the unsigned value IM1, add to 32/64 bit vector
|
1364 |
|
|
// 42: 32 bit, 43: 64 bit
|
1365 |
|
|
int64_t save2 = t->parm[2].qs;
|
1366 |
|
|
t->parm[2].qs = int64_t(t->parm[2].ss) >> 8 << t->parm[2].bs; // shift and sign extend
|
1367 |
|
|
int64_t result = f_add(t); // use f_add for getting overflow traps
|
1368 |
|
|
t->parm[2].qs = save2; // restore constant
|
1369 |
|
|
return result;
|
1370 |
|
|
}
|
1371 |
|
|
|
1372 |
|
|
static uint64_t and_8shift8 (CThread * t) {
|
1373 |
|
|
// RD &= IM2 << IM1. Sign-extend IM2 and shift left by the unsigned value IM1, AND with 32/64 bit vector
|
1374 |
|
|
// 44: 32 bit, 45: 64 bit
|
1375 |
|
|
int64_t a = int64_t(t->parm[2].ss) >> 8 << t->parm[2].bs; // shift and sign extend
|
1376 |
|
|
return t->parm[1].q & a;
|
1377 |
|
|
}
|
1378 |
|
|
|
1379 |
|
|
static uint64_t or_8shift8 (CThread * t) {
|
1380 |
|
|
// RD |= IM2 << IM1. Sign-extend IM2 and shift left by the unsigned value IM1, OR with 32/64 bit vector
|
1381 |
|
|
// 46: 32 bit, 47: 64 bit
|
1382 |
|
|
int64_t a = int64_t(t->parm[2].ss) >> 8 << t->parm[2].bs; // shift and sign extend
|
1383 |
|
|
return t->parm[1].q | a;
|
1384 |
|
|
}
|
1385 |
|
|
|
1386 |
|
|
static uint64_t xor_8shift8 (CThread * t) {
|
1387 |
|
|
// RD |= IM2 << IM1. Sign-extend IM2 and shift left by the unsigned value IM1, XOR with 32/64 bit vector
|
1388 |
|
|
// 48: 32 bit, 49: 64 bit
|
1389 |
|
|
int64_t a = int64_t(t->parm[2].ss) >> 8 << t->parm[2].bs; // shift and sign extend
|
1390 |
|
|
return t->parm[1].q ^ a;
|
1391 |
|
|
}
|
1392 |
|
|
|
1393 |
|
|
static uint64_t move_half2float (CThread * t) {
|
1394 |
|
|
// Move converted half precision floating point constant to single precision scalar
|
1395 |
|
|
t->vectorLength[t->operands[0]] = 4; // set length of destination
|
1396 |
|
|
t->vectorLengthR = 4;
|
1397 |
|
|
t->vect = 4; // stop vector loop
|
1398 |
|
|
return t->parm[2].q;
|
1399 |
|
|
}
|
1400 |
|
|
|
1401 |
|
|
static uint64_t move_half2double (CThread * t) {
|
1402 |
|
|
// Move converted half precision floating point constant to double precision scalar
|
1403 |
|
|
t->vectorLength[t->operands[0]] = 8; // set length of destination
|
1404 |
|
|
t->vect = 4; // stop vector loop
|
1405 |
|
|
return t->parm[2].q;
|
1406 |
|
|
}
|
1407 |
|
|
|
1408 |
|
|
static uint64_t add_half2float (CThread * t) {
|
1409 |
|
|
// Add broadcast half precision floating point constant to single precision vector
|
1410 |
|
|
return f_add(t);
|
1411 |
|
|
}
|
1412 |
|
|
|
1413 |
|
|
static uint64_t add_half2double (CThread * t) {
|
1414 |
|
|
// Add broadcast half precision floating point constant to double precision vector
|
1415 |
|
|
return f_add(t);
|
1416 |
|
|
}
|
1417 |
|
|
|
1418 |
|
|
static uint64_t mul_half2float (CThread * t) {
|
1419 |
|
|
// multiply broadcast half precision floating point constant with single precision vector
|
1420 |
|
|
return f_mul(t);
|
1421 |
|
|
}
|
1422 |
|
|
|
1423 |
|
|
static uint64_t mul_half2double (CThread * t) {
|
1424 |
|
|
// multiply broadcast half precision floating point constant with double precision vector
|
1425 |
|
|
return f_mul(t);
|
1426 |
|
|
}
|
1427 |
|
|
|
1428 |
|
|
// Format 2.6 A. Three vector registers and a 32-bit immediate operand.
|
1429 |
|
|
|
1430 |
|
|
static uint64_t load_hi (CThread * t) {
|
1431 |
|
|
// Make vector of two elements. dest[0] = 0, dest[1] = IM2.
|
1432 |
|
|
uint8_t rd = t->operands[0];
|
1433 |
|
|
uint8_t dsize = dataSizeTable[t->operandType];
|
1434 |
|
|
t->vectorLength[rd] = dsize * 2; // set length of destination
|
1435 |
|
|
t->writeVectorElement(rd, 0, 0); // write 0
|
1436 |
|
|
t->writeVectorElement(rd, t->parm[2].q, dsize);// write IM2
|
1437 |
|
|
t->vect = 4; // stop vector loop
|
1438 |
|
|
t->running = 2; // don't save RD
|
1439 |
|
|
return 0;
|
1440 |
|
|
}
|
1441 |
|
|
|
1442 |
|
|
static uint64_t insert_hi (CThread * t) {
|
1443 |
|
|
// Make vector of two elements. dest[0] = src1[0], dest[1] = IM2.
