1 |
12 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
// Engineer: Agner Fog
|
3 |
|
|
//
|
4 |
|
|
// Create Date: 2020-06-06
|
5 |
|
|
// Last modified: 2021-08-03
|
6 |
|
|
// Module Name: decoder
|
7 |
|
|
// Project Name: ForwardCom soft core
|
8 |
|
|
// Target Devices: Artix 7
|
9 |
|
|
// Tool Versions: Vivado v. 2020.1
|
10 |
|
|
// License: CERN-OHL-W
|
11 |
|
|
// Description: Arithmetic-logic unit for general purpose registers.
|
12 |
|
|
// Executes add, subtract, bit manipulation, etc.
|
13 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
14 |
|
|
|
15 |
|
|
`include "defines.vh"
|
16 |
|
|
`include "subfunctions.vh"
|
17 |
|
|
|
18 |
|
|
module alu (
|
19 |
|
|
input clock, // system clock
|
20 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
21 |
|
|
input reset, // system reset
|
22 |
|
|
input valid_in, // data from previous stage ready
|
23 |
|
|
input stall_in, // pipeline is stalled
|
24 |
|
|
|
25 |
|
|
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
|
26 |
|
|
input [31:0] instruction_in, // current instruction, only first word used here
|
27 |
|
|
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
|
28 |
|
|
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
|
29 |
|
|
input mask_alternative_in, // mask register and fallback register used for alternative purposes
|
30 |
|
|
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
31 |
|
|
input vector_in, // vector registers used
|
32 |
|
|
input [6:0] opx_in, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
33 |
|
|
input [5:0] opj_in, // operation ID for conditional jump instructions
|
34 |
|
|
input [2:0] ot_in, // operand type
|
35 |
|
|
input [5:0] option_bits_in, // option bits from IM3 or mask
|
36 |
|
|
input [15:0] im2_bits_in, // constant bits from IM2 as extra operand
|
37 |
|
|
|
38 |
|
|
// monitor result buses:
|
39 |
|
|
input write_en1, // a result is written to writeport1
|
40 |
|
|
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
|
41 |
|
|
input [`RB1:0] writeport1_in, // result bus 1
|
42 |
|
|
input write_en2, // a result is written to writeport2
|
43 |
|
|
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
|
44 |
|
|
input [`RB1:0] writeport2_in, // result bus 2
|
45 |
|
|
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle
|
46 |
|
|
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle
|
47 |
|
|
|
48 |
|
|
// Register values sampled from result bus in previous stages
|
49 |
|
|
input [`RB:0] operand1_in, // first register operand or fallback
|
50 |
|
|
input [`RB:0] operand2_in, // second register operand RS
|
51 |
|
|
input [`RB:0] operand3_in, // last register operand RT
|
52 |
|
|
input [`MASKSZ:0] regmask_val_in, // mask register
|
53 |
|
|
input [`RB1:0] ram_data_in, // memory operand from data ram
|
54 |
|
|
input opr2_from_ram_in, // value of operand 2 comes from data ram
|
55 |
|
|
input opr3_from_ram_in, // value of last operand comes from data ram
|
56 |
|
|
input opr1_used_in, // operand1_in is needed
|
57 |
|
|
input opr2_used_in, // operand2_in is needed
|
58 |
|
|
input opr3_used_in, // operand3_in is needed
|
59 |
|
|
input regmask_used_in, // regmask_val_in is needed
|
60 |
|
|
|
61 |
|
|
output reg valid_out, // for debug display: alu is active
|
62 |
|
|
output reg register_write_out,
|
63 |
|
|
output reg [5:0] register_a_out, // register to write
|
64 |
|
|
output reg [`RB1:0] result_out, // output result to destination register
|
65 |
|
|
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
|
66 |
|
|
output reg jump_out, // jump instruction: jump taken
|
67 |
|
|
output reg nojump_out, // jump instruction: jump not taken
|
68 |
|
|
