OpenCores
URL https://opencores.org/ocsvn/forwardcom/forwardcom/trunk

Subversion Repositories forwardcom

[/] [forwardcom/] [libraries/] [sincos.as] - Blame information for rev 161

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 110 Agner
/*********************************  sin.as  ***********************************
2
* Author:        Agner Fog
3
* date created:  2018-03-29
4
* Last modified: 2021-04-25
5
* Version:       1.11
6
* Project:       ForwardCom library math.li
7
* Description:   sin, cos, and tan functions. Calculate in radians, double precision
8
*                The argument x can be a scalar or a vector
9
*                The return value will be a vector with the same length
10
* C declaration: double sin(double x);
11
* C declaration: double cos(double x);
12
* C declaration: double tan(double x);
13
* C declaration: struct {double s; double c;} sincos(double x);
14
*
15
* This code is adapted from C++ vector class library www.github.com/vectorclass
16
* Copyright 2018-2021 GNU General Public License http://www.gnu.org/licenses
17
*****************************************************************************/
18
 
19
 
20
// define constants
21
% M_2_PI = 0.636619772367581343076       // 2./pi
22
% P0sin  = -1.66666666666666307295E-1    // polynomial coefficients for sin
23
% P1sin  = 8.33333333332211858878E-3
24
% P2sin  = -1.98412698295895385996E-4
25
% P3sin  = 2.75573136213857245213E-6
26
% P4sin  = -2.50507477628578072866E-8
27
% P5sin  = 1.58962301576546568060E-10
28
 
29
% P0cos  = 4.16666666666665929218E-2     // polynomial coefficients for cos
30
% P1cos  = -1.38888888888730564116E-3
31
% P2cos  = 2.48015872888517045348E-5
32
% P3cos  = -2.75573141792967388112E-7
33
% P4cos  = 2.08757008419747316778E-9
34
% P5cos  = -1.13585365213876817300E-11
35
 
36
% DP1    = 7.853981554508209228515625E-1 // modulo pi/2 for extended precision
37
% DP2    = 7.94662735614792836714E-9     // correction for extended precision modular artithmetic
38
% DP3    = 3.06161699786838294307E-17    // correction for extended precision modular artithmetic
39
 
40
 
41
code section execute align = 4
42
 
43
public _sin:    function, reguse = 0, 0x7BF
44
public _cos:    function, reguse = 0, 0x7BF
45
public _sincos: function, reguse = 0, 0x7BF
46
public _tan:    function, reguse = 0, 0x7BF
47
 
48
// common entry for sin and sincos functions
49
_sin function
50
_sincos:
51
 
52
/* registers:
53
  v0 = x
54
  v1 = abs(x)
55
  v1 = quadrant
56
  v10 = abs(x) reduced modulo pi/2
57
  v2 = v10^2
58
  v3 = v10^4
59
  v4 = v10^8
60
  v5 = v10^3
61
  v6 = unused (vacant flag for calling function)
62
  v7 = temp
63
  v8 = sin
64
  v9 = cos
65
*/
66
 
67
// Find quadrant:
68
//      0 -   pi/4 => 0
69
//   pi/4 - 3*pi/4 => 1
70
// 3*pi/4 - 5*pi/4 => 2
71
// 5*pi/4 - 7*pi/4 => 3
72
// 7*pi/4 - 8*pi/4 => 4
73
 
74
double v1 = clear_bit(v0, 63)                    // abs(x)
75
double v4 = v1 * M_2_PI
76
double v4 = round(v4, 0)   // round to integer
77
 
78
// reduce modulo pi/2, with extended precision
79
// x = ((xa - y * DP1) - y * DP2) - y * DP3;
80
double v10 = v4 * (-DP1*2) + v1
81
double v10 = v4 * (-DP2*2) + v10
82
double v10 = v4 * (-DP3*2) + v10
83
double v5 = !(v4 > ((1 << 51) + 0.0))              // check for loss of precision and overflow, but not NAN
84
double v1 = v4 + ((1 << 52) + 0.0)                 // add magic number 2^52 to get integer into lowest bit
85
double v10 = v5 ? v10 : 0                          // zero if out of range. result will be -1, 0, or 1
86
 
87
// Expansion of sin and cos, valid for -pi/4 <= x <= pi/4
88
double v2 = v10 * v10                              // x^2
89
double v3 = v2 * v2                              // x^4
90
double v4 = v3 * v3                              // x^8
91
 
92
// calculate polynomial P5sin*x2^5 + P4sin*x2^4 + P3sin*x2^3 + P2sin*x2^2 + P1sin*x2 + P0sin
93
// = (p2+p3*x2)*x4 + ((p4+p5*x2)*x8 + (p0+p1*x2));
94
 
95
double v5 = replace(v10, P0sin)                   // broadcast to same length as x
96
double v5 = v2 * P1sin + v5
97
double v7 = replace(v10, P4sin)
98
double v7 = v2 * P5sin + v7
99
double v8 = replace(v10, P2sin)
100
double v8 = v2 * P3sin + v8
101
double v7 = v7 * v4 + v5
102
double v8 = v8 * v3 + v7
103
 
104
// calculate polynomial P5cos*x2^5 + P4cos*x2^4 + P3cos*x2^3 + P2cos*x2^2 + P1cos*x2 + P0cos
105
// = (p2+p3*x2)*x4 + ((p4+p5*x2)*x8 + (p0+p1*x2));
106
double v5 = replace(v10, P0cos)
107
double v5 = v2 * P1cos + v5
108
double v7 = replace(v10, P4cos)
109
double v7 = v2 * P5cos + v7
110
double v9 = replace(v10, P2cos)
111
double v9 = v2 * P3cos + v9
112
double v7 = v7 * v4 + v5
113
double v9 = v9 * v3 + v7
114
 
115
// s = x + (x * x2) * s;
116
double v5 = v10 * v2
117
double v8 = v8 * v5 + v10
118
// c = 1.0 - x2 * 0.5 + (x2 * x2) * c;
119
double v9 = v9 * v3
120
double v9 = v2 * (-0.5) + v9
121
double v9 = 1.0 + v9
122
 
123
// swap sin and cos if odd quadrant
124
double v3 = v1 ? v9 : v8        // sin
125
double v4 = v1 ? v8 : v9        // cos
126
 
127
// get sign of sin
128
int64  v5 = v1 << 62            // get bit 1 into sign bit, x modulo pi/2 = 2 or 3
129
int64  v5 ^= v0                 // toggle with sign of original x
130
int64  v5 = and(v5, 1 << 63)    // isolate sign bit
131
double v0 = v3 ^ v5             // apply sign bit to sin
132
 
133
// get sign of cos
134
int64  v1 = v1 + 1              // change sign when x modulo pi/2 = 1 or 2
135
int64  v1 = v1 << 62            // get bit 1 into sign bit
136
int64  v1 = and(v1, 1 << 63)    // isolate sign bit
137
double v1 = v4 ^ v1             // apply sign bit to cos
138
 
139
// return sin in v0, cos in v1
140
return
141
_sin end
142
 
143
// cosine function
144
_cos function
145
call _sincos
146
double v0 = v1                                   // cos is in v1
147
return
148
_cos end
149
 
150
// tangent function
151
_tan function
152
call _sincos
153
double v0 = v0 / v1                              // tan(x) = sin(x)/cos(x)
154
return
155
_tan end
156
 
157
code end

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.