|
1444 |
|
|
uint8_t rd = t->operands[0];
|
1445 |
|
|
uint8_t dsize = dataSizeTable[t->operandType];
|
1446 |
|
|
t->vectorLength[rd] = dsize * 2; // set length of destination
|
1447 |
|
|
t->writeVectorElement(rd, t->parm[1].q, 0); // write src1
|
1448 |
|
|
t->writeVectorElement(rd, t->parm[2].q, dsize);// write IM2
|
1449 |
|
|
t->vect = 4; // stop vector loop
|
1450 |
|
|
t->running = 2; // don't save RD
|
1451 |
|
|
return 0;
|
1452 |
|
|
}
|
1453 |
|
|
|
1454 |
|
|
static uint64_t make_mask (CThread * t) {
|
1455 |
|
|
// Make vector where bit 0 of each element comes from bits in IM2, the remaining bits come from RT.
|
1456 |
|
|
SNum m = t->parm[3]; // mask or numcontr
|
1457 |
|
|
SNum b = t->parm[2]; // constant operand
|
1458 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1459 |
|
|
uint32_t elementNum = t->vectorOffset >> dsizelog; // index to vector element
|
1460 |
|
|
if ((t->operandType & 7) >= 5) t->operandType -= 3; // debug return type is integer
|
1461 |
|
|
return (m.q & ~(uint64_t)1) | (b.i >> (elementNum & 31) & 1);
|
1462 |
|
|
}
|
1463 |
|
|
|
1464 |
|
|
static uint64_t replace_ (CThread * t) {
|
1465 |
|
|
// Replace elements in RT by constant IM2
|
1466 |
|
|
// format 2.6: 32 bits, format 3.1: 64 bits
|
1467 |
|
|
return t->parm[2].q;
|
1468 |
|
|
}
|
1469 |
|
|
|
1470 |
|
|
static uint64_t replace_even (CThread * t) {
|
1471 |
|
|
// Replace even-numbered elements in RT by constant IM2
|
1472 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1473 |
|
|
uint32_t elementNum = t->vectorOffset >> dsizelog; // index to vector element
|
1474 |
|
|
return (elementNum & 1) ? t->parm[1].q : t->parm[2].q;
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
static uint64_t replace_odd (CThread * t) {
|
1478 |
|
|
// Replace odd-numbered elements in RT by constant IM2
|
1479 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1480 |
|
|
uint32_t elementNum = t->vectorOffset >> dsizelog; // index to vector element
|
1481 |
|
|
return (elementNum & 1) ? t->parm[2].q : t->parm[1].q;
|
1482 |
|
|
}
|
1483 |
|
|
|
1484 |
|
|
static uint64_t broadcast_32 (CThread * t) {
|
1485 |
|
|
// Broadcast 32-bit or 64 -bit constant into all elements of RD with length RS (31 in RS field gives scalar output).
|
1486 |
|
|
uint8_t rd = t->operands[0];
|
1487 |
|
|
uint8_t rs = t->operands[4];
|
1488 |
|
|
uint8_t rm = t->operands[1]; // mask register
|
1489 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType];
|
1490 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1491 |
|
|
uint64_t length; // length of destination
|
1492 |
|
|
int64_t value;
|
1493 |
|
|
if (rs == 31) length = elementSize;
|
1494 |
|
|
else length = t->registers[rs] << dsizelog >> dsizelog; // round length to multiple of elementSize
|
1495 |
|
|
if (length > t->MaxVectorLength) length = t->MaxVectorLength;
|
1496 |
|
|
t->vectorLength[rd] = (uint32_t)length; // set length of destination
|
1497 |
|
|
for (uint32_t pos = 0; pos < length; pos += elementSize) { // loop through vector
|
1498 |
|
|
if (rm >= 7 || (t->readVectorElement(rm, pos) & 1)) value = t->parm[2].qs; // check mask
|
1499 |
|
|
else value = 0;
|
1500 |
|
|
t->writeVectorElement(rd, value, pos); // write to destination
|
1501 |
|
|
}
|
1502 |
|
|
t->vect = 4; // stop vector loop
|
1503 |
|
|
t->running = 2; // don't save RD
|
1504 |
|
|
return 0;
|
1505 |
|
|
}
|
1506 |
|
|
|
1507 |
|
|
static uint64_t permute (CThread * t) {
|
1508 |
|
|
// The vector elements of RS are permuted within each block of size RT bytes.
