1 |
2 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
3 |
|
|
// Engineer: Agner Fog
|
4 |
|
|
//
|
5 |
|
|
// Create Date: 2020-06-04
|
6 |
|
|
// Last modified: 2021-07-17
|
7 |
|
|
// Module Name: decoder
|
8 |
|
|
// Project Name: ForwardCom soft core
|
9 |
|
|
// Target Devices: Artix 7
|
10 |
|
|
// Tool Versions: Vivado v. 2020.1
|
11 |
|
|
// License: CERN-OHL-W v. 2 or later
|
12 |
|
|
// Description: Address generator. Calculates address of memory operand
|
13 |
|
|
//
|
14 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
15 |
|
|
`include "defines.vh"
|
16 |
|
|
|
17 |
|
|
|
18 |
|
|
module addressgenerator(
|
19 |
|
|
input clock, // system clock (100 MHz)
|
20 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
21 |
|
|
input reset, // system reset.
|
22 |
|
|
input valid_in, // data from fetch module ready
|
23 |
|
|
input stall_in, // a later stage in pipeline is stalled
|
24 |
|
|
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
|
25 |
|
|
input [95:0] instruction_in, // current instruction, up to 3 words long
|
26 |
|
|
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
|
27 |
|
|
input vector_in, // this is a vector instruction
|
28 |
|
|
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
|
29 |
|
|
input [1:0] format_in, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
30 |
|
|
input [2:0] rs_status_in, // 1: RS is register operand, 2: RS is pointer, 3: RS is index, 4: RS is vector length
|
31 |
|
|
input [2:0] rt_status_in, // 1: RT is register operand, 2: RT is pointer
|
32 |
|
|
input [1:0] ru_status_in, // 1: RU is used as register operand
|
33 |
|
|
input [1:0] rd_status_in, // 1: RD is used as input
|
34 |
|
|
input [1:0] mask_status_in, // 1: mask register used
|
35 |
|
|
input mask_alternative_in, // mask register and fallback register used for alternative purposes
|
36 |
|
|
input [2:0] fallback_use_in, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
|
37 |
|
|
input [1:0] num_operands_in, // number of source operands
|
38 |
|
|
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
39 |
|
|
input [1:0] offset_field_in, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
40 |
|
|
input [1:0] immediate_field_in, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
41 |
|
|
input [1:0] scale_factor_in, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
42 |
|
|
input index_limit_in, // IM2 or IM3 contains a limit to the index
|
43 |
|
|
// Register values
|
44 |
|
|
input [`RB:0] rd_val_in, // value of register operand RD, bit `RB indicates missing
|
45 |
|
|
input [`RB:0] rs_val_in, // value of register operand RS, bit `RB indicates missing
|
46 |
|
|
input [`RB:0] rt_val_in, // value of register operand RT, bit `RB indicates missing
|
47 |
|
|
input [`RB:0] ru_val_in, // value of register operand RU, bit `RB indicates missing
|
48 |
|
|
input [`MASKSZ:0] regmask_val_in, // value of mask register, bit 32 indicates missing
|
49 |
|
|
|
50 |
|
|
// monitor result buses:
|
51 |
|
|
input write_en1, // a result is written to writeport1
|
52 |
|
|
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
|
53 |
|
|
input [`RB1:0] writeport1_in, // result bus 1
|
54 |
|
|
input write_en2, // a result is written to writeport2
|
55 |
|
|
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
|
56 |
|
|
input [`RB1:0] writeport2_in, // result bus 2
|
57 |
|
|
input [`TAG_WIDTH-1:0] predict_tag1_in, // tag on result bus 1 in next clock cycle
|
58 |
|
|
input [`TAG_WIDTH-1:0] predict_tag2_in, // tag on result bus 2 in next clock cycle
|
59 |
|
|
|
60 |
|
|
// calculated read and write memory addresses go to data cache
|
61 |
|
|
output reg [`COMMON_ADDR_WIDTH-1:0] read_write_address_out, // address of memory operand
|
62 |
|
|
output reg read_enable_out, // read from data cache
|
63 |
|
|
output reg [1:0] read_data_size_out, // 8, 16, 32, or 64 bits read
|
64 |
|
|
output reg [7:0] write_enable_out, // write enable for each byte separately
|
65 |
|
|
output reg [63:0] write_data_out, // data to write
|
66 |
|
|
|
67 |
|
|
// instruction output to next pipeline stage
|
68 |
|
|
output reg valid_out, // An instruction is ready for output to next stage
|
69 |
|
|
output reg [`CODE_ADDR_WIDTH-1:0] instruction_pointer_out, // address of current instruction
|
70 |
|
|
output reg [63:0] instruction_out, // first word of instruction
|
71 |
|
|
output reg stall_predict_out, // will be waiting for an operand
|
72 |
|
|
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
|
73 |
|
|
|
74 |
|
|
output reg [`RB:0] operand1_out, // value of first operand, bit `RB indicates invalid
|
75 |
|
|
output reg [`RB:0] operand2_out, // value of second operand, bit `RB indicates invalid
|
76 |
|
|
output reg [`RB:0] operand3_out, // value of last, bit `RB indicates valid
|
77 |
|
|
output reg [`MASKSZ:0] regmask_val_out,// value of mask register, high bit indicates valid
|
78 |
|
|
|
79 |
|
|
output reg vector_out, // this is a vector instruction
|
80 |
|
|
output reg [1:0] category_out, // 00: multiformat, 01: single format, 10: jump
|
81 |
|
|
output reg [1:0] format_out, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
82 |
|
|
output reg mask_status_out, // 1: mask register used
|
83 |
|
|
output reg mask_alternative_out, // mask register and fallback register used for alternative purposes
|
84 |
|
|
output reg [2:0] fallback_use_out, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
|
85 |
|
|
output reg [1:0] num_operands_out, // number of source operands
|
86 |
|
|
output reg [1:0] result_type_out, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
87 |
|
|
output reg [1:0] offset_field_out, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
88 |
|
|
output reg [1:0] immediate_field_out, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
89 |
|
|
