| 1 |
2 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
| 3 |
|
|
// Engineer: Agner Fog
|
| 4 |
|
|
//
|
| 5 |
|
|
// Create Date: 2020-06-04
|
| 6 |
|
|
// Last modified: 2021-07-17
|
| 7 |
|
|
// Module Name: decoder
|
| 8 |
|
|
// Project Name: ForwardCom soft core
|
| 9 |
|
|
// Target Devices: Artix 7
|
| 10 |
|
|
// Tool Versions: Vivado v. 2020.1
|
| 11 |
|
|
// License: CERN-OHL-W v. 2 or later
|
| 12 |
|
|
// Description: Address generator. Calculates address of memory operand
|
| 13 |
|
|
//
|
| 14 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
| 15 |
|
|
`include "defines.vh"
|
| 16 |
|
|
|
| 17 |
|
|
|
| 18 |
|
|
module addressgenerator(
|
| 19 |
|
|
input clock, // system clock (100 MHz)
|
| 20 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
| 21 |
|
|
input reset, // system reset.
|
| 22 |
|
|
input valid_in, // data from fetch module ready
|
| 23 |
|
|
input stall_in, // a later stage in pipeline is stalled
|
| 24 |
|
|
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
|
| 25 |
|
|
input [95:0] instruction_in, // current instruction, up to 3 words long
|
| 26 |
|
|
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
|
| 27 |
|
|
input vector_in, // this is a vector instruction
|
| 28 |
|
|
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
|
| 29 |
|
|
input [1:0] format_in, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
| 30 |
|
|
input [2:0] rs_status_in, // 1: RS is register operand, 2: RS is pointer, 3: RS is index, 4: RS is vector length
|
| 31 |
|
|
input [2:0] rt_status_in, // 1: RT is register operand, 2: RT is pointer
|
| 32 |
|
|
input [1:0] ru_status_in, // 1: RU is used as register operand
|
| 33 |
|
|
input [1:0] rd_status_in, // 1: RD is used as input
|
| 34 |
|
|
input [1:0] mask_status_in, // 1: mask register used
|
| 35 |
|
|
input mask_alternative_in, // mask register and fallback register used for alternative purposes
|
| 36 |
|
|
input [2:0] fallback_use_in, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
|
| 37 |
|
|
input [1:0] num_operands_in, // number of source operands
|
| 38 |
|
|
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
| 39 |
|
|
input [1:0] offset_field_in, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
| 40 |
|
|
input [1:0] immediate_field_in, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
| 41 |
|
|
input [1:0] scale_factor_in, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
| 42 |
|
|
input index_limit_in, // IM2 or IM3 contains a limit to the index
|
| 43 |
|
|
// Register values
|
| 44 |
|
|
input [`RB:0] rd_val_in, // value of register operand RD, bit `RB indicates missing
|
| 45 |
|
|
input [`RB:0] rs_val_in, // value of register operand RS, bit `RB indicates missing
|
| 46 |
|
|
input [`RB:0] rt_val_in, // value of register operand RT, bit `RB indicates missing
|
| 47 |
|
|
input [`RB:0] ru_val_in, // value of register operand RU, bit `RB indicates missing
|
| 48 |
|
|
input [`MASKSZ:0] regmask_val_in, // value of mask register, bit 32 indicates missing
|
| 49 |
|
|
|
| 50 |
|
|
// monitor result buses:
|
| 51 |
|
|
input write_en1, // a result is written to writeport1
|
| 52 |
|
|
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
|
| 53 |
|
|
input [`RB1:0] writeport1_in, // result bus 1
|
| 54 |
|
|
input write_en2, // a result is written to writeport2
|
| 55 |
|
|
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
|
| 56 |
|
|
input [`RB1:0] writeport2_in, // result bus 2
|
| 57 |
|
|
input [`TAG_WIDTH-1:0] predict_tag1_in, // tag on result bus 1 in next clock cycle
|
| 58 |
|
|
input [`TAG_WIDTH-1:0] predict_tag2_in, // tag on result bus 2 in next clock cycle
|
| 59 |
|
|
|
| 60 |
|
|
// calculated read and write memory addresses go to data cache
|
| 61 |
|
|
output reg [`COMMON_ADDR_WIDTH-1:0] read_write_address_out, // address of memory operand
|
| 62 |
|
|
output reg read_enable_out, // read from data cache
|
| 63 |
|
|
output reg [1:0] read_data_size_out, // 8, 16, 32, or 64 bits read
|
| 64 |
|
|
output reg [7:0] write_enable_out, // write enable for each byte separately
|
| 65 |
|
|
output reg [63:0] write_data_out, // data to write
|
| 66 |
|
|
|
| 67 |
|
|
// instruction output to next pipeline stage
|
| 68 |
|
|
output reg valid_out, // An instruction is ready for output to next stage
|
| 69 |
|
|
output reg [`CODE_ADDR_WIDTH-1:0] instruction_pointer_out, // address of current instruction
|
| 70 |
|
|
output reg [63:0] instruction_out, // first word of instruction
|
| 71 |
|
|
output reg stall_predict_out, // will be waiting for an operand
|
| 72 |
|
|
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
|
| 73 |
|
|
|
| 74 |
|
|
output reg [`RB:0] operand1_out, // value of first operand, bit `RB indicates invalid
|
| 75 |
|
|
output reg [`RB:0] operand2_out, // value of second operand, bit `RB indicates invalid
|
| 76 |
|
|
output reg [`RB:0] operand3_out, // value of last, bit `RB indicates valid
|
| 77 |
|
|
output reg [`MASKSZ:0] regmask_val_out,// value of mask register, high bit indicates valid
|
| 78 |
|
|
|
| 79 |
|
|
output reg vector_out, // this is a vector instruction
|
| 80 |
|
|
output reg [1:0] category_out, // 00: multiformat, 01: single format, 10: jump
|
| 81 |
|
|
output reg [1:0] format_out, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
| 82 |
|
|
output reg mask_status_out, // 1: mask register used
|
| 83 |
|
|
output reg mask_alternative_out, // mask register and fallback register used for alternative purposes
|
| 84 |
|
|
output reg [2:0] fallback_use_out, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
|
| 85 |
|
|
output reg [1:0] num_operands_out, // number of source operands
|
| 86 |
|
|
output reg [1:0] result_type_out, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
| 87 |
|
|
output reg [1:0] offset_field_out, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
| 88 |
|
|
output reg [1:0] immediate_field_out, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
| 89 |
|
|