|
1509 |
|
|
// The number of elements in each block, n = RT / OS
|
1510 |
|
|
// format 2.2.6 op 1.1: index vector is last operand
|
1511 |
|
|
// format 2.6 op 8: index vector is constant IM2, 4 bits for each element
|
1512 |
|
|
uint8_t rd = t->operands[0]; // destination
|
1513 |
|
|
uint8_t rm = t->operands[1]; // mask register
|
1514 |
|
|
uint8_t vin; // input data register
|
1515 |
|
|
uint8_t vpat = 0; // pattern register
|
1516 |
|
|
uint8_t bs; // block size, g.p. register
|
1517 |
|
|
uint32_t pattern = 0; // IM2 = pattern, if constant
|
1518 |
|
|
bool constPat = false; // pattern is a constant
|
1519 |
|
|
if (t->fInstr->format2 == 0x226) {
|
1520 |
|
|
vin = t->operands[3]; // ru = input data
|
1521 |
|
|
vpat = t->operands[4]; // rs = pattern
|
1522 |
|
|
bs = t->operands[5]; // block size, g.p. register
|
1523 |
|
|
}
|
1524 |
|
|
else { // format 2.6
|
1525 |
|
|
vin = t->operands[3]; // rs = input data
|
1526 |
|
|
bs = t->operands[4]; // block size, g.p. register
|
1527 |
|
|
pattern = t->parm[4].i; // IM2 = pattern, if constant
|
1528 |
|
|
constPat = true;
|
1529 |
|
|
}
|
1530 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1531 |
|
|
//uint32_t elementSize = 1 << dsizelog;
|
1532 |
|
|
uint32_t length = t->vectorLength[vin]; // vector length
|
1533 |
|
|
t->vectorLength[rd] = length; // set length of destination
|
1534 |
|
|
int8_t * source = t->vectors.buf() + (uint32_t)(vin & 0x1F) * t->MaxVectorLength; // address of source data vector
|
1535 |
|
|
if (vin == rd) {
|
1536 |
|
|
// source and destination are the same. Make a temporary copy of source to avoid overwriting
|
1537 |
|
|
memcpy(t->tempBuffer, source, length);
|
1538 |
|
|
source = t->tempBuffer;
|
1539 |
|
|
}
|
1540 |
|
|
uint64_t blocksize = t->registers[bs]; // bytes per block
|
1541 |
|
|
uint64_t value; // value of element
|
1542 |
|
|
uint64_t index; // index to source element
|
1543 |
|
|
if (blocksize == 0 || (blocksize & (blocksize-1)) || blocksize > t->MaxVectorLength) {
|
1544 |
|
|
t->interrupt(INT_WRONG_PARAMETERS); // RS must be a power of 2
|
1545 |
|
|
}
|
1546 |
|
|
else {
|
1547 |
|
|
uint32_t num = (uint32_t)blocksize >> dsizelog; // elements per block
|
1548 |
|
|
for (uint32_t block = 0; block < length; block += (uint32_t)blocksize) { // loop through blocks
|
1549 |
|
|
for (uint32_t element = 0; element < num; element++) { // loop through elements within block
|
1550 |
|
|
if (constPat) { // get index from constant
|
1551 |
|
|
index = (pattern >> (element&7)*4) & 0xF; // index to select block element
|
1552 |
|
|
}
|
1553 |
|
|
else { // get index from vector
|
1554 |
|
|
index = t->readVectorElement(vpat, block + (element << dsizelog));
|
1555 |
|
|
}
|
1556 |
|
|
if (index < num && (rm == 7 || t->readVectorElement(rm, block + (element << dsizelog)) & 1)) { // check mask
|
1557 |
|
|
value = *(uint64_t*)(source + block + ((uint32_t)index << dsizelog)); // pick indexed element from source vector
|
1558 |
|
|
}
|
1559 |
|
|
else value = 0; // index out of range or mask = 0
|
1560 |
|
|
t->writeVectorElement(rd, value, block + (element << dsizelog)); // write destination
|
1561 |
|
|
}
|
1562 |
|
|
}
|
1563 |
|
|
}
|
1564 |
|
|
t->vect = 4; // stop vector loop
|
1565 |
|
|
t->running = 2; // don't save RD
|
1566 |
|
|
return 0;
|
1567 |
|
|
}
|
1568 |
|
|
|
1569 |
|
|
/*
|
1570 |
|
|
static uint64_t replace_bits (CThread * t) {
|
1571 |
|
|
// Replace a group of contiguous bits in RT by a specified constant
|
1572 |
|
|
SNum a = t->parm[1]; // input operand
|
1573 |
|
|
SNum b = t->parm[2]; // input constant
|
1574 |
|
|
uint64_t val = b.s; // value of replacement bits
|
1575 |
|
|
uint8_t pos = uint8_t(b.i >> 16); // position of replacement
|
1576 |
|
|
uint8_t num = uint8_t(b.i >> 24); // number of consecutive bits to replace
|
1577 |
|
|
uint64_t mask = ((uint64_t)1 << num) - 1; // mask with num 1-bits
|
1578 |
|
|
return (a.q & ~(mask<<pos)) | ((val & mask) << pos);
|
1579 |
|
|
}*/
|
1580 |
|
|
|
1581 |
|
|
// Format 2.5 A. Single format instructions with memory operands or mixed register types
|
1582 |
|
|
|
1583 |
|
|
static uint64_t store_i32 (CThread * t) {
|
1584 |
|
|
// Store 32-bit constant IM2 to memory operand [RS+IM1]
|
1585 |
|
|
uint64_t value = t->parm[2].q;
|
1586 |
|
|