output reg [1:0] scale_factor_out, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
90 |
|
|
output reg memory_operand_out, // The instruction has a memory operand
|
91 |
|
|
output reg array_error_out, // Array index exceeds limit
|
92 |
|
|
output reg options3_out, // IM3 containts option bits
|
93 |
|
|
output reg [31:0] debug1_out, // Temporary output for debugging purpose
|
94 |
|
|
output reg [31:0] debug2_out, // Temporary output for debugging purpose
|
95 |
|
|
output reg [31:0] debug3_out // Temporary output for debugging purpose
|
96 |
|
|
);
|
97 |
|
|
|
98 |
|
|
// instruction components
|
99 |
|
|
logic [1:0] il; // instruction length
|
100 |
|
|
logic [2:0] mode; // instruction mode
|
101 |
|
|
logic M; // M bit
|
102 |
|
|
logic [5:0] op1; // OP1 in instruction
|
103 |
|
|
logic [1:0] op2; // OP2 in instruction
|
104 |
|
|
logic [2:0] otype; // operand type
|
105 |
|
|
logic [2:0] mode2; // mode2 in format E
|
106 |
|
|
logic option_bits_im3; // IM3 is used for option bits
|
107 |
|
|
|
108 |
|
|
// synchronization signals
|
109 |
|
|
logic waiting; // waiting for needed register value
|
110 |
|
|
logic wait_next1; // predict that it will also be waiting for reg1 in the next clock cycle
|
111 |
|
|
logic wait_next2; // predict that it will also be waiting for reg2 in the next clock cycle
|
112 |
|
|
logic wait_next3; // predict that it will also be waiting for reg3 in the next clock cycle
|
113 |
|
|
logic address_instruction; // this is an address instruction. no memory access
|
114 |
|
|
logic mask_off; // result is masked off
|
115 |
|
|
logic new_instruction; // instruction is different from last instruction
|
116 |
|
|
logic array_error; // Array index exceeds limit
|
117 |
|
|
reg last_stall; // was stalled in last clock cycle. May obtain values from the temporary registers
|
118 |
|
|
reg last_valid; // input was valid in last clock cycle
|
119 |
|
|
reg [`TAG_WIDTH-1:0] last_tag_val; // check if instruction tag has changed
|
120 |
|
|
|
121 |
|
|
// components of address calculation
|
122 |
|
|
logic [`COMMON_ADDR_WIDTH-1:0] base_pointer;
|
123 |
|
|
logic [`COMMON_ADDR_WIDTH-1:0] address_index;
|
124 |
|
|
logic [`COMMON_ADDR_WIDTH-1:0] address_offset; // offset of memory operand
|
125 |
|
|
logic [`COMMON_ADDR_WIDTH-1:0] address; // address of memory operand
|
126 |
|
|
logic [`RB1:0] write_data; // data to write
|
127 |
|
|
|
128 |
|
|
// register values. Extra bit is 1 if not found
|
129 |
|
|
logic [`RB:0] rs_val; // value of first register operand RS, bit `RB indicates missing
|
130 |
|
|
logic [`RB:0] rt_val; // value of second register operand RT, bit `RB indicates missing
|
131 |
|
|
logic [`RB:0] ru_val; // value of third register operand RD or RU, bit `RB indicates missing
|
132 |
|
|
logic [`RB:0] rd_val; // value of third register operand RD or RU, bit `RB indicates missing
|
133 |
|
|
logic [`MASKSZ:0] regmask_val; // value of mask register, bit 32 indicates missing
|
134 |
|
|
// temporary storage of register values if found during stall. High bit is zero if valid
|
135 |
|
|
reg [`RB:0] rs_val_temp; // value of first register operand RS, bit `RB indicates missing
|
136 |
|
|
reg [`RB:0] rt_val_temp; // value of second register operand RT, bit `RB indicates missing
|
137 |
|
|
reg [`RB:0] ru_val_temp; // value of third register operand RD or RU, bit `RB indicates missing
|
138 |
|
|
reg [`RB:0] rd_val_temp; // value of third register operand RD or RU, bit `RB indicates missing
|
139 |
|
|
reg [`MASKSZ:0] regmask_val_temp; // value of mask register, bit 32 indicates missing
|
140 |
|
|
|
141 |
|
|
|
142 |
|
|
always_comb begin
|
143 |
|
|
// components of format template
|
144 |
|
|
il = instruction_in[`IL]; // instruction length
|
145 |
|
|
mode = instruction_in[`MODE]; // format mode
|
146 |
|
|
M = instruction_in[`M]; // extension to operand type or mode
|
147 |
|
|
op1 = instruction_in[`OP1]; // operation code
|
148 |
|
|
op2 = instruction_in[`OP2]; // operation code extension
|
149 |
|
|
otype = instruction_in[`OT] & {vector_in,2'b11}; // operand type
|
150 |
|
|
mode2 = instruction_in[`MODE2]; // format mode extension
|
151 |
|
|
// look for address instruction
|
152 |
|
|
if (il == 2 && mode == 1 && M && op1 == `II_ADDRESS_29) address_instruction = 1;
|
153 |
|
|
else address_instruction = 0;
|
154 |
|
|
|
155 |
|
|
// detect use of IM3 as option bits or extra operand
|
156 |
|
|
option_bits_im3 = 0;
|
157 |
|
|
if (il == 2 && (mode == 0 || mode == 5) && mode2 == 5) begin
|
158 |
|
|
option_bits_im3 = 0; // format 2.0.5 and 2.2.5 are using IM3 for an operand, not for options
|
159 |
|
|
end else if (category_in == `CAT_MULTI) begin
|
160 |
|
|
if (op1 == `II_SIGN_EXTEND_ADD || op1 == `II_COMPARE
|
161 |
|
|
|| op1 == `II_DIV || op1 == `II_DIV_REV || op1 == `II_DIV_U
|
162 |
|
|
|| op1 == `II_TEST_BIT || op1 == `II_TEST_BITS_AND || op1 == `II_TEST_BITS_OR
|
163 |
|
|
|| op1 == `II_MUL_ADD_FLOAT16 || op1 == `II_MUL_ADD || op1 == `II_MUL_ADD2
|
164 |
|
|
|| op1 == `II_ADD_ADD) begin
|
165 |
|
|
option_bits_im3 = 1;
|
166 |
|
|
end
|
167 |
|
|
end else if (il == 2) begin
|
168 |
|
|
if (((mode == 0 && !M) || mode == 2) && mode2 == 7 && op1 == `II_MOVE_BITS && op2 == `II2_MOVE_BITS)
|
169 |
|
|
option_bits_im3 = 1;
|
170 |
|
|
if (mode == 2 && mode2 == 7 && op1 == `II_MASK_LENGTH && op2 == `II2_MASK_LENGTH)
|
171 |
|
|
option_bits_im3 = 1;
|
172 |
|
|
if (((mode == 0 && !M) || mode == 2) && mode2 == 6 && op1 == `II_TRUTH_TAB3 && op2 == `II2_TRUTH_TAB3)
|
173 |
|
|
option_bits_im3 = 1;
|
174 |
|
|
end
|
175 |
|
|
|
176 |
|
|
/* We need to prevent spill-over of values from a preceding stalled instruction
|
177 |
|
|
because the address generator can produce pipeline bubbles. The solution used
|
178 |
|
|
here is to check if the instruction tag has changed before using the _temp values.