output reg [1:0] scale_factor_out, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
| 90 |
|
|
output reg memory_operand_out, // The instruction has a memory operand
|
| 91 |
|
|
output reg array_error_out, // Array index exceeds limit
|
| 92 |
|
|
output reg options3_out, // IM3 containts option bits
|
| 93 |
|
|
output reg [31:0] debug1_out, // Temporary output for debugging purpose
|
| 94 |
|
|
output reg [31:0] debug2_out, // Temporary output for debugging purpose
|
| 95 |
|
|
output reg [31:0] debug3_out // Temporary output for debugging purpose
|
| 96 |
|
|
);
|
| 97 |
|
|
|
| 98 |
|
|
// instruction components
|
| 99 |
|
|
logic [1:0] il; // instruction length
|
| 100 |
|
|
logic [2:0] mode; // instruction mode
|
| 101 |
|
|
logic M; // M bit
|
| 102 |
|
|
logic [5:0] op1; // OP1 in instruction
|
| 103 |
|
|
logic [1:0] op2; // OP2 in instruction
|
| 104 |
|
|
logic [2:0] otype; // operand type
|
| 105 |
|
|
logic [2:0] mode2; // mode2 in format E
|
| 106 |
|
|
logic option_bits_im3; // IM3 is used for option bits
|
| 107 |
|
|
|
| 108 |
|
|
// synchronization signals
|
| 109 |
|
|
logic waiting; // waiting for needed register value
|
| 110 |
|
|
logic wait_next1; // predict that it will also be waiting for reg1 in the next clock cycle
|
| 111 |
|
|
logic wait_next2; // predict that it will also be waiting for reg2 in the next clock cycle
|
| 112 |
|
|
logic wait_next3; // predict that it will also be waiting for reg3 in the next clock cycle
|
| 113 |
|
|
logic address_instruction; // this is an address instruction. no memory access
|
| 114 |
|
|
logic mask_off; // result is masked off
|
| 115 |
|
|
logic new_instruction; // instruction is different from last instruction
|
| 116 |
|
|
logic array_error; // Array index exceeds limit
|
| 117 |
|
|
reg last_stall; // was stalled in last clock cycle. May obtain values from the temporary registers
|
| 118 |
|
|
reg last_valid; // input was valid in last clock cycle
|
| 119 |
|
|
reg [`TAG_WIDTH-1:0] last_tag_val; // check if instruction tag has changed
|
| 120 |
|
|
|
| 121 |
|
|
// components of address calculation
|
| 122 |
|
|
logic [`COMMON_ADDR_WIDTH-1:0] base_pointer;
|
| 123 |
|
|
logic [`COMMON_ADDR_WIDTH-1:0] address_index;
|
| 124 |
|
|
logic [`COMMON_ADDR_WIDTH-1:0] address_offset; // offset of memory operand
|
| 125 |
|
|
logic [`COMMON_ADDR_WIDTH-1:0] address; // address of memory operand
|
| 126 |
|
|
logic [`RB1:0] write_data; // data to write
|
| 127 |
|
|
|
| 128 |
|
|
// register values. Extra bit is 1 if not found
|
| 129 |
|
|
logic [`RB:0] rs_val; // value of first register operand RS, bit `RB indicates missing
|
| 130 |
|
|
logic [`RB:0] rt_val; // value of second register operand RT, bit `RB indicates missing
|
| 131 |
|
|
logic [`RB:0] ru_val; // value of third register operand RD or RU, bit `RB indicates missing
|
| 132 |
|
|
logic [`RB:0] rd_val; // value of third register operand RD or RU, bit `RB indicates missing
|
| 133 |
|
|
logic [`MASKSZ:0] regmask_val; // value of mask register, bit 32 indicates missing
|
| 134 |
|
|
// temporary storage of register values if found during stall. High bit is zero if valid
|
| 135 |
|
|
reg [`RB:0] rs_val_temp; // value of first register operand RS, bit `RB indicates missing
|
| 136 |
|
|
reg [`RB:0] rt_val_temp; // value of second register operand RT, bit `RB indicates missing
|
| 137 |
|
|
reg [`RB:0] ru_val_temp; // value of third register operand RD or RU, bit `RB indicates missing
|
| 138 |
|
|
reg [`RB:0] rd_val_temp; // value of third register operand RD or RU, bit `RB indicates missing
|
| 139 |
|
|
reg [`MASKSZ:0] regmask_val_temp; // value of mask register, bit 32 indicates missing
|
| 140 |
|
|
|
| 141 |
|
|
|
| 142 |
|
|
always_comb begin
|
| 143 |
|
|
// components of format template
|
| 144 |
|
|
il = instruction_in[`IL]; // instruction length
|
| 145 |
|
|
mode = instruction_in[`MODE]; // format mode
|
| 146 |
|
|
M = instruction_in[`M]; // extension to operand type or mode
|
| 147 |
|
|
op1 = instruction_in[`OP1]; // operation code
|
| 148 |
|
|
op2 = instruction_in[`OP2]; // operation code extension
|
| 149 |
|
|
otype = instruction_in[`OT] & {vector_in,2'b11}; // operand type
|
| 150 |
|
|
mode2 = instruction_in[`MODE2]; // format mode extension
|
| 151 |
|
|
// look for address instruction
|
| 152 |
|
|
if (il == 2 && mode == 1 && M && op1 == `II_ADDRESS_29) address_instruction = 1;
|
| 153 |
|
|
else address_instruction = 0;
|
| 154 |
|
|
|
| 155 |
|
|
// detect use of IM3 as option bits or extra operand
|
| 156 |
|
|
option_bits_im3 = 0;
|
| 157 |
|
|
if (il == 2 && (mode == 0 || mode == 5) && mode2 == 5) begin
|
| 158 |
|
|
option_bits_im3 = 0; // format 2.0.5 and 2.2.5 are using IM3 for an operand, not for options
|
| 159 |
|
|
end else if (category_in == `CAT_MULTI) begin
|
| 160 |
|
|
if (op1 == `II_SIGN_EXTEND_ADD || op1 == `II_COMPARE
|
| 161 |
|
|
|| op1 == `II_DIV || op1 == `II_DIV_REV || op1 == `II_DIV_U
|
| 162 |
|
|
|| op1 == `II_TEST_BIT || op1 == `II_TEST_BITS_AND || op1 == `II_TEST_BITS_OR
|
| 163 |
|
|
|| op1 == `II_MUL_ADD_FLOAT16 || op1 == `II_MUL_ADD || op1 == `II_MUL_ADD2
|
| 164 |
|
|
|| op1 == `II_ADD_ADD) begin
|
| 165 |
|
|
option_bits_im3 = 1;
|
| 166 |
|
|
end
|
| 167 |
|
|
end else if (il == 2) begin
|
| 168 |
|
|
if (((mode == 0 && !M) || mode == 2) && mode2 == 7 && op1 == `II_MOVE_BITS && op2 == `II2_MOVE_BITS)
|
| 169 |
|
|
option_bits_im3 = 1;
|
| 170 |
|
|
if (mode == 2 && mode2 == 7 && op1 == `II_MASK_LENGTH && op2 == `II2_MASK_LENGTH)
|
| 171 |
|
|
option_bits_im3 = 1;
|
| 172 |
|
|
if (((mode == 0 && !M) || mode == 2) && mode2 == 6 && op1 == `II_TRUTH_TAB3 && op2 == `II2_TRUTH_TAB3)
|
| 173 |
|
|
option_bits_im3 = 1;
|
| 174 |
|
|
end
|
| 175 |
|
|
|
| 176 |
|
|
/* We need to prevent spill-over of values from a preceding stalled instruction
|
| 177 |
|
|
because the address generator can produce pipeline bubbles. The solution used
|
| 178 |
|
|
here is to check if the instruction tag has changed before using the _temp values.