if ((t->parm[3].b & 1) == 0) value = 0; // check mask
|
1587 |
|
|
t->writeMemoryOperand(value, t->memAddress);
|
1588 |
|
|
t->running = 2; // don't save RD
|
1589 |
|
|
t->returnType = (t->returnType & 7) | 0x20;
|
1590 |
|
|
return 0;
|
1591 |
|
|
}
|
1592 |
|
|
|
1593 |
|
|
//static uint64_t fence_ (CThread * t) {return f_nop(t);}
|
1594 |
|
|
|
1595 |
|
|
static uint64_t compare_swap (CThread * t) {
|
1596 |
|
|
// Atomic compare and exchange with address [RS+IM2]
|
1597 |
|
|
uint64_t val1 = t->parm[0].q;
|
1598 |
|
|
uint64_t val2 = t->parm[1].q;
|
1599 |
|
|
// to do: use intrinsic compareandexchange or mutex or pause all threads if multiple threads
|
1600 |
|
|
uint64_t address = t->memAddress;
|
1601 |
|
|
uint64_t sizemask = dataSizeMask[t->operandType]; // mask for operand size
|
1602 |
|
|
uint64_t val3 = t->readMemoryOperand(address); // read value from memory
|
1603 |
|
|
if (((val3 ^ val1) & sizemask) == 0) { // value match
|
1604 |
|
|
t->writeMemoryOperand(val2, address); // write new value to memory
|
1605 |
|
|
}
|
1606 |
|
|
t->vect = 4; // stop vector loop
|
1607 |
|
|
return val3; // return old value
|
1608 |
|
|
}
|
1609 |
|
|
|
1610 |
|
|
static uint64_t read_insert (CThread * t) {
|
1611 |
|
|
// Replace one element in vector RD, starting at offset RT*OS, with scalar memory operand [RS+IM2]
|
1612 |
|
|
uint8_t rd = t->operands[0];
|
1613 |
|
|
uint8_t rs = t->operands[4];
|
1614 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType];
|
1615 |
|
|
uint64_t value = t->readMemoryOperand(t->memAddress);
|
1616 |
|
|
uint64_t pos = t->registers[rs] * elementSize;
|
1617 |
|
|
if (pos < t->vectorLength[rd]) {
|
1618 |
|
|
t->writeVectorElement(rd, value, (uint32_t)pos);
|
1619 |
|
|
}
|
1620 |
|
|
t->vect = 4; // stop vector loop
|
1621 |
|
|
t->running = 2; // don't save RD
|
1622 |
|
|
return 0;
|
1623 |
|
|
}
|
1624 |
|
|
|
1625 |
|
|
static uint64_t extract_store (CThread * t) {
|
1626 |
|
|
// Extract one element from vector RD, starting at offset RT*OS, with size OS into memory operand [RS+IM2]
|
1627 |
|
|
uint8_t rd = t->operands[0];
|
1628 |
|
|
uint8_t rs = t->operands[4];
|
1629 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType];
|
1630 |
|
|
uint64_t pos = t->registers[rs] * elementSize;
|
1631 |
|
|
uint64_t value = t->readVectorElement(rd, (uint32_t)pos);
|
1632 |
|
|
t->writeMemoryOperand(value, t->memAddress);
|
1633 |
|
|
t->returnType = (t->returnType & 7) | 0x20; // debug return type is memory
|
1634 |
|
|
t->vect = 4; // stop vector loop
|
1635 |
|
|
t->running = 2; // don't save RD
|
1636 |
|
|
t->vectorLengthR = elementSize; // size of memory destination
|
1637 |
|
|
return 0;
|
1638 |
|
|
}
|
1639 |
|
|
|
1640 |
|
|
|
1641 |
|
|
// Format 2.2.6 E. Four vector registers
|
1642 |
|
|
|
1643 |
|
|
static uint64_t concatenate (CThread * t) {
|
1644 |
|
|
// A vector RU of length RT and a vector RS of length RT are concatenated into a vector RD of length 2*RT.
|
1645 |
|
|
uint8_t rd = t->operands[0];
|
1646 |
|
|
uint8_t ru = t->operands[3];
|
1647 |
|
|
uint8_t rs = t->operands[4];
|
1648 |
|
|
uint8_t rt = t->operands[5];
|
1649 |
|
|
uint64_t length1 = t->registers[rt];
|
1650 |
|
|
if (length1 > t->MaxVectorLength) length1 = t->MaxVectorLength;
|
1651 |
|
|
uint32_t length2 = 2 * (uint32_t)length1;
|
1652 |
|
|
if (length2 > t->MaxVectorLength) length2 = t->MaxVectorLength;
|
1653 |
|
|
t->vectorLength[rd] = length2; // set length of destination vector
|
1654 |
|
|
int8_t * source1 = t->vectors.buf() + ru*t->MaxVectorLength; // address of RU data
|
1655 |
|
|
int8_t * source2 = t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data
|
1656 |
|
|
int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
1657 |
|
|
memcpy(destination, source1, (uint32_t)length1); // copy from RU
|
1658 |
|
|
memcpy(destination + (uint32_t)length1, source2, length2 - (uint32_t)length1); // copy from RS
|
1659 |
|
|
t->vect = 4; // stop vector loop
|
1660 |
|
|
t->running = 2; // don't save RD
|
1661 |
|
|
return 0;
|
1662 |
|
|
}
|
1663 |
|
|
|
1664 |
|
|
static uint64_t interleave (CThread * t) {
|
1665 |
|
|
// Interleave elements of vectors RU and RS of length RT/2 to produce vector RD of length RT.
|
1666 |
|
|
// Even-numbered elements of the destination come from RU and odd-numbered elements from RS.