|
179 |
|
|
Test case:
|
180 |
|
|
int64 sp -= 32
|
181 |
|
|
int r8 = 8
|
182 |
|
|
int r9 = 9
|
183 |
|
|
int32 [sp+0x00] = r8
|
184 |
|
|
int32 [sp+0x08] = r9
|
185 |
|
|
int32 r2 = r8 + r9
|
186 |
|
|
int32 [sp+0x10] = r2
|
187 |
|
|
*/
|
188 |
|
|
// check if current instruction is different from last clock cycle
|
189 |
|
|
new_instruction = (tag_val_in != last_tag_val) && valid_in;
|
190 |
|
|
|
191 |
|
|
// look at result buses for any missing register values
|
192 |
|
|
if (last_stall && rs_val_temp[`RB] == 0 && last_valid && !new_instruction) rs_val = rs_val_temp; // obtained during stall
|
193 |
|
|
else if (rs_val_in[`RB] == 1 && write_en1 && rs_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rs_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
194 |
|
|
else if (rs_val_in[`RB] == 1 && write_en2 && rs_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rs_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
195 |
|
|
else rs_val = rs_val_in;
|
196 |
|
|
|
197 |
|
|
if (last_stall && rt_val_temp[`RB] == 0 && last_valid && !new_instruction) rt_val = rt_val_temp; // obtained during stall
|
198 |
|
|
else if (rt_val_in[`RB] == 1 && write_en1 && rt_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rt_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
199 |
|
|
else if (rt_val_in[`RB] == 1 && write_en2 && rt_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rt_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
200 |
|
|
else rt_val = rt_val_in;
|
201 |
|
|
|
202 |
|
|
if (last_stall && ru_val_temp[`RB] == 0 && last_valid && !new_instruction) ru_val = ru_val_temp; // obtained during stall
|
203 |
|
|
else if (ru_val_in[`RB] == 1 && write_en1 && ru_val_in[`TAG_WIDTH-1:0] == write_tag1_in) ru_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
204 |
|
|
else if (ru_val_in[`RB] == 1 && write_en2 && ru_val_in[`TAG_WIDTH-1:0] == write_tag2_in) ru_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
205 |
|
|
else ru_val = ru_val_in;
|
206 |
|
|
|
207 |
|
|
if (last_stall && rd_val_temp[`RB] == 0 && last_valid && !new_instruction) rd_val = rd_val_temp; // obtained during stall
|
208 |
|
|
else if (rd_val_in[`RB] == 1 && write_en1 && rd_val_in[`TAG_WIDTH-1:0] == write_tag1_in) rd_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
209 |
|
|
else if (rd_val_in[`RB] == 1 && write_en2 && rd_val_in[`TAG_WIDTH-1:0] == write_tag2_in) rd_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
210 |
|
|
else rd_val = rd_val_in;
|
211 |
|
|
|
212 |
|
|
if (mask_status_in == `REG_UNUSED) regmask_val = 1; // no mask
|
213 |
|
|
else if (last_stall && regmask_val_temp[`MASKSZ] == 0 && last_valid && !new_instruction) regmask_val = regmask_val_temp; // obtained during stall
|
214 |
|
|
else if (regmask_val_in[`MASKSZ] == 1 && write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) regmask_val = {1'b0, writeport1_in[`MASKSZ-1:0]}; // obtained from result bus 1
|
215 |
|
|
else if (regmask_val_in[`MASKSZ] == 1 && write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) regmask_val = {1'b0, writeport2_in[`MASKSZ-1:0]}; // obtained from result bus 2
|
216 |
|
|
else regmask_val = regmask_val_in;
|
217 |
|
|
end
|
218 |
|
|
|
219 |
|
|
// save values from result bus during stall
|
220 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
221 |
|
|
if ((stall_in || waiting) && valid_in ) begin
|
222 |
|
|
rs_val_temp <= rs_val; // temporary save during stall
|
223 |
|
|
rt_val_temp <= rt_val; // temporary save during stall
|
224 |
|
|
ru_val_temp <= ru_val; // temporary save during stall
|
225 |
|
|
rd_val_temp <= rd_val; // temporary save during stall
|
226 |
|
|
regmask_val_temp <= regmask_val; // temporary save during stall
|
227 |
|
|
end else begin
|
228 |
|
|
rs_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
229 |
|
|
rt_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
230 |
|
|
ru_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
231 |
|
|
rd_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
232 |
|
|
regmask_val_temp <= {1'b1,`MASKSZ'b0}; // reset when not stalled
|
233 |
|
|
end
|
234 |
|
|
end
|
235 |
|
|
|
236 |
|
|
|
237 |
|
|
always_comb begin
|
238 |
|
|
// Check if result is masked off so that we don't have to wait for operands
|
239 |
|
|
mask_off = mask_status_in != `REG_UNUSED && !mask_alternative_in && !vector_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0;
|
240 |
|
|
waiting = 0;
|
241 |
|
|
wait_next1 = 0; wait_next2 = 0; wait_next3 = 0;
|
242 |
|
|
array_error = 0;
|
243 |
|
|
|
244 |
|
|
// check if we need to wait for register values
|
245 |
|
|
if (rs_val[`RB] && rs_status_in == `REG_POINTER && !mask_off) begin
|
246 |
|
|
waiting = 1; // value of RS needed in this stage for address calculation. must stall