|
| 179 |
|
|
Test case:
|
| 180 |
|
|
int64 sp -= 32
|
| 181 |
|
|
int r8 = 8
|
| 182 |
|
|
int r9 = 9
|
| 183 |
|
|
int32 [sp+0x00] = r8
|
| 184 |
|
|
int32 [sp+0x08] = r9
|
| 185 |
|
|
int32 r2 = r8 + r9
|
| 186 |
|
|
int32 [sp+0x10] = r2
|
| 187 |
|
|
*/
|
| 188 |
|
|
// check if current instruction is different from last clock cycle
|
| 189 |
|
|
new_instruction = (tag_val_in != last_tag_val) && valid_in;
|
| 190 |
|
|
|
| 191 |
|
|
// look at result buses for any missing register values
|
| 192 |
|
|
if (last_stall && rs_val_temp[`RB] == 0 && last_valid && !new_instruction) rs_val = rs_val_temp; // obtained during stall
|
| 193 |
|
|
else if (rs_val_in[`RB] == 1 && write_en1 && rs_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rs_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
| 194 |
|
|
else if (rs_val_in[`RB] == 1 && write_en2 && rs_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rs_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
| 195 |
|
|
else rs_val = rs_val_in;
|
| 196 |
|
|
|
| 197 |
|
|
if (last_stall && rt_val_temp[`RB] == 0 && last_valid && !new_instruction) rt_val = rt_val_temp; // obtained during stall
|
| 198 |
|
|
else if (rt_val_in[`RB] == 1 && write_en1 && rt_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rt_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
| 199 |
|
|
else if (rt_val_in[`RB] == 1 && write_en2 && rt_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rt_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
| 200 |
|
|
else rt_val = rt_val_in;
|
| 201 |
|
|
|
| 202 |
|
|
if (last_stall && ru_val_temp[`RB] == 0 && last_valid && !new_instruction) ru_val = ru_val_temp; // obtained during stall
|
| 203 |
|
|
else if (ru_val_in[`RB] == 1 && write_en1 && ru_val_in[`TAG_WIDTH-1:0] == write_tag1_in) ru_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
| 204 |
|
|
else if (ru_val_in[`RB] == 1 && write_en2 && ru_val_in[`TAG_WIDTH-1:0] == write_tag2_in) ru_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
| 205 |
|
|
else ru_val = ru_val_in;
|
| 206 |
|
|
|
| 207 |
|
|
if (last_stall && rd_val_temp[`RB] == 0 && last_valid && !new_instruction) rd_val = rd_val_temp; // obtained during stall
|
| 208 |
|
|
else if (rd_val_in[`RB] == 1 && write_en1 && rd_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rd_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
| 209 |
|
|
else if (rd_val_in[`RB] == 1 && write_en2 && rd_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rd_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
| 210 |
|
|
else rd_val = rd_val_in;
|
| 211 |
|
|
|
| 212 |
|
|
if (mask_status_in == `REG_UNUSED) regmask_val = 1; // no mask
|
| 213 |
|
|
else if (last_stall && regmask_val_temp[`MASKSZ] == 0 && last_valid && !new_instruction) regmask_val = regmask_val_temp; // obtained during stall
|
| 214 |
|
|
else if (regmask_val_in[`MASKSZ] == 1 && write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) regmask_val = {1'b0, writeport1_in[`MASKSZ-1:0]}; // obtained from result bus 1
|
| 215 |
|
|
else if (regmask_val_in[`MASKSZ] == 1 && write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) regmask_val = {1'b0, writeport2_in[`MASKSZ-1:0]}; // obtained from result bus 2
|
| 216 |
|
|
else regmask_val = regmask_val_in;
|
| 217 |
|
|
end
|
| 218 |
|
|
|
| 219 |
|
|
// save values from result bus during stall
|
| 220 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
| 221 |
|
|
if ((stall_in || waiting) && valid_in ) begin
|
| 222 |
|
|
rs_val_temp <= rs_val; // temporary save during stall
|
| 223 |
|
|
rt_val_temp <= rt_val; // temporary save during stall
|
| 224 |
|
|
ru_val_temp <= ru_val; // temporary save during stall
|
| 225 |
|
|
rd_val_temp <= rd_val; // temporary save during stall
|
| 226 |
|
|
regmask_val_temp <= regmask_val; // temporary save during stall
|
| 227 |
|
|
end else begin
|
| 228 |
|
|
rs_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
| 229 |
|
|
rt_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
| 230 |
|
|
ru_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
| 231 |
|
|
rd_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
| 232 |
|
|
regmask_val_temp <= {1'b1,`MASKSZ'b0}; // reset when not stalled
|
| 233 |
|
|
end
|
| 234 |
|
|
end
|
| 235 |
|
|
|
| 236 |
|
|
|
| 237 |
|
|
always_comb begin
|
| 238 |
|
|
// Check if result is masked off so that we don't have to wait for operands
|
| 239 |
|
|
mask_off = mask_status_in != `REG_UNUSED && !mask_alternative_in && !vector_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0;
|
| 240 |
|
|
waiting = 0;
|
| 241 |
|
|
wait_next1 = 0; wait_next2 = 0; wait_next3 = 0;
|
| 242 |
|
|
array_error = 0;
|
| 243 |
|
|
|
| 244 |
|
|
// check if we need to wait for register values
|
| 245 |
|
|
if (rs_val[`RB] && rs_status_in == `REG_POINTER && !mask_off) begin
|
| 246 |
|
|
waiting = 1; // value of RS needed in this stage for address calculation. must stall