|
1667 |
|
|
uint8_t rd = t->operands[0]; // destination
|
1668 |
|
|
uint8_t ru = t->operands[3]; // first input vector
|
1669 |
|
|
uint8_t rs = t->operands[4]; // second input vector
|
1670 |
|
|
uint8_t rt = t->operands[5]; // length
|
1671 |
|
|
uint8_t rm = t->operands[1]; // mask
|
1672 |
|
|
uint64_t length = t->registers[rt];
|
1673 |
|
|
if (length > t->MaxVectorLength) length = t->MaxVectorLength;
|
1674 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1675 |
|
|
length = length >> dsizelog << dsizelog; // round down to nearest multiple of element size
|
1676 |
|
|
uint32_t elementSize = 1 << dsizelog; // size of each element
|
1677 |
|
|
t->vectorLength[rd] = (uint32_t)length; // set length of destination
|
1678 |
|
|
uint8_t even = 1;
|
1679 |
|
|
uint32_t pos1 = 0;
|
1680 |
|
|
uint64_t value;
|
1681 |
|
|
for (uint32_t pos2 = 0; pos2 < length; pos2 += elementSize) {
|
1682 |
|
|
if (even) {
|
1683 |
|
|
value = t->readVectorElement(ru, pos1);
|
1684 |
|
|
}
|
1685 |
|
|
else {
|
1686 |
|
|
value = t->readVectorElement(rs, pos1);
|
1687 |
|
|
pos1 += elementSize;
|
1688 |
|
|
}
|
1689 |
|
|
even ^= 1; // toggle between even and odd
|
1690 |
|
|
if (rm < 7 && (t->readVectorElement(rm, pos2) & 1) == 0) value = 0; // mask is 0
|
1691 |
|
|
t->writeVectorElement(rd, value, pos2);
|
1692 |
|
|
}
|
1693 |
|
|
t->vect = 4; // stop vector loop
|
1694 |
|
|
t->running = 2; // don't save RD
|
1695 |
|
|
return 0;
|
1696 |
|
|
}
|
1697 |
|
|
|
1698 |
|
|
|
1699 |
|
|
// Format 2.2.7 E. Three vector registers and a 16 bit immediate
|
1700 |
|
|
|
1701 |
|
|
static uint64_t move_bits (CThread * t) {
|
1702 |
|
|
// Replace one or more contiguous bits at one position of RS with contiguous bits from another position of RT
|
1703 |
|
|
// Format 2.0.7 E: general purpose registers
|
1704 |
|
|
// Format 2.2.7 E: vector registers
|
1705 |
|
|
// The position in src2 is the lower 8 bits of IM2. a = IM2 & 0xFF.
|
1706 |
|
|
// The position in src1 is the upper 8 bits of IM2. b = IM2 >> 0xFF.
|
1707 |
|
|
// The number of bits to move is c = IM3.
|
1708 |
|
|
SNum s1 = t->parm[0]; // input operand src1
|
1709 |
|
|
SNum s2 = t->parm[1]; // input operand src2
|
1710 |
|
|
SNum im = t->parm[4]; // input operand IM2
|
1711 |
|
|
SNum mask = t->parm[3]; //
|
1712 |
|
|
uint8_t c = t->pInstr->a.im3; // input operand IM3 = number of bits
|
1713 |
|
|
uint8_t pos1 = im.s >> 8; // bit position in src1. (can overflow, not handled)
|
1714 |
|
|
uint8_t pos2 = im.b; // bit position in src2. (can overflow, not handled)
|
1715 |
|
|
uint64_t bitmask = ((uint64_t)1 << c) - 1; // mask of c bits. (cannot overflow because c is max 63)
|
1716 |
|
|
uint64_t result = (s1.q & ~(bitmask << pos1)) | ((s2.q >> pos2) & bitmask) << pos1;
|
1717 |
|
|
if ((mask.b & 1) == 0) { // single format instructions with template E must handle mask here
|
1718 |
|
|
result = s1.q; // fallback
|
1719 |
|
|
if (t->operands[2] == 31) result = 0; // fallback = 0
|
1720 |
|
|
}
|
1721 |
|
|
return result;
|
1722 |
|
|
}
|
1723 |
|
|
|
1724 |
|
|
static uint64_t mask_length (CThread * t) {
|
1725 |
|
|
// Make a boolean vector to mask the first n bytes of a vector.
|
1726 |
|
|
// The output vector RD will have the same length as the input vector RS.
|
1727 |
|
|
// RT indicates the length of the part that is enabled by the mask (n).
|
1728 |
|
|
// IM3 contains the following option bits:
|
1729 |
|
|
// bit 0 = 0: bit 0 will be 1 in the first n bytes in the output and 0 in the rest.
|
1730 |
|
|
// bit 0 = 1: bit 0 will be 0 in the first n bytes in the output and 1 in the rest.
|
1731 |
|
|
// bit 1 = 1: copy remaining bits from input vector RT into each vector element.
|
1732 |
|
|
// bit 2 = 1: copy remaining bits from the numeric control register.
|
1733 |
|
|
// bit 4 = 1: broadcast remaining bits from IM2 into all 32-bit words of RD:
|
1734 |
|
|
// Bit 1-7 of IM2 go to bit 1-7 of RD. Bit 8-11 of IM2 go to bit 20-23 of RD. Bit 12-15 of IM2 go to bit 26-29 of RD.
|
1735 |
|
|
// Output bits that are not set by any of these options will be zero. If multiple options are specified, the results will be OR’ed.