|
247 |
|
|
// predict if value will arrive in next clock cycle
|
248 |
|
|
wait_next1 = predict_tag1_in != rs_val[`TAG_WIDTH-1:0] && predict_tag2_in != rs_val[`TAG_WIDTH-1:0];
|
249 |
|
|
end
|
250 |
|
|
|
251 |
|
|
if (rt_val[`RB] && rt_status_in >= `REG_INDEX && !mask_off) begin
|
252 |
|
|
waiting = 1; // value of RT needed in this stage for address calculation. must stall
|
253 |
|
|
// predict if value will arrive in next clock cycle
|
254 |
|
|
wait_next2 = predict_tag1_in != rt_val[`TAG_WIDTH-1:0] && predict_tag2_in != rt_val[`TAG_WIDTH-1:0];
|
255 |
|
|
end
|
256 |
|
|
|
257 |
|
|
if (rd_val[`RB] && rd_status_in != 0 && result_type_in == `RESULT_MEM && !mask_off) begin
|
258 |
|
|
waiting = 1; // value of RD needed in this stage for writing. must stall
|
259 |
|
|
// predict if value will arrive in next clock cycle
|
260 |
|
|
wait_next3 = predict_tag1_in != rd_val[`TAG_WIDTH-1:0] && predict_tag2_in != rd_val[`TAG_WIDTH-1:0];
|
261 |
|
|
end
|
262 |
|
|
|
263 |
|
|
if (regmask_val[`MASKSZ] && mask_status_in != `REG_UNUSED && result_type_in == `RESULT_MEM) begin
|
264 |
|
|
waiting = 1; // value of mask needed before write
|
265 |
|
|
// predict if value will arrive in next clock cycle
|
266 |
|
|
wait_next3 = predict_tag1_in != regmask_val[`TAG_WIDTH-1:0] && predict_tag2_in != regmask_val[`TAG_WIDTH-1:0];
|
267 |
|
|
end
|
268 |
|
|
|
269 |
|
|
|
270 |
|
|
////////////////////////////////////////////////
|
271 |
|
|
// calculate address: //
|
272 |
|
|
////////////////////////////////////////////////
|
273 |
|
|
|
274 |
|
|
// rs is base pointer
|
275 |
|
|
base_pointer = rs_val[`RB1:0];
|
276 |
|
|
|
277 |
|
|
if (rt_status_in == `REG_INDEX) begin
|
278 |
|
|
// rt is scaled index
|
279 |
|
|
if (scale_factor_in == `SCALE_OS) begin
|
280 |
|
|
case (otype) // operand type
|
281 |
|
|
`OT_INT8: address_index = rt_val[`RB-1:0]; // scale factor 1
|
282 |
|
|
`OT_INT16: address_index = {rt_val[`RB-2:0],1'b0}; // scale factor 2
|
283 |
|
|
`OT_INT32, `OT_FLOAT32: address_index = {rt_val[`RB-3:0],2'b0}; // scale factor 4
|
284 |
|
|
`OT_INT64, `OT_FLOAT64: address_index = {rt_val[`RB-4:0],3'b0}; // scale factor 8
|
285 |
|
|
`OT_INT128,`OT_FLOAT128: address_index = {rt_val[`RB-5:0],4'b0}; // scale factor 16
|
286 |
|
|
endcase
|
287 |
|
|
end else if (scale_factor_in == `SCALE_MINUS) begin
|
288 |
|
|
address_index = -rt_val[`RB1:0]; // scale factor -1
|
289 |
|
|
end else begin
|
290 |
|
|
address_index = rt_val[`RB1:0]; // no scale factor
|
291 |
|
|
end
|
292 |
|
|
if (index_limit_in) begin
|
293 |
|
|
// check index limit
|
294 |
|
|
if (il == 3 && rt_val[`RB1:0] > instruction_in[95:64]
|
295 |
|
|
|| il == 2 && rt_val[`RB1:0] > instruction_in[`IM2E]) array_error = 1;
|
296 |
|
|
end
|
297 |
|
|
|
298 |
|
|
end else begin
|
299 |
|
|
address_index = 0; // no index
|
300 |
|
|
end
|
301 |
|
|
|
302 |
|
|
if (offset_field_in == `OFFSET_NONE) begin // no offset
|
303 |
|
|
address_offset = 0;
|
304 |
|
|
end else if (offset_field_in == `OFFSET_1) begin // 8 bit offset in IM1, scaled by operand size
|
305 |
|
|
case (otype) // operand type
|
306 |
|
|
`OT_INT8: address_offset = {{56{instruction_in[7]}},instruction_in[`IM1]}; // sign extend IM1
|
307 |
|
|
`OT_INT16: address_offset = {{55{instruction_in[7]}},instruction_in[`IM1],1'b0}; // sign extend, scale by 2
|
308 |
|
|
`OT_INT32, `OT_FLOAT32: address_offset = {{54{instruction_in[7]}},instruction_in[`IM1],2'b0}; // sign extend, scale by 4
|
309 |
|
|
`OT_INT64, `OT_FLOAT64: address_offset = {{53{instruction_in[7]}},instruction_in[`IM1],3'b0}; // sign extend, scale by 8
|
310 |
|
|
`OT_INT128,`OT_FLOAT128: address_offset = {{52{instruction_in[7]}},instruction_in[`IM1],4'b0}; // sign extend, scale by 16
|
311 |
|
|
endcase
|
312 |
|
|
end else if(offset_field_in == `OFFSET_2) begin // 16 bit offset in IM2, not scaled
|
313 |
|
|
address_offset = {{48{instruction_in[47]}},instruction_in[`IM2E]}; // sign extend IM2;
|
314 |
|
|
end else if (il == 2) begin // 32 bit offset in IM2
|
315 |
|
|
address_offset = {{32{instruction_in[63]}},instruction_in[63:32]}; // sign extend IM2;
|
316 |
|
|
end else if (mode == 1 && op1 == 0) begin // format 3.1.0. Jump with memory offest in IM3
|
317 |
|
|
address_offset = {{32{instruction_in[95]}},instruction_in[95:64]}; // sign extend IM3;
|
318 |
|
|
end else begin // format 3.x.x, except 3.1.0
|
319 |
|
|
address_offset = {{32{instruction_in[95]}},instruction_in[95:64]}; // sign extend IM4;
|
320 |
|
|
end
|
321 |
|
|
|
322 |
|
|
// calculated address
|
323 |
|
|
address = base_pointer + address_index + address_offset;
|
324 |
|
|
|
325 |
|
|
// data to write. (mask is handled below)
|
326 |
|
|