|
| 247 |
|
|
// predict if value will arrive in next clock cycle
|
| 248 |
|
|
wait_next1 = predict_tag1_in != rs_val[`TAG_WIDTH-1:0] && predict_tag2_in != rs_val[`TAG_WIDTH-1:0];
|
| 249 |
|
|
end
|
| 250 |
|
|
|
| 251 |
|
|
if (rt_val[`RB] && rt_status_in >= `REG_INDEX && !mask_off) begin
|
| 252 |
|
|
waiting = 1; // value of RT needed in this stage for address calculation. must stall
|
| 253 |
|
|
// predict if value will arrive in next clock cycle
|
| 254 |
|
|
wait_next2 = predict_tag1_in != rt_val[`TAG_WIDTH-1:0] && predict_tag2_in != rt_val[`TAG_WIDTH-1:0];
|
| 255 |
|
|
end
|
| 256 |
|
|
|
| 257 |
|
|
if (rd_val[`RB] && rd_status_in != 0 && result_type_in == `RESULT_MEM && !mask_off) begin
|
| 258 |
|
|
waiting = 1; // value of RD needed in this stage for writing. must stall
|
| 259 |
|
|
// predict if value will arrive in next clock cycle
|
| 260 |
|
|
wait_next3 = predict_tag1_in != rd_val[`TAG_WIDTH-1:0] && predict_tag2_in != rd_val[`TAG_WIDTH-1:0];
|
| 261 |
|
|
end
|
| 262 |
|
|
|
| 263 |
|
|
if (regmask_val[`MASKSZ] && mask_status_in != `REG_UNUSED && result_type_in == `RESULT_MEM) begin
|
| 264 |
|
|
waiting = 1; // value of mask needed before write
|
| 265 |
|
|
// predict if value will arrive in next clock cycle
|
| 266 |
|
|
wait_next3 = predict_tag1_in != regmask_val[`TAG_WIDTH-1:0] && predict_tag2_in != regmask_val[`TAG_WIDTH-1:0];
|
| 267 |
|
|
end
|
| 268 |
|
|
|
| 269 |
|
|
|
| 270 |
|
|
////////////////////////////////////////////////
|
| 271 |
|
|
// calculate address: //
|
| 272 |
|
|
////////////////////////////////////////////////
|
| 273 |
|
|
|
| 274 |
|
|
// rs is base pointer
|
| 275 |
|
|
base_pointer = rs_val[`RB1:0];
|
| 276 |
|
|
|
| 277 |
|
|
if (rt_status_in == `REG_INDEX) begin
|
| 278 |
|
|
// rt is scaled index
|
| 279 |
|
|
if (scale_factor_in == `SCALE_OS) begin
|
| 280 |
|
|
case (otype) // operand type
|
| 281 |
|
|
`OT_INT8: address_index = rt_val[`RB-1:0]; // scale factor 1
|
| 282 |
|
|
`OT_INT16: address_index = {rt_val[`RB-2:0],1'b0}; // scale factor 2
|
| 283 |
|
|
`OT_INT32, `OT_FLOAT32: address_index = {rt_val[`RB-3:0],2'b0}; // scale factor 4
|
| 284 |
|
|
`OT_INT64, `OT_FLOAT64: address_index = {rt_val[`RB-4:0],3'b0}; // scale factor 8
|
| 285 |
|
|
`OT_INT128,`OT_FLOAT128: address_index = {rt_val[`RB-5:0],4'b0}; // scale factor 16
|
| 286 |
|
|
endcase
|
| 287 |
|
|
end else if (scale_factor_in == `SCALE_MINUS) begin
|
| 288 |
|
|
address_index = -rt_val[`RB1:0]; // scale factor -1
|
| 289 |
|
|
end else begin
|
| 290 |
|
|
address_index = rt_val[`RB1:0]; // no scale factor
|
| 291 |
|
|
end
|
| 292 |
|
|
if (index_limit_in) begin
|
| 293 |
|
|
// check index limit
|
| 294 |
|
|
if (il == 3 && rt_val[`RB1:0] > instruction_in[95:64]
|
| 295 |
|
|
|| il == 2 && rt_val[`RB1:0] > instruction_in[`IM2E]) array_error = 1;
|
| 296 |
|
|
end
|
| 297 |
|
|
|
| 298 |
|
|
end else begin
|
| 299 |
|
|
address_index = 0; // no index
|
| 300 |
|
|
end
|
| 301 |
|
|
|
| 302 |
|
|
if (offset_field_in == `OFFSET_NONE) begin // no offset
|
| 303 |
|
|
address_offset = 0;
|
| 304 |
|
|
end else if (offset_field_in == `OFFSET_1) begin // 8 bit offset in IM1, scaled by operand size
|
| 305 |
|
|
case (otype) // operand type
|
| 306 |
|
|
`OT_INT8: address_offset = {{56{instruction_in[7]}},instruction_in[`IM1]}; // sign extend IM1
|
| 307 |
|
|
`OT_INT16: address_offset = {{55{instruction_in[7]}},instruction_in[`IM1],1'b0}; // sign extend, scale by 2
|
| 308 |
|
|
`OT_INT32, `OT_FLOAT32: address_offset = {{54{instruction_in[7]}},instruction_in[`IM1],2'b0}; // sign extend, scale by 4
|
| 309 |
|
|
`OT_INT64, `OT_FLOAT64: address_offset = {{53{instruction_in[7]}},instruction_in[`IM1],3'b0}; // sign extend, scale by 8
|
| 310 |
|
|
`OT_INT128,`OT_FLOAT128: address_offset = {{52{instruction_in[7]}},instruction_in[`IM1],4'b0}; // sign extend, scale by 16
|
| 311 |
|
|
endcase
|
| 312 |
|
|
end else if(offset_field_in == `OFFSET_2) begin // 16 bit offset in IM2, not scaled
|
| 313 |
|
|
address_offset = {{48{instruction_in[47]}},instruction_in[`IM2E]}; // sign extend IM2;
|
| 314 |
|
|
end else if (il == 2) begin // 32 bit offset in IM2
|
| 315 |
|
|
address_offset = {{32{instruction_in[63]}},instruction_in[63:32]}; // sign extend IM2;
|
| 316 |
|
|
end else if (mode == 1 && op1 == 0) begin // format 3.1.0. Jump with memory offest in IM3
|
| 317 |
|
|
address_offset = {{32{instruction_in[95]}},instruction_in[95:64]}; // sign extend IM3;
|
| 318 |
|
|
end else begin // format 3.x.x, except 3.1.0
|
| 319 |
|
|
address_offset = {{32{instruction_in[95]}},instruction_in[95:64]}; // sign extend IM4;
|
| 320 |
|
|
end
|
| 321 |
|
|
|
| 322 |
|
|
// calculated address
|
| 323 |
|
|
address = base_pointer + address_index + address_offset;
|
| 324 |
|
|
|
| 325 |
|
|
// data to write. (mask is handled below)
|
| 326 |
|
|
if (category_in == `CAT_MULTI) begin
|
| 327 |
|
|