|
1736 |
|
|
uint8_t rd = t->operands[0]; // destination
|
1737 |
|
|
uint8_t rs = t->operands[3]; // src2
|
1738 |
|
|
uint8_t rt = t->operands[4]; // length
|
1739 |
|
|
SNum s2 = t->parm[0]; // input operand src2
|
1740 |
|
|
SNum im2 = t->parm[4]; // input operand IM2
|
1741 |
|
|
uint8_t im3 = t->pInstr->a.im3; // input operand IM3 = options
|
1742 |
|
|
t->vectorLengthR = t->vectorLength[rd] = t->vectorLength[rs]; // set length of destination
|
1743 |
|
|
uint8_t dsizelog = dataSizeTableLog[t->operandType]; // log2(elementsize)
|
1744 |
|
|
uint64_t n = t->registers[rt]; // number of masked elements
|
1745 |
|
|
uint32_t i = t->vectorOffset >> dsizelog; // current element index
|
1746 |
|
|
uint8_t bit = i < n; // element is within the first n
|
1747 |
|
|
bit ^= im3 & 1; // invert option
|
1748 |
|
|
uint64_t result = 0;
|
1749 |
|
|
if (im3 & 2) result |= s2.q; // copy remaining bits from src1
|
1750 |
|
|
if (im3 & 4) result |= t->numContr; // copy remaining bits from NUMCONTR
|
1751 |
|
|
if (im3 & 0x10) { // copy bits from IM2
|
1752 |
|
|
uint32_t rr = (im2.b & ~1) | bit; // bit 1-7 -> bit 1-7
|
1753 |
|
|
rr |= (im2.s & 0xF00) << 12; // bit 8-11 -> bit 20-23
|
1754 |
|
|
rr |= (im2.s & 0xF000) << 14; // bit 12-15 -> bit 26-29
|
1755 |
|
|
result |= rr | ((uint64_t)rr << 32); // copy these bits twice
|
1756 |
|
|
}
|
1757 |
|
|
result = (result & ~(uint64_t)1) | bit; // combine
|
1758 |
|
|
return result;
|
1759 |
|
|
}
|
1760 |
|
|
|
1761 |
|
|
static uint64_t truth_tab3 (CThread * t) {
|
1762 |
|
|
// Bitwise boolean function of three inputs, given by a truth table
|
1763 |
|
|
SNum a = t->parm[0]; // first operand
|
1764 |
|
|
SNum b = t->parm[1]; // second operand
|
1765 |
|
|
SNum c = t->parm[2]; // third operand
|
1766 |
|
|
SNum mask = t->parm[3]; // mask register
|
1767 |
|
|
uint32_t table = t->pInstr->a.im2; // truth table
|
1768 |
|
|
uint8_t options = t->pInstr->a.im3; // option bits
|
1769 |
|
|
|
1770 |
|
|
uint32_t dataSize = dataSizeTableBits[t->operandType]; // number of bits
|
1771 |
|
|
if (options & 3) dataSize = 1; // only a single bit
|
1772 |
|
|
uint64_t result = 0; // calculate result
|
1773 |
|
|
|
1774 |
|
|
for (int i = dataSize - 1; i >= 0; i--) { // loop through bits
|
1775 |
|
|
uint64_t bit_pointer = uint64_t(1) << i; // selected bit
|
1776 |
|
|
uint8_t index = 0; // index into truth table
|
1777 |
|
|
if (a.q & bit_pointer) index = 1;
|
1778 |
|
|
if (b.q & bit_pointer) index |= 2;
|
1779 |
|
|
if (c.q & bit_pointer) index |= 4;
|
1780 |
|
|
uint64_t bit = table >> index & 1; // lookup in truth table
|
1781 |
|
|
result = result << 1 | bit; // insert bit into result
|
1782 |
|
|
}
|
1783 |
|
|
if (options & 2) { // take remaining bits from mask or numcontr
|
1784 |
|
|
result |= mask.q & ~(uint64_t)1;
|
1785 |
|
|
}
|
1786 |
|
|
return result;
|
1787 |
|
|
}
|
1788 |
|
|
|
1789 |
|
|
static uint64_t repeat_block (CThread * t) {
|
1790 |
|
|
// Repeat a block of data to make a longer vector.
|
1791 |
|
|
// RS is input vector containing data block to repeat.
|
1792 |
|
|
// IM2 is length in bytes of the block to repeat (must be a multiple of 4).
|
1793 |
|
|
// RT is the length of destination vector RD.
|
1794 |
|
|
uint8_t rd = t->operands[0];
|
1795 |
|
|
uint8_t rs = t->operands[3];
|
1796 |
|
|
uint8_t rt = t->operands[4];
|
1797 |
|
|
uint32_t blen = t->parm[4].i; // block length
|
1798 |
|
|
uint64_t length = t->registers[rt]; // length of destination
|
1799 |
|
|
if (length > t->MaxVectorLength) length = t->MaxVectorLength;
|
1800 |
|
|
if (blen > t->MaxVectorLength) blen = t->MaxVectorLength;
|
1801 |
|
|
t->vectorLength[rd] = (uint32_t)length; // set length of destination
|
1802 |
|
|
if (blen & 3) t->interrupt(INT_WRONG_PARAMETERS); // must be a multiple of 4
|
1803 |
|
|
int8_t * source = t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data
|
1804 |
|
|
int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
1805 |
|
|
if (length > t->vectorLength[rs]) { // reading beyond the end of the source vector. make sure the rest is zero
|
1806 |
|
|
memset(source + t->vectorLength[rs], 0, size_t(length - t->vectorLength[rs]));
|
1807 |
|
|
}
|
1808 |
|
|
for (uint32_t pos = 0; pos < length; pos += blen) { // loop through blocks
|
1809 |
|
|
uint32_t blen2 = blen;
|
1810 |
|
|
if (pos + blen2 > length) blen2 = (uint32_t)length - pos; // avoid last block going too far
|
1811 |
|
|
memcpy(destination + pos, source, blen2); // copy block
|
1812 |
|
|
}
|
1813 |
|
|
t->vect = 4; // stop vector loop
|
1814 |
|
|
t->running = 2; // don't save RD
|
1815 |
|
|
return 0;
|
1816 |
|
|
}
|
1817 |
|
|
|
1818 |
|
|
static uint64_t repeat_within_blocks (CThread * t) {
|
1819 |
|
|
// Broadcast the first element of each block of data in a vector to the entire block.