if (category_in == `CAT_MULTI) begin
|
327 |
|
|
write_data <= rd_val; // write register
|
328 |
|
|
end else begin
|
329 |
|
|
write_data <= instruction_in[63:32]; // write constant
|
330 |
|
|
end
|
331 |
|
|
end
|
332 |
|
|
|
333 |
|
|
|
334 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
335 |
|
|
|
336 |
|
|
read_enable_out <= 0;
|
337 |
|
|
write_enable_out <= 0;
|
338 |
|
|
|
339 |
|
|
if (valid_in && !waiting) begin
|
340 |
|
|
|
341 |
|
|
// output memory address for data cache read and write
|
342 |
|
|
// must have natural alignment
|
343 |
|
|
read_write_address_out <= address;
|
344 |
|
|
|
345 |
|
|
if (result_type_in == `RESULT_MEM && !mask_off && !array_error) begin
|
346 |
|
|
|
347 |
|
|
// memory write
|
348 |
|
|
if (otype == `OT_INT8) begin // write 8 bits
|
349 |
|
|
case (address[2:0])
|
350 |
|
|
0: begin
|
351 |
|
|
write_data_out <= write_data;
|
352 |
|
|
write_enable_out <= 8'b00000001; end
|
353 |
|
|
1: begin
|
354 |
|
|
write_data_out <= {write_data[7:0],8'b0};
|
355 |
|
|
write_enable_out <= 8'b00000010; end
|
356 |
|
|
2: begin
|
357 |
|
|
write_data_out <= {write_data[7:0],16'b0};
|
358 |
|
|
write_enable_out <= 8'b00000100; end
|
359 |
|
|
3: begin
|
360 |
|
|
write_data_out <= {write_data[7:0],24'b0};
|
361 |
|
|
write_enable_out <= 8'b00001000; end
|
362 |
|
|
4: begin
|
363 |
|
|
write_data_out <= {write_data[7:0],32'b0};
|
364 |
|
|
write_enable_out <= 8'b00010000; end
|
365 |
|
|
5: begin
|
366 |
|
|
write_data_out <= {write_data[7:0],40'b0};
|
367 |
|
|
write_enable_out <= 8'b00100000; end
|
368 |
|
|
6: begin
|
369 |
|
|
write_data_out <= {write_data[7:0],48'b0};
|
370 |
|
|
write_enable_out <= 8'b01000000; end
|
371 |
|
|
7: begin
|
372 |
|
|
write_data_out <= {write_data[7:0],56'b0};
|
373 |
|
|
write_enable_out <= 8'b10000000; end
|
374 |
|
|
endcase
|
375 |
|
|
|
376 |
|
|
end else if (otype == `OT_INT16) begin // write 16 bits
|
377 |
|
|
case (address[2:1])
|
378 |
|
|
0: begin
|
379 |
|
|
write_data_out <= write_data;
|
380 |
|
|
write_enable_out <= 8'b00000011; end
|
381 |
|
|
1: begin
|
382 |
|
|
write_data_out <= {write_data[15:0],16'b0};
|
383 |
|
|
write_enable_out <= 8'b00001100; end
|
384 |
|
|
2: begin
|
385 |
|
|
write_data_out <= {write_data[15:0],32'b0};
|
386 |
|
|
write_enable_out <= 8'b00110000; end
|
387 |
|
|
3: begin
|
388 |
|
|
write_data_out <= {write_data[15:0],48'b0};
|
389 |
|
|
write_enable_out <= 8'b11000000; end
|
390 |
|
|
endcase
|
391 |
|
|
|
392 |
|
|
end else if (otype == `OT_INT32 || otype == `OT_FLOAT32) begin // write 32 bits
|
393 |
|
|
case (address[2])
|
394 |
|
|
0: begin
|
395 |
|
|
write_data_out <= write_data;
|
396 |
|
|
write_enable_out <= 8'b00001111; end
|
397 |
|
|
1: begin
|
398 |
|
|
write_data_out <= {write_data[31:0],32'b0};
|
399 |
|
|
write_enable_out <= 8'b11110000; end
|
400 |
|
|
endcase
|
401 |
|
|
|
402 |
|
|
end else begin // write 64 bits (or more)
|
403 |
|
|
write_data_out <= write_data;
|
404 |
|
|
write_enable_out <= 8'b11111111;
|
405 |
|
|
end
|
406 |
|
|
|
407 |
|
|
end else if (rs_status_in == `REG_POINTER && !address_instruction) begin
|
408 |
|
|
|
409 |
|
|
// memory read. Must have natural alignment
|
410 |
|
|
read_enable_out <= valid_in && !mask_off && !array_error;
|
411 |
|
|
write_enable_out <= 0;
|
412 |
|
|
case (otype)
|
413 |
|
|
`OT_INT8: read_data_size_out <= `OT_INT8;
|
414 |
|
|
`OT_INT16: read_data_size_out <= `OT_INT16;
|
415 |
|
|
`OT_INT32,
|
416 |
|
|
`OT_FLOAT32: read_data_size_out <= `OT_INT32;
|
417 |
|
|
default: read_data_size_out <= `OT_INT64;
|
418 |
|
|
endcase
|
419 |
|
|
|
420 |
|
|
end
|
421 |
|
|
|
422 |
|
|
// sort operand values, selected by the priority order: immediate, memory, rt, rs, ru, rd
|
423 |
|
|
operand1_out <= 0; // value of first operand, bit `RB indicates invalid
|
424 |
|
|
operand2_out <= 0; // value of second operand, bit `RB indicates invalid
|
425 |
|
|
operand3_out <= 0; // value of last operand, bit `RB indicates invalid
|
426 |
|
|
|
427 |
|
|
if (immediate_field_in != `IMMED_NONE && rs_status_in == `REG_POINTER) begin
|
428 |
|
|
// both memory and immediate operands.
|
429 |
|
|
// Last operand is an immediate value calculated below.
|
430 |
|
|
// Next to last operand is a memory operand retrieved later.
|
431 |
|
|
// Find remaining register operand
|
432 |
|
|
if (rt_status_in == `REG_OPERAND) operand1_out <= rt_val;
|
433 |
|
|
else if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
|
434 |
|
|
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
435 |
|
|
|
436 |
|
|
end else if (immediate_field_in != `IMMED_NONE || rs_status_in == `REG_POINTER) begin
|
437 |
|
|
// Last operand is an immediate value calculated below or a memory operand retrieved later.