write_data <= rd_val; // write register
|
| 328 |
|
|
end else begin
|
| 329 |
|
|
write_data <= instruction_in[63:32]; // write constant
|
| 330 |
|
|
end
|
| 331 |
|
|
end
|
| 332 |
|
|
|
| 333 |
|
|
|
| 334 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
| 335 |
|
|
|
| 336 |
|
|
read_enable_out <= 0;
|
| 337 |
|
|
write_enable_out <= 0;
|
| 338 |
|
|
|
| 339 |
|
|
if (valid_in && !waiting) begin
|
| 340 |
|
|
|
| 341 |
|
|
// output memory address for data cache read and write
|
| 342 |
|
|
// must have natural alignment
|
| 343 |
|
|
read_write_address_out <= address;
|
| 344 |
|
|
|
| 345 |
|
|
if (result_type_in == `RESULT_MEM && !mask_off && !array_error) begin
|
| 346 |
|
|
|
| 347 |
|
|
// memory write
|
| 348 |
|
|
if (otype == `OT_INT8) begin // write 8 bits
|
| 349 |
|
|
case (address[2:0])
|
| 350 |
|
|
0: begin
|
| 351 |
|
|
write_data_out <= write_data;
|
| 352 |
|
|
write_enable_out <= 8'b00000001; end
|
| 353 |
|
|
1: begin
|
| 354 |
|
|
write_data_out <= {write_data[7:0],8'b0};
|
| 355 |
|
|
write_enable_out <= 8'b00000010; end
|
| 356 |
|
|
2: begin
|
| 357 |
|
|
write_data_out <= {write_data[7:0],16'b0};
|
| 358 |
|
|
write_enable_out <= 8'b00000100; end
|
| 359 |
|
|
3: begin
|
| 360 |
|
|
write_data_out <= {write_data[7:0],24'b0};
|
| 361 |
|
|
write_enable_out <= 8'b00001000; end
|
| 362 |
|
|
4: begin
|
| 363 |
|
|
write_data_out <= {write_data[7:0],32'b0};
|
| 364 |
|
|
write_enable_out <= 8'b00010000; end
|
| 365 |
|
|
5: begin
|
| 366 |
|
|
write_data_out <= {write_data[7:0],40'b0};
|
| 367 |
|
|
write_enable_out <= 8'b00100000; end
|
| 368 |
|
|
6: begin
|
| 369 |
|
|
write_data_out <= {write_data[7:0],48'b0};
|
| 370 |
|
|
write_enable_out <= 8'b01000000; end
|
| 371 |
|
|
7: begin
|
| 372 |
|
|
write_data_out <= {write_data[7:0],56'b0};
|
| 373 |
|
|
write_enable_out <= 8'b10000000; end
|
| 374 |
|
|
endcase
|
| 375 |
|
|
|
| 376 |
|
|
end else if (otype == `OT_INT16) begin // write 16 bits
|
| 377 |
|
|
case (address[2:1])
|
| 378 |
|
|
0: begin
|
| 379 |
|
|
write_data_out <= write_data;
|
| 380 |
|
|
write_enable_out <= 8'b00000011; end
|
| 381 |
|
|
1: begin
|
| 382 |
|
|
write_data_out <= {write_data[15:0],16'b0};
|
| 383 |
|
|
write_enable_out <= 8'b00001100; end
|
| 384 |
|
|
2: begin
|
| 385 |
|
|
write_data_out <= {write_data[15:0],32'b0};
|
| 386 |
|
|
write_enable_out <= 8'b00110000; end
|
| 387 |
|
|
3: begin
|
| 388 |
|
|
write_data_out <= {write_data[15:0],48'b0};
|
| 389 |
|
|
write_enable_out <= 8'b11000000; end
|
| 390 |
|
|
endcase
|
| 391 |
|
|
|
| 392 |
|
|
end else if (otype == `OT_INT32 || otype == `OT_FLOAT32) begin // write 32 bits
|
| 393 |
|
|
case (address[2])
|
| 394 |
|
|
0: begin
|
| 395 |
|
|
write_data_out <= write_data;
|
| 396 |
|
|
write_enable_out <= 8'b00001111; end
|
| 397 |
|
|
1: begin
|
| 398 |
|
|
write_data_out <= {write_data[31:0],32'b0};
|
| 399 |
|
|
write_enable_out <= 8'b11110000; end
|
| 400 |
|
|
endcase
|
| 401 |
|
|
|
| 402 |
|
|
end else begin // write 64 bits (or more)
|
| 403 |
|
|
write_data_out <= write_data;
|
| 404 |
|
|
write_enable_out <= 8'b11111111;
|
| 405 |
|
|
end
|
| 406 |
|
|
|
| 407 |
|
|
end else if (rs_status_in == `REG_POINTER && !address_instruction) begin
|
| 408 |
|
|
|
| 409 |
|
|
// memory read. Must have natural alignment
|
| 410 |
|
|
read_enable_out <= valid_in && !mask_off && !array_error;
|
| 411 |
|
|
write_enable_out <= 0;
|
| 412 |
|
|
case (otype)
|
| 413 |
|
|
`OT_INT8: read_data_size_out <= `OT_INT8;
|
| 414 |
|
|
`OT_INT16: read_data_size_out <= `OT_INT16;
|
| 415 |
|
|
`OT_INT32,
|
| 416 |
|
|
`OT_FLOAT32: read_data_size_out <= `OT_INT32;
|
| 417 |
|
|
default: read_data_size_out <= `OT_INT64;
|
| 418 |
|
|
endcase
|
| 419 |
|
|
|
| 420 |
|
|
end
|
| 421 |
|
|
|
| 422 |
|
|
// sort operand values, selected by the priority order: immediate, memory, rt, rs, ru, rd
|
| 423 |
|
|
operand1_out <= 0; // value of first operand, bit `RB indicates invalid
|
| 424 |
|
|
operand2_out <= 0; // value of second operand, bit `RB indicates invalid
|
| 425 |
|
|
operand3_out <= 0; // value of last operand, bit `RB indicates invalid
|
| 426 |
|
|
|
| 427 |
|
|
if (immediate_field_in != `IMMED_NONE && rs_status_in == `REG_POINTER) begin
|
| 428 |
|
|
// both memory and immediate operands.
|
| 429 |
|
|
// Last operand is an immediate value calculated below.
|
| 430 |
|
|
// Next to last operand is a memory operand retrieved later.
|
| 431 |
|
|
// Find remaining register operand
|
| 432 |
|
|
if (rt_status_in == `REG_OPERAND) operand1_out <= rt_val;
|
| 433 |
|
|
else if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
|
| 434 |
|
|
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
| 435 |
|
|
|
| 436 |
|
|
end else if (immediate_field_in != `IMMED_NONE || rs_status_in == `REG_POINTER) begin
|
| 437 |
|
|
// Last operand is an immediate value calculated below or a memory operand retrieved later.