|
1820 |
|
|
// RS is input vector containing data blocks.
|
1821 |
|
|
// IM2 is length in bytes of each block (must be a multiple of the operand size).
|
1822 |
|
|
// RT is length of destination vector RD.
|
1823 |
|
|
// The operand size must be at least 4 bytes.
|
1824 |
|
|
uint8_t rd = t->operands[0];
|
1825 |
|
|
uint8_t rs = t->operands[3];
|
1826 |
|
|
uint8_t rt = t->operands[4];
|
1827 |
|
|
uint32_t blen = t->parm[4].i; // block length
|
1828 |
|
|
uint64_t length = t->registers[rt]; // length of destination
|
1829 |
|
|
if (length > t->MaxVectorLength) length = t->MaxVectorLength;
|
1830 |
|
|
if (blen > t->MaxVectorLength) blen = t->MaxVectorLength;
|
1831 |
|
|
t->vectorLength[rd] = (uint32_t)length; // set length of destination
|
1832 |
|
|
uint32_t elementSize = dataSizeTable[t->operandType];
|
1833 |
|
|
if (elementSize < 4 || (blen & (elementSize - 1))) t->interrupt(INT_WRONG_PARAMETERS); // must be a multiple of elementsize
|
1834 |
|
|
int8_t * source = t->vectors.buf() + rs*t->MaxVectorLength; // address of RS data
|
1835 |
|
|
int8_t * destination = t->vectors.buf() + rd*t->MaxVectorLength; // address of RD data
|
1836 |
|
|
if (length > t->vectorLength[rs]) { // reading beyond the end of the source vector. make sure the rest is zero
|
1837 |
|
|
memset(source + t->vectorLength[rs], 0, size_t(length - t->vectorLength[rs]));
|
1838 |
|
|
}
|
1839 |
|
|
for (uint32_t pos = 0; pos < length; pos += blen) { // loop through blocks
|
1840 |
|
|
uint32_t blen2 = blen;
|
1841 |
|
|
if (pos + blen2 > length) blen2 = (uint32_t)length - pos; // avoid last block going too far
|
1842 |
|
|
for (uint32_t i = 0; i < blen2; i += elementSize) { // loop within block
|
1843 |
|
|
memcpy(destination + pos + i, source + pos, elementSize); // copy first element
|
1844 |
|
|
}
|
1845 |
|
|
}
|
1846 |
|
|
t->vect = 4; // stop vector loop
|
1847 |
|
|
t->running = 2; // don't save RD
|
1848 |
|
|
return 0;
|
1849 |
|
|
}
|
1850 |
|
|
|
1851 |
|
|
|
1852 |
|
|
// tables of single format instructions
|
1853 |
|
|
|
1854 |
|
|
// Format 1.3 B. Two vector registers and a broadcast 8-bit immediate operand.
|
1855 |
|
|
PFunc funcTab7[64] = {
|
1856 |
|
|
gp2vec, vec2gp, 0, make_sequence, insert_, extract_, compress, expand, // 0 - 7
|
1857 |
|
|
0, 0, 0, 0, float2int, int2float, round_, round2n, // 8 - 15
|
1858 |
|
|
abs_, fp_category, broad_, broad_, byte_reverse, bitscan_, popcount_, 0, // 16 - 23
|
1859 |
|
|
0, bool2bits, bool_reduce, 0, 0, 0, 0, 0, // 24 - 31
|
1860 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 32 - 39
|
1861 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 40 - 47
|
1862 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 48 - 55
|
1863 |
|
|
push_v, pop_v, clear_, 0, 0, 0, 0, 0, // 56 - 63
|
1864 |
|
|
};
|
1865 |
|
|
|
1866 |
|
|
// Format 1.4 C. One vector register and a broadcast 16-bit immediate operand.
|
1867 |
|
|
PFunc funcTab8[64] = {
|
1868 |
|
|
move_i16, f_add, and_i16, or_i16, xor_i16, 0, 0, 0, // 0 - 7
|
1869 |
|
|
move_8shift8, move_8shift8, add_8shift8, add_8shift8, and_8shift8, and_8shift8, or_8shift8, or_8shift8, // 8 - 15
|
1870 |
|
|
xor_8shift8, xor_8shift8, 0, 0, 0, 0, 0, 0, // 16 - 23
|
1871 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 24 - 31
|
1872 |
|
|
move_half2float, move_half2double, add_half2float, add_half2double, mul_half2float, mul_half2double, 0, 0, // 32 - 39
|
1873 |
|
|
add_h16, mul_h16, 0, 0, 0, 0, 0, 0, // 40 - 47
|
1874 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 48 - 55
|
1875 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 56 - 63
|
1876 |
|
|
};
|
1877 |
|
|
|
1878 |
|
|
// Format 2.5 A. Single format instructions with memory operands or mixed register types
|
1879 |
|
|
PFunc funcTab10[64] = {
|
1880 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 0 - 7
|
1881 |
|
|
store_i32, 0, 0, 0, 0, 0, 0, 0, // 8 - 15
|
1882 |
|
|
f_nop, 0, compare_swap, 0, 0, 0, 0, 0, // 16 - 23
|
1883 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 24 - 31
|
1884 |
|
|
read_insert, 0, 0, 0, 0, 0, 0, 0, // 32 - 39
|
1885 |
|
|
extract_store, 0, 0, 0, 0, 0, 0, 0, // 40 - 47
|
1886 |
|
|
};
|
1887 |
|
|
|
1888 |
|
|
|
1889 |
|
|
// Format 2.6 A. Three vector registers and a 32-bit immediate operand.