|
438 |
|
|
// Find remaining register operands
|
439 |
|
|
if (rt_status_in == `REG_OPERAND) begin
|
440 |
|
|
operand2_out <= rt_val;
|
441 |
|
|
if (rs_status_in == `REG_OPERAND) operand1_out <= rs_val;
|
442 |
|
|
else if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
|
443 |
|
|
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
444 |
|
|
else operand1_out <= rt_val; // possible fallback
|
445 |
|
|
end else if (rs_status_in == `REG_OPERAND || rs_status_in == `REG_SYSTEM) begin
|
446 |
|
|
operand2_out <= rs_val;
|
447 |
|
|
if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
|
448 |
|
|
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
449 |
|
|
else operand1_out <= rs_val; // possible fallback_use_in == `FALLBACK_RS
|
450 |
|
|
end else if (ru_status_in == `REG_OPERAND) begin
|
451 |
|
|
operand2_out <= ru_val;
|
452 |
|
|
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
453 |
|
|
else operand1_out <= ru_val;
|
454 |
|
|
end else if (rd_status_in == `REG_OPERAND) begin
|
455 |
|
|
operand2_out <= rd_val;
|
456 |
|
|
operand1_out <= rd_val;
|
457 |
|
|
end
|
458 |
|
|
end else begin
|
459 |
|
|
// last operand is a register
|
460 |
|
|
if (rt_status_in == `REG_OPERAND) begin
|
461 |
|
|
operand3_out <= rt_val;
|
462 |
|
|
if (rs_status_in == `REG_OPERAND) begin
|
463 |
|
|
operand2_out <= rs_val;
|
464 |
|
|
if (ru_status_in == `REG_OPERAND) operand1_out <= ru_val;
|
465 |
|
|
else if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
466 |
|
|
else operand1_out <= rs_val;
|
467 |
|
|
end else if (ru_status_in == `REG_OPERAND) begin
|
468 |
|
|
operand2_out <= ru_val;
|
469 |
|
|
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
470 |
|
|
else operand1_out <= ru_val;
|
471 |
|
|
end else if (rd_status_in == `REG_OPERAND) begin
|
472 |
|
|
operand2_out <= rd_val;
|
473 |
|
|
operand1_out <= rd_val;
|
474 |
|
|
end
|
475 |
|
|
end else if (rs_status_in == `REG_OPERAND) begin
|
476 |
|
|
operand3_out <= rs_val;
|
477 |
|
|
if (ru_status_in == `REG_OPERAND) begin
|
478 |
|
|
operand2_out <= ru_val;
|
479 |
|
|
if (rd_status_in == `REG_OPERAND) operand1_out <= rd_val;
|
480 |
|
|
else operand1_out <= ru_val;
|
481 |
|
|
end else if (rd_status_in == `REG_OPERAND) begin
|
482 |
|
|
operand2_out <= rd_val;
|
483 |
|
|
operand1_out <= rd_val;
|
484 |
|
|
end
|
485 |
|
|
end else if (ru_status_in == `REG_OPERAND) begin // should not occur
|
486 |
|
|
operand3_out <= ru_val;
|
487 |
|
|
if (rd_status_in == `REG_OPERAND) begin
|
488 |
|
|
operand2_out <= rd_val;
|
489 |
|
|
operand1_out <= rd_val;
|
490 |
|
|
end else begin
|
491 |
|
|
operand1_out <= ru_val;
|
492 |
|
|
end
|
493 |
|
|
end else if (rd_status_in == `REG_OPERAND) begin
|
494 |
|
|
operand3_out <= rd_val;
|
495 |
|
|
operand1_out <= rd_val;
|
496 |
|
|
end
|
497 |
|
|
end
|
498 |
|
|
|
499 |
|
|
// look for immediate operand, and process it if necessary
|
500 |
|
|
if (immediate_field_in != `IMMED_NONE) begin
|
501 |
|
|
if (immediate_field_in == `IMMED_1) begin // sign_extend 8 bit immediate operand
|
502 |
|
|
if (format_in == `FORMAT_E) begin
|
503 |
|
|
operand3_out <= {{(`RB-8){instruction_in[`IM3EXS]}},instruction_in[`IM3EX]};
|
504 |
|
|
end else if (format_in == `FORMAT_C && category_in == `CAT_JUMP) begin
|
505 |
|
|
// jump in format 1.7C and 2.5.4C
|
506 |
|
|
operand3_out <= {{(`RB-8){instruction_in[15]}},instruction_in[15:8]};
|
507 |
|
|
end else begin // format B
|
508 |
|
|
operand3_out <= {{(`RB-8){instruction_in[`IM1S]}},instruction_in[`IM1]};
|
509 |
|
|
end
|
510 |
|
|
end
|
511 |
|
|
if (immediate_field_in == `IMMED_2) begin // sign_extend 16 bit immediate operand
|
512 |
|
|
if (format_in == `FORMAT_C) begin // format C: sign extend (IM2,IM1)
|
513 |
|
|
operand3_out <= {{(`RB-16){instruction_in[15]}},instruction_in[15:0]};
|
514 |
|
|
// special cases
|
515 |
|
|
if (mode == 1) begin
|
516 |
|
|
if (op1 == `II_MOVEU11) operand3_out <= instruction_in[15:0]; // zero extended
|
517 |
|
|
if (op1 == `II_ADDSHIFT16_11) begin
|
518 |
|
|
`ifdef SUPPORT_64BIT
|
519 |
|
|
operand3_out <= {{(`RB-32){instruction_in[15]}},instruction_in[15:0],16'b0}; // shift left by 16
|
520 |
|
|
`else
|
521 |
|
|
operand3_out <= {instruction_in[15:0],16'b0}; // shift left by 16
|
522 |
|
|
`endif
|
523 |
|
|
end
|
524 |
|
|
if ((op1 & -2) == `II_SHIFT_MOVE_11 || op1 >= `II_SHIFT_ADD_11 && op1 <= `II_SHIFT_XOR_11+1) begin // IM2 << IM1
|
525 |
|
|
if (instruction_in[`IM1] >= 64) operand3_out <= 0;
|
526 |
|
|
else operand3_out <= {{(`RB-8){instruction_in[15]}},instruction_in[15:8]} << instruction_in[5:0];
|
527 |
|
|
end
|
528 |
|