|
| 438 |
|
|
// Find remaining register operands
|
| 439 |
|
|
if (rt_status_in == `REG_OPERAND) begin
|
| 440 |
|
|
operand2_out <= rt_val;
|
| 441 |
|
|
if (rs_status_in == `REG_OPERAND) operand1_out <= rs_val;
|
| 442 |
|
|
else if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
|
| 443 |
|
|
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
| 444 |
|
|
else operand1_out <= rt_val; // possible fallback
|
| 445 |
|
|
end else if (rs_status_in == `REG_OPERAND || rs_status_in == `REG_SYSTEM) begin
|
| 446 |
|
|
operand2_out <= rs_val;
|
| 447 |
|
|
if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
|
| 448 |
|
|
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
| 449 |
|
|
else operand1_out <= rs_val; // possible fallback_use_in == `FALLBACK_RS
|
| 450 |
|
|
end else if (ru_status_in == `REG_OPERAND) begin
|
| 451 |
|
|
operand2_out <= ru_val;
|
| 452 |
|
|
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
| 453 |
|
|
else operand1_out <= ru_val;
|
| 454 |
|
|
end else if (rd_status_in == `REG_OPERAND) begin
|
| 455 |
|
|
operand2_out <= rd_val;
|
| 456 |
|
|
operand1_out <= rd_val;
|
| 457 |
|
|
end
|
| 458 |
|
|
end else begin
|
| 459 |
|
|
// last operand is a register
|
| 460 |
|
|
if (rt_status_in == `REG_OPERAND) begin
|
| 461 |
|
|
operand3_out <= rt_val;
|
| 462 |
|
|
if (rs_status_in == `REG_OPERAND) begin
|
| 463 |
|
|
operand2_out <= rs_val;
|
| 464 |
|
|
if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
|
| 465 |
|
|
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
| 466 |
|
|
else operand1_out <= rs_val;
|
| 467 |
|
|
end else if (ru_status_in == `REG_OPERAND) begin
|
| 468 |
|
|
operand2_out <= ru_val;
|
| 469 |
|
|
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
| 470 |
|
|
else operand1_out <= ru_val;
|
| 471 |
|
|
end else if (rd_status_in == `REG_OPERAND) begin
|
| 472 |
|
|
operand2_out <= rd_val;
|
| 473 |
|
|
operand1_out <= rd_val;
|
| 474 |
|
|
end
|
| 475 |
|
|
end else if (rs_status_in == `REG_OPERAND) begin
|
| 476 |
|
|
operand3_out <= rs_val;
|
| 477 |
|
|
if (ru_status_in == `REG_OPERAND) begin
|
| 478 |
|
|
operand2_out <= ru_val;
|
| 479 |
|
|
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
| 480 |
|
|
else operand1_out <= ru_val;
|
| 481 |
|
|
end else if (rd_status_in == `REG_OPERAND) begin
|
| 482 |
|
|
operand2_out <= rd_val;
|
| 483 |
|
|
operand1_out <= rd_val;
|
| 484 |
|
|
end
|
| 485 |
|
|
end else if (ru_status_in == `REG_OPERAND) begin // should not occur
|
| 486 |
|
|
operand3_out <= ru_val;
|
| 487 |
|
|
if (rd_status_in == `REG_OPERAND) begin
|
| 488 |
|
|
operand2_out <= rd_val;
|
| 489 |
|
|
operand1_out <= rd_val;
|
| 490 |
|
|
end else begin
|
| 491 |
|
|
operand1_out <= ru_val;
|
| 492 |
|
|
end
|
| 493 |
|
|
end else if (rd_status_in == `REG_OPERAND) begin
|
| 494 |
|
|
operand3_out <= rd_val;
|
| 495 |
|
|
operand1_out <= rd_val;
|
| 496 |
|
|
end
|
| 497 |
|
|
end
|
| 498 |
|
|
|
| 499 |
|
|
// look for immediate operand, and process it if necessary
|
| 500 |
|
|
if (immediate_field_in != `IMMED_NONE) begin
|
| 501 |
|
|
if (immediate_field_in == `IMMED_1) begin // sign_extend 8 bit immediate operand
|
| 502 |
|
|
if (format_in == `FORMAT_E) begin
|
| 503 |
|
|
operand3_out <= {{(`RB-8){instruction_in[`IM3EXS]}},instruction_in[`IM3EX]};
|
| 504 |
|
|
end else if (format_in == `FORMAT_C && category_in == `CAT_JUMP) begin
|
| 505 |
|
|
// jump in format 1.7C and 2.5.4C
|
| 506 |
|
|
operand3_out <= {{(`RB-8){instruction_in[15]}},instruction_in[15:8]};
|
| 507 |
|
|
end else begin // format B
|
| 508 |
|
|
operand3_out <= {{(`RB-8){instruction_in[`IM1S]}},instruction_in[`IM1]};
|
| 509 |
|
|
end
|
| 510 |
|
|
end
|
| 511 |
|
|
if (immediate_field_in == `IMMED_2) begin // sign_extend 16 bit immediate operand
|
| 512 |
|
|
if (format_in == `FORMAT_C) begin // format C: sign extend (IM2,IM1)
|
| 513 |
|
|
operand3_out <= {{(`RB-16){instruction_in[15]}},instruction_in[15:0]};
|
| 514 |
|
|
// special cases
|
| 515 |
|
|
if (mode == 1) begin
|
| 516 |
|
|
if (op1 == `II_MOVEU11) operand3_out <= instruction_in[15:0]; // zero extended
|
| 517 |
|
|
if (op1 == `II_ADDSHIFT16_11) begin
|
| 518 |
|
|
`ifdef SUPPORT_64BIT
|
| 519 |
|
|
operand3_out <= {{(`RB-32){instruction_in[15]}},instruction_in[15:0],16'b0}; // shift left by 16
|
| 520 |
|
|
`else
|
| 521 |
|
|
operand3_out <= {instruction_in[15:0],16'b0}; // shift left by 16
|
| 522 |
|
|
`endif
|
| 523 |
|
|
end
|
| 524 |
|
|
if ((op1 & -2) == `II_SHIFT_MOVE_11 || op1 >= `II_SHIFT_ADD_11 && op1 <= `II_SHIFT_XOR_11+1) begin // IM2 << IM1
|
| 525 |
|
|
if (instruction_in[`IM1] >= 64) operand3_out <= 0;
|
| 526 |
|
|
else operand3_out <= {{(`RB-8){instruction_in[15]}},instruction_in[15:8]} << instruction_in[5:0];
|
| 527 |
|
|
end
|
| 528 |
|
|
end
|