|
1890 |
|
|
PFunc funcTab11[64] = {
|
1891 |
|
|
load_hi, insert_hi, make_mask, replace_, replace_even, replace_odd, broadcast_32, 0, // 0 - 7
|
1892 |
|
|
permute, 0, 0, 0, 0, 0, 0, 0 // 8 - 15
|
1893 |
|
|
};
|
1894 |
|
|
|
1895 |
|
|
// Format 3.1 A. Three vector registers and a 64-bit immediate operand.
|
1896 |
|
|
PFunc funcTab13[64] = {
|
1897 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 0 - 7
|
1898 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 8 - 15
|
1899 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 16 - 23
|
1900 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 34 - 31
|
1901 |
|
|
replace_, broadcast_32, 0, 0, 0, 0, 0, 0, // 32 - 39
|
1902 |
|
|
};
|
1903 |
|
|
|
1904 |
|
|
|
1905 |
|
|
// Dispatch functions for single format instruction with E template.
|
1906 |
|
|
// (full tables of all possible single format instruction with E template would
|
1907 |
|
|
// be too large with most places unused).
|
1908 |
|
|
|
1909 |
|
|
// Format 2.0.6 E. Four general purpose registers
|
1910 |
|
|
static uint64_t dispatch206_1 (CThread * t) {
|
1911 |
|
|
switch (t->op) {
|
1912 |
|
|
case 8: return truth_tab3(t);
|
1913 |
|
|
default:
|
1914 |
|
|
t->interrupt(INT_UNKNOWN_INST);
|
1915 |
|
|
}
|
1916 |
|
|
return 0;
|
1917 |
|
|
}
|
1918 |
|
|
|
1919 |
|
|
|
1920 |
|
|
// Format 2.0.7 E. Three general purpose registers and a 16-bit immediate constant
|
1921 |
|
|
static uint64_t dispatch207_1 (CThread * t) {
|
1922 |
|
|
switch (t->op) {
|
1923 |
|
|
case 0: return move_bits(t);
|
1924 |
|
|
default:
|
1925 |
|
|
t->interrupt(INT_UNKNOWN_INST);
|
1926 |
|
|
}
|
1927 |
|
|
return 0;
|
1928 |
|
|
}
|
1929 |
|
|
|
1930 |
|
|
// Format 2.2.6 E. Four vector registers
|
1931 |
|
|
static uint64_t dispatch226_1 (CThread * t) {
|
1932 |
|
|
switch (t->op) {
|
1933 |
|
|
case 0: return concatenate(t);
|
1934 |
|
|
case 1: return permute(t);
|
1935 |
|
|
case 2: return interleave(t);
|
1936 |
|
|
case 8: return truth_tab3(t);
|
1937 |
|
|
default:
|
1938 |
|
|
t->interrupt(INT_UNKNOWN_INST);
|
1939 |
|
|
}
|
1940 |
|
|
return 0;
|
1941 |
|
|
}
|
1942 |
|
|
|
1943 |
|
|
// Format 2.2.7 E. Three vector registers and a 16-bit immediate constant
|
1944 |
|
|
static uint64_t dispatch227_1 (CThread * t) {
|
1945 |
|
|
switch (t->op) {
|
1946 |
|
|
case 0: return move_bits(t);
|
1947 |
|
|
case 1: return mask_length(t);
|
1948 |
|
|
case 8: return repeat_block(t);
|
1949 |
|
|
case 9: return repeat_within_blocks(t);
|
1950 |
|
|
default:
|
1951 |
|
|
t->interrupt(INT_UNKNOWN_INST);
|
1952 |
|
|
}
|
1953 |
|
|
return 0;
|
1954 |
|
|
}
|
1955 |
|
|
|
1956 |
|
|
// Table of dispatch functions for all possible single format instructions with E template
|
1957 |
|
|
PFunc EDispatchTable[96] = {
|
1958 |
|
|
0, 0, 0, 0, 0, 0, dispatch206_1, dispatch207_1, // 2.0.x i.1
|
1959 |
|
|
0, 0, 0, 0, 0, 0, dispatch226_1, dispatch227_1, // 2.2.x i.1
|
1960 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 3.0.x i.1
|
1961 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 3.2.x i.1
|
1962 |
|
|
|
1963 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 2.0.x i.2
|
1964 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 2.2.x i.2
|
1965 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 3.0.x i.2
|
1966 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 3.2.x i.2
|
1967 |
|
|
|
1968 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 2.0.x i.3
|
1969 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 2.2.x i.3
|
1970 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, // 3.0.x i.3
|
1971 |
|
|
0, 0, 0, 0, 0, 0, 0, 0 // 3.2.x i.3
|
1972 |
|
|
};
|