|
end
|
529 |
|
|
end else begin
|
530 |
|
|
operand3_out <= {{(`RB-16){instruction_in[`IM2ES]}},instruction_in[`IM2E]};
|
531 |
|
|
// special cases
|
532 |
|
|
if (il == 2 && ((mode == 0 && !M) || mode == 2) && mode2 == 7 && !option_bits_im3) begin
|
533 |
|
|
// format 2.0.7 and 2.2.7 have shift
|
534 |
|
|
operand3_out <= {{(`RB-16){instruction_in[47]}},instruction_in[`IM2E]} << instruction_in[`IM3E];
|
535 |
|
|
end
|
536 |
|
|
end
|
537 |
|
|
end
|
538 |
|
|
if (immediate_field_in == `IMMED_3) begin
|
539 |
|
|
`ifdef SUPPORT_64BIT
|
540 |
|
|
if (il == 3 && ((mode == 0 && !M) || mode == 2) && mode2 == 7 && otype < `OT_FLOAT32) begin
|
541 |
|
|
// format 3.0.7 and 3.2.7 have shift
|
542 |
|
|
operand3_out <= {{32{instruction_in[95]}},instruction_in[95:64]} << instruction_in[`IM2E];
|
543 |
|
|
end else if (il == 3 && format_in == `FORMAT_E) begin
|
544 |
|
|
// other format 3E
|
545 |
|
|
operand3_out <= {{32{instruction_in[95]}},instruction_in[95:64]};
|
546 |
|
|
end else if (il == 3 && mode == 0 && M) begin
|
547 |
|
|
// format 3.8
|
548 |
|
|
operand3_out <= instruction_in[95:32];
|
549 |
|
|
end else begin
|
550 |
|
|
// format 2.x
|
551 |
|
|
operand3_out <= {{32{instruction_in[63]}},instruction_in[63:32]};
|
552 |
|
|
end
|
553 |
|
|
`else
|
554 |
|
|
if (((mode == 0 && !M) || mode == 2) && mode2 == 7 && otype < `OT_FLOAT32) begin
|
555 |
|
|
// format 3.0.7 and 3.2.7 have shift
|
556 |
|
|
operand3_out <= instruction_in[95:64] << instruction_in[`IM2E];
|
557 |
|
|
end else if (il == 3 && format_in == `FORMAT_E) begin
|
558 |
|
|
operand3_out <= instruction_in[95:64];
|
559 |
|
|
end else begin
|
560 |
|
|
operand3_out <= instruction_in[63:32];
|
561 |
|
|
end
|
562 |
|
|
`endif
|
563 |
|
|
|
564 |
|
|
// special cases
|
565 |
|
|
if (il == 2 && mode == 1 && M) begin
|
566 |
|
|
if (op1 == `II_ADDU_29 || op1 == `II_SUBU_29) begin
|
567 |
|
|
operand3_out <= instruction_in[63:32]; // zero extend
|
568 |
|
|
end
|
569 |
|
|
if (op1 == `II_MOVE_HI_29 || (op1 >= `II_ADD_HI_29 && op1 <= `II_XOR_HI_29)) begin
|
570 |
|
|
// immediate constant is high word of 64 bits
|
571 |
|
|
`ifdef SUPPORT_64BIT
|
572 |
|
|
operand3_out <= {instruction_in[63:32],32'b0}; // high word
|
573 |
|
|
`else
|
574 |
|
|
operand3_out <= 0; // there is no high word
|
575 |
|
|
`endif
|
576 |
|
|
end
|
577 |
|
|
end
|
578 |
|
|
end
|
579 |
|
|
//if (category_in == `CAT_JUMP) begin // unnecessary check
|
580 |
|
|
if (il == 2 && mode == 5) begin
|
581 |
|
|
// immediate operands in jump instructions 2.5.x
|
582 |
|
|
if (op1 == 0) begin
|
583 |
|
|
// format 2.5.0A: jump with three registers, and 24 bit jump offset, no immediate
|
584 |
|
|
end else if (op1 == 1) begin
|
585 |
|
|
// format 2.5.1B: jump with one register, one 16 bit operand, and 16 bit jum offset
|
586 |
|
|
operand3_out <= {{48{instruction_in[47]}},instruction_in[47:32]}; // sign extend 16 bit operand
|
587 |
|
|
end else if (op1 == 4) begin
|
588 |
|
|
// format 2.5.4C: jump with one register, one 8 bit operand, and 32 bit offset
|
589 |
|
|
operand3_out <= {{56{instruction_in[15]}},instruction_in[15:8]}; // sign extend 8 bit operand
|
590 |
|
|
end else if (op1 == 5) begin
|
591 |
|
|
// format 2.5.5: jump with one register, one 32 bit operand, and 8 bit offset
|
592 |
|
|
operand3_out <= {{32{instruction_in[63]}},instruction_in[63:32]}; // sign extend 32 bit operand
|
593 |
|
|
end else if (op1 == 7) begin
|
594 |
|
|
// format 2.5.7: system call. 16 bit and 32 bit constants
|
595 |
|
|
operand3_out <= {instruction_in[63:32],16'b0,instruction_in[15:0]}; // 32 bit module ID, 16 bit function ID
|
596 |
|
|
end
|
597 |
|
|
end
|
598 |
|
|
if (il == 3 && mode == 1) begin
|
599 |
|
|
// immedate operands in jump instructions 3.1.x
|
600 |
|
|
if (op1 == 0) begin
|
601 |
|
|
// format 3.1.0: jump with memory operand and 32 bit offset. no immediate
|
602 |
|
|
end else if (op1 == 1) begin // && op1 == `IJ_SYSCALL
|
603 |
|
|
// jump format 3.1.1
|
604 |
|
|
if (instruction_in[5:0] < `IJ_SYSCALL) begin
|
605 |
|
|
operand3_out <= instruction_in[95:64];
|
606 |
|
|
end else begin
|
607 |
|
|
// format 3.1.1: system call with 32 bit module ID and 32 bit function ID
|
608 |
|
|
`ifdef SUPPORT_64BIT
|
609 |
|
|
operand3_out <= instruction_in[95:32];
|
610 |
|
|
`else
|
611 |
|
|
operand3_out <= {instruction_in[79:64],instruction_in[47:32]};
|
612 |
|
|
`endif
|
613 |
|
|
end
|
614 |
|
|
end
|
615 |
|
|
end
|
616 |
|
|
operand3_out[`RB] <= 0; // indicate not missing
|
617 |
|
|
end
|
618 |
|
|
|
619 |
|
|
if (address_instruction) begin
|
620 |
|
|
operand3_out <= address; // address instruction