| 529 |
|
|
end else begin
|
| 530 |
|
|
operand3_out <= {{(`RB-16){instruction_in[`IM2ES]}},instruction_in[`IM2E]};
|
| 531 |
|
|
// special cases
|
| 532 |
|
|
if (il == 2 && ((mode == 0 && !M) || mode == 2) && mode2 == 7 && !option_bits_im3) begin
|
| 533 |
|
|
// format 2.0.7 and 2.2.7 have shift
|
| 534 |
|
|
operand3_out <= {{(`RB-16){instruction_in[47]}},instruction_in[`IM2E]} << instruction_in[`IM3E];
|
| 535 |
|
|
end
|
| 536 |
|
|
end
|
| 537 |
|
|
end
|
| 538 |
|
|
if (immediate_field_in == `IMMED_3) begin
|
| 539 |
|
|
`ifdef SUPPORT_64BIT
|
| 540 |
|
|
if (il == 3 && ((mode == 0 && !M) || mode == 2) && mode2 == 7 && otype < `OT_FLOAT32) begin
|
| 541 |
|
|
// format 3.0.7 and 3.2.7 have shift
|
| 542 |
|
|
operand3_out <= {{32{instruction_in[95]}},instruction_in[95:64]} << instruction_in[`IM2E];
|
| 543 |
|
|
end else if (il == 3 && format_in == `FORMAT_E) begin
|
| 544 |
|
|
// other format 3E
|
| 545 |
|
|
operand3_out <= {{32{instruction_in[95]}},instruction_in[95:64]};
|
| 546 |
|
|
end else if (il == 3 && mode == 0 && M) begin
|
| 547 |
|
|
// format 3.8
|
| 548 |
|
|
operand3_out <= instruction_in[95:32];
|
| 549 |
|
|
end else begin
|
| 550 |
|
|
// format 2.x
|
| 551 |
|
|
operand3_out <= {{32{instruction_in[63]}},instruction_in[63:32]};
|
| 552 |
|
|
end
|
| 553 |
|
|
`else
|
| 554 |
|
|
if (((mode == 0 && !M) || mode == 2) && mode2 == 7 && otype < `OT_FLOAT32) begin
|
| 555 |
|
|
// format 3.0.7 and 3.2.7 have shift
|
| 556 |
|
|
operand3_out <= instruction_in[95:64] << instruction_in[`IM2E];
|
| 557 |
|
|
end else if (il == 3 && format_in == `FORMAT_E) begin
|
| 558 |
|
|
operand3_out <= instruction_in[95:64];
|
| 559 |
|
|
end else begin
|
| 560 |
|
|
operand3_out <= instruction_in[63:32];
|
| 561 |
|
|
end
|
| 562 |
|
|
`endif
|
| 563 |
|
|
|
| 564 |
|
|
// special cases
|
| 565 |
|
|
if (il == 2 && mode == 1 && M) begin
|
| 566 |
|
|
if (op1 == `II_ADDU_29 || op1 == `II_SUBU_29) begin
|
| 567 |
|
|
operand3_out <= instruction_in[63:32]; // zero extend
|
| 568 |
|
|
end
|
| 569 |
|
|
if (op1 == `II_MOVE_HI_29 || (op1 >= `II_ADD_HI_29 && op1 <= `II_XOR_HI_29)) begin
|
| 570 |
|
|
// immediate constant is high word of 64 bits
|
| 571 |
|
|
`ifdef SUPPORT_64BIT
|
| 572 |
|
|
operand3_out <= {instruction_in[63:32],32'b0}; // high word
|
| 573 |
|
|
`else
|
| 574 |
|
|
operand3_out <= 0; // there is no high word
|
| 575 |
|
|
`endif
|
| 576 |
|
|
end
|
| 577 |
|
|
end
|
| 578 |
|
|
end
|
| 579 |
|
|
//if (category_in == `CAT_JUMP) begin // unnecessary check
|
| 580 |
|
|
if (il == 2 && mode == 5) begin
|
| 581 |
|
|
// immediate operands in jump instructions 2.5.x
|
| 582 |
|
|
if (op1 == 0) begin
|
| 583 |
|
|
// format 2.5.0A: jump with three registers, and 24 bit jump offset, no immediate
|
| 584 |
|
|
end else if (op1 == 1) begin
|
| 585 |
|
|
// format 2.5.1B: jump with one register, one 16 bit operand, and 16 bit jum offset
|
| 586 |
|
|
operand3_out <= {{48{instruction_in[47]}},instruction_in[47:32]}; // sign extend 16 bit operand
|
| 587 |
|
|
end else if (op1 == 4) begin
|
| 588 |
|
|
// format 2.5.4C: jump with one register, one 8 bit operand, and 32 bit offset
|
| 589 |
|
|
operand3_out <= {{56{instruction_in[15]}},instruction_in[15:8]}; // sign extend 8 bit operand
|
| 590 |
|
|
end else if (op1 == 5) begin
|
| 591 |
|
|
// format 2.5.5: jump with one register, one 32 bit operand, and 8 bit offset
|
| 592 |
|
|
operand3_out <= {{32{instruction_in[63]}},instruction_in[63:32]}; // sign extend 32 bit operand
|
| 593 |
|
|
end else if (op1 == 7) begin
|
| 594 |
|
|
// format 2.5.7: system call. 16 bit and 32 bit constants
|
| 595 |
|
|
operand3_out <= {instruction_in[63:32],16'b0,instruction_in[15:0]}; // 32 bit module ID, 16 bit function ID
|
| 596 |
|
|
end
|
| 597 |
|
|
end
|
| 598 |
|
|
if (il == 3 && mode == 1) begin
|
| 599 |
|
|
// immedate operands in jump instructions 3.1.x
|
| 600 |
|
|
if (op1 == 0) begin
|
| 601 |
|
|
// format 3.1.0: jump with memory operand and 32 bit offset. no immediate
|
| 602 |
|
|
end else if (op1 == 1) begin // && op1 == `IJ_SYSCALL
|
| 603 |
|
|
// jump format 3.1.1
|
| 604 |
|
|
if (instruction_in[5:0] < `IJ_SYSCALL) begin
|
| 605 |
|
|
operand3_out <= instruction_in[95:64];
|
| 606 |
|
|
end else begin
|
| 607 |
|
|
// format 3.1.1: system call with 32 bit module ID and 32 bit function ID
|
| 608 |
|
|
`ifdef SUPPORT_64BIT
|
| 609 |
|
|
operand3_out <= instruction_in[95:32];
|
| 610 |
|
|
`else
|
| 611 |
|
|
operand3_out <= {instruction_in[79:64],instruction_in[47:32]};
|
| 612 |
|
|
`endif
|
| 613 |
|
|
end
|
| 614 |
|
|
end
|
| 615 |
|
|
end
|
| 616 |
|
|
operand3_out[`RB] <= 0; // indicate not missing
|
| 617 |
|
|
end
|
| 618 |
|
|
|
| 619 |
|
|
if (address_instruction) begin
|
| 620 |
|
|
operand3_out <= address; // address instruction
|
| 621 |
|
|
end
|
| 622 |
|
|
|
| 623 |
|
|
if (fallback_use_in > `FALLBACK_SOURCE) begin
|
| 624 |
|
|
// separate fallback register. Check if fallback zero
|
| 625 |
|
|
if (fallback_use_in == `FALLBACK_RU && instruction_in[`RU] == 31) operand1_out <= 0;
|
| 626 |
|
|
if (fallback_use_in == `FALLBACK_RS && instruction_in[`RS] == 31) operand1_out <= 0;
|
| 627 |
|
|
if (fallback_use_in == `FALLBACK_RT && instruction_in[`RT] == 31) operand1_out <= 0;
|
| 628 |
|
|
end
|
| 629 |
|
|
|
| 630 |
|
|
// output everything else
|
| 631 |
|
|
regmask_val_out <= regmask_val;
|
| 632 |
|
|
instruction_pointer_out <= instruction_pointer_in; // address of current instruction
|
| 633 |
|
|
instruction_out <= instruction_in[63:0]; // first two words of instruction
|
| 634 |
|
|
tag_val_out <= tag_val_in; // instruction tag value
|
| 635 |
|
|
vector_out <= vector_in; // this is a vector instruction
|
| 636 |
|
|
category_out <= category_in; // 00: multiformat, 01: single format, 10: jump
|
| 637 |
|
|
format_out <= format_in; // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
| 638 |
|
|
mask_status_out <= mask_status_in == `REG_OPERAND;// mask register is used
|
| 639 |
|
|
mask_alternative_out <= mask_alternative_in; // mask register and fallback register used for alternative purposes
|
| 640 |
|
|
fallback_use_out <= fallback_use_in; // use of fallback register
|
| 641 |
|
|
num_operands_out <= num_operands_in; // number of source operands
|
| 642 |
|
|
result_type_out <= result_type_in; // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
| 643 |
|
|
offset_field_out <= offset_field_in; // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
| 644 |
|
|
immediate_field_out <= immediate_field_in; // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
| 645 |
|
|
scale_factor_out <= scale_factor_in; // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
| 646 |
|
|
memory_operand_out <= (rs_status_in >= `REG_POINTER) && !address_instruction; // The instruction has a memory operand
|
| 647 |
|
|
array_error_out <= array_error; // Array index exceeds limit;
|
| 648 |
|
|
options3_out <= option_bits_im3; // IM3 used for option bits
|
| 649 |
|
|
end
|
| 650 |
|
|
|
| 651 |
|
|
end
|
| 652 |
|
|
|
| 653 |
|
|
|
| 654 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
| 655 |
|
|
last_stall <= (stall_in || waiting) && valid_in;
|
| 656 |
|
|
last_valid <= valid_in;
|
| 657 |
|
|
stall_predict_out <= (wait_next1 | wait_next2 | wait_next3) && valid_in; // predict stalling in next clock cycle
|
| 658 |
|
|
last_tag_val <= tag_val_in;
|
| 659 |
|
|
|
| 660 |
|
|
if (reset) begin
|
| 661 |
|
|
valid_out <= 0;
|
| 662 |
|
|
end else begin
|
| 663 |
|
|
// avoid sending an instruction that is not ready, or an instruction that has already been sent
|
| 664 |
|
|
valid_out <= valid_in && !waiting && !stall_in && (new_instruction | !valid_out);
|
| 665 |
|
|
end
|
| 666 |
|
|
|
| 667 |
|
|
// temporary debug outputs
|
| 668 |
|
|
debug1_out <= {address_offset[7:0], address_index[7:0], base_pointer[15:0]};
|
| 669 |
|
|
debug2_out <= write_data;
|
| 670 |
|
|
|
| 671 |
|
|
debug3_out[0] <= waiting;
|
| 672 |
|
|
debug3_out[1] <= stall_in;
|
| 673 |
|
|
debug3_out[2] <= last_stall;
|
| 674 |
|
|
|
| 675 |
|
|
debug3_out[4] <= wait_next1;
|
| 676 |
|
|
debug3_out[5] <= wait_next2;
|
| 677 |
|
|
debug3_out[6] <= wait_next3;
|
| 678 |
|
|
|
| 679 |
|
|
debug3_out[8] <= rs_val[`RB] && (rs_status_in >= `REG_POINTER) && !mask_off;
|
| 680 |
|
|
debug3_out[9] <= rt_val[`RB] && (rt_status_in >= `REG_INDEX) && !mask_off;
|
| 681 |
|
|
debug3_out[10] <= rd_val[`RB] && (rd_status_in != 0)&& result_type_in == `RESULT_MEM && !mask_off;
|
| 682 |
|
|
debug3_out[11] <= new_instruction;
|
| 683 |
|
|
|
| 684 |
|
|
debug3_out[12] <= valid_in;
|
| 685 |
|
|
debug3_out[14] <= valid_out; // preceding valid out
|
| 686 |
|
|
debug3_out[15] <= last_valid;
|
| 687 |
|
|
|
| 688 |
|
|
debug3_out[16] <= rs_val[`RB];
|
| 689 |
|
|
debug3_out[17] <= rt_val[`RB];
|
| 690 |
|
|
debug3_out[18] <= rd_val[`RB];
|
| 691 |
|
|
|
| 692 |
|
|
debug3_out[20] <= rs_val_temp[`RB];
|
| 693 |
|
|
debug3_out[21] <= rt_val_temp[`RB];
|
| 694 |
|
|
debug3_out[22] <= rd_val_temp[`RB];
|
| 695 |
|
|
|
| 696 |
|
|
debug3_out[24] <= write_en1 && rt_val_in[`TAG_WIDTH-1:0] == write_tag1_in;
|
| 697 |
|
|
debug3_out[25] <= write_en2 && rt_val_in[`TAG_WIDTH-1:0] == write_tag2_in;
|
| 698 |
|
|
debug3_out[26] <= write_en1 && rd_val_in[`TAG_WIDTH-1:0] == write_tag1_in;
|
| 699 |
|
|
debug3_out[27] <= write_en2 && rd_val_in[`TAG_WIDTH-1:0] == write_tag2_in;
|
| 700 |
|
|
|
| 701 |
|
|
debug3_out[28] <= option_bits_im3;
|
| 702 |
|
|
debug3_out[31] <= mask_off;
|
| 703 |
|
|
|
| 704 |
|
|
end
|
| 705 |
|
|
|
| 706 |
|
|
endmodule
|