|
621 |
|
|
end
|
622 |
|
|
|
623 |
|
|
if (fallback_use_in > `FALLBACK_SOURCE) begin
|
624 |
|
|
// separate fallback register. Check if fallback zero
|
625 |
|
|
if (fallback_use_in == `FALLBACK_RU && instruction_in[`RU] == 31) operand1_out <= 0;
|
626 |
|
|
if (fallback_use_in == `FALLBACK_RS && instruction_in[`RS] == 31) operand1_out <= 0;
|
627 |
|
|
if (fallback_use_in == `FALLBACK_RT && instruction_in[`RT] == 31) operand1_out <= 0;
|
628 |
|
|
end
|
629 |
|
|
|
630 |
|
|
// output everything else
|
631 |
|
|
regmask_val_out <= regmask_val;
|
632 |
|
|
instruction_pointer_out <= instruction_pointer_in; // address of current instruction
|
633 |
|
|
instruction_out <= instruction_in[63:0]; // first two words of instruction
|
634 |
|
|
tag_val_out <= tag_val_in; // instruction tag value
|
635 |
|
|
vector_out <= vector_in; // this is a vector instruction
|
636 |
|
|
category_out <= category_in; // 00: multiformat, 01: single format, 10: jump
|
637 |
|
|
format_out <= format_in; // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
638 |
|
|
mask_status_out <= mask_status_in == `REG_OPERAND;// mask register is used
|
639 |
|
|
mask_alternative_out <= mask_alternative_in; // mask register and fallback register used for alternative purposes
|
640 |
|
|
fallback_use_out <= fallback_use_in; // use of fallback register
|
641 |
|
|
num_operands_out <= num_operands_in; // number of source operands
|
642 |
|
|
result_type_out <= result_type_in; // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
643 |
|
|
offset_field_out <= offset_field_in; // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
644 |
|
|
immediate_field_out <= immediate_field_in; // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
645 |
|
|
scale_factor_out <= scale_factor_in; // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
646 |
|
|
memory_operand_out <= (rs_status_in >= `REG_POINTER) && !address_instruction; // The instruction has a memory operand
|
647 |
|
|
array_error_out <= array_error; // Array index exceeds limit;
|
648 |
|
|
options3_out <= option_bits_im3; // IM3 used for option bits
|
649 |
|
|
end
|
650 |
|
|
|
651 |
|
|
end
|
652 |
|
|
|
653 |
|
|
|
654 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
655 |
|
|
last_stall <= (stall_in || waiting) && valid_in;
|
656 |
|
|
last_valid <= valid_in;
|
657 |
|
|
stall_predict_out <= (wait_next1 | wait_next2 | wait_next3) && valid_in; // predict stalling in next clock cycle
|
658 |
|
|
last_tag_val <= tag_val_in;
|
659 |
|
|
|
660 |
|
|
if (reset) begin
|
661 |
|
|
valid_out <= 0;
|
662 |
|
|
end else begin
|
663 |
|
|
// avoid sending an instruction that is not ready, or an instruction that has already been sent
|
664 |
|
|
valid_out <= valid_in && !waiting && !stall_in && (new_instruction | !valid_out);
|
665 |
|
|
end
|
666 |
|
|
|
667 |
|
|
// temporary debug outputs
|
668 |
|
|
debug1_out <= {address_offset[7:0], address_index[7:0], base_pointer[15:0]};
|
669 |
|
|
debug2_out <= write_data;
|
670 |
|
|
|
671 |
|
|
debug3_out[0] <= waiting;
|
672 |
|
|
debug3_out[1] <= stall_in;
|
673 |
|
|
debug3_out[2] <= last_stall;
|
674 |
|
|
|
675 |
|
|
debug3_out[4] <= wait_next1;
|
676 |
|
|
debug3_out[5] <= wait_next2;
|
677 |
|
|
debug3_out[6] <= wait_next3;
|
678 |
|
|
|
679 |
|
|
debug3_out[8] <= rs_val[`RB] && (rs_status_in >= `REG_POINTER) && !mask_off;
|
680 |
|
|
debug3_out[9] <= rt_val[`RB] && (rt_status_in >= `REG_INDEX) && !mask_off;
|
681 |
|
|
debug3_out[10] <= rd_val[`RB] && (rd_status_in != 0)&& result_type_in == `RESULT_MEM && !mask_off;
|
682 |
|
|
debug3_out[11] <= new_instruction;
|
683 |
|
|
|
684 |
|
|
debug3_out[12] <= valid_in;
|
685 |
|
|
debug3_out[14] <= valid_out; // preceding valid out
|
686 |
|
|
debug3_out[15] <= last_valid;
|
687 |
|
|
|
688 |
|
|
debug3_out[16] <= rs_val[`RB];
|
689 |
|
|
debug3_out[17] <= rt_val[`RB];
|
690 |
|
|
debug3_out[18] <= rd_val[`RB];
|
691 |
|
|
|
692 |
|
|
debug3_out[20] <= rs_val_temp[`RB];
|
693 |
|
|
debug3_out[21] <= rt_val_temp[`RB];
|
694 |
|
|
debug3_out[22] <= rd_val_temp[`RB];
|
695 |
|
|
|
696 |
|
|
debug3_out[24] <= write_en1 && rt_val_in[`TAG_WIDTH-1:0] == write_tag1_in;
|
697 |
|
|
debug3_out[25] <= write_en2 && rt_val_in[`TAG_WIDTH-1:0] == write_tag2_in;
|
698 |
|
|
debug3_out[26] <= write_en1 && rd_val_in[`TAG_WIDTH-1:0] == write_tag1_in;
|
699 |
|
|
debug3_out[27] <= write_en2 && rd_val_in[`TAG_WIDTH-1:0] == write_tag2_in;
|
700 |
|
|
|
701 |
|
|
debug3_out[28] <= option_bits_im3;
|
702 |
|
|
debug3_out[31] <= mask_off;
|
703 |
|
|
|
704 |
|
|
end
|
705 |
|
|
|
706 |
|
|
endmodule
|