output reg [`CODE_ADDR_WIDTH-1:0] jump_pointer_out, // jump target to fetch unit
|
69 |
|
|
output reg stall_out, // alu is waiting for an operand or not ready to receive a new instruction
|
70 |
|
|
output reg stall_next_out, // alu will be waiting in next clock cycle
|
71 |
|
|
output reg error_out, // unknown instruction
|
72 |
|
|
output reg error_parm_out, // wrong parameter for instruction
|
73 |
|
|
|
74 |
|
|
// outputs for debugger:
|
75 |
|
|
output reg [31:0] debug1_out, // debug information
|
76 |
|
|
output reg [31:0] debug2_out // temporary debug information
|
77 |
|
|
);
|
78 |
|
|
|
79 |
|
|
logic [`RB1:0] operand1; // first register operand RD or RU. bit `RB is 1 if invalid
|
80 |
|
|
logic [`RB1:0] operand2; // second register operand RS. bit `RB is 1 if invalid
|
81 |
|
|
logic [`RB1:0] operand3; // last register operand RT. bit `RB is 1 if invalid
|
82 |
|
|
logic [`MASKSZ:0] regmask_val; // mask register
|
83 |
|
|
logic [1:0] otout; // operand type for output
|
84 |
|
|
logic [5:0] msb; // index to most significant bit
|
85 |
|
|
logic signbit2, signbit3; // sign bits of operands
|
86 |
|
|
logic [`RB1:0] sbit; // position of sign bit
|
87 |
|
|
logic [`RB1:0] result; // result for output
|
88 |
|
|
logic [1:0] result_type; // type of result
|
89 |
|
|
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
90 |
|
|
logic [6:0] opj; // operation ID for conditional jump
|
91 |
|
|
logic jump_result; // result of jump condition (needs inversion if opj[0])
|
92 |
|
|
|
93 |
|
|
logic mask_off; // result is masked off
|
94 |
|
|
logic stall; // waiting for operands
|
95 |
|
|
logic stall_next; // will be waiting for operands in next clock cycle
|
96 |
|
|
logic error; // unknown instruction
|
97 |
|
|
logic error_parm; // wrong parameter for instruction
|
98 |
|
|
logic jump_taken; // conditional jump is jumping
|
99 |
|
|
logic jump_not_taken; // conditional jump is not jumping or target follows immediately
|
100 |
|
|
logic normal_output; // normal register output
|
101 |
|
|
|
102 |
|
|
logic [`CODE_ADDR_WIDTH-1:0] nojump_target; // next address if not jumping
|
103 |
|
|
logic [`CODE_ADDR_WIDTH-1:0] relative_jump_target; // jump target for multiway relative jump
|
104 |
|
|
// It seems to be more efficient to truncate operands locally by ANDing with sizemask than to
|
105 |
|
|
// make separate wires for the truncated operands, because wiring is more expensive than logic:
|
106 |
|
|
logic [`RB1:0] sizemask; // mask for operand type
|
107 |
|
|
|
108 |
|
|
always_comb begin
|
109 |
|
|
stall = 0;
|
110 |
|
|
stall_next = 0;
|
111 |
|
|
regmask_val = 0;
|
112 |
|
|
|
113 |
|
|
// get all inputs
|
114 |
|
|
if (regmask_val_in[`MASKSZ]) begin // value missing
|
115 |
|
|
if (write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
116 |
|
|
regmask_val = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
117 |
|
|
end else if (write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
118 |
|
|
regmask_val = writeport2_in[(`MASKSZ-1):0]; // obtained from result bus 2
|
119 |
|
|
end else begin
|
120 |
|
|
if (regmask_used_in) begin
|
121 |
|
|
stall = 1; // operand not ready
|
122 |
|
|
if (regmask_val_in[`TAG_WIDTH-1:0] != predict_tag1_in && regmask_val_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
123 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
124 |
|
|
end
|
125 |
|
|
end
|
126 |
|
|
end
|
127 |
|
|
end else begin // value available
|
128 |
|
|
regmask_val = regmask_val_in;
|
129 |
|
|
end
|
130 |
|
|
|
131 |
|
|
// result is masked off
|
132 |
|
|
mask_off = regmask_used_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in;
|
133 |
|
|
|
134 |
|
|
operand1 = 0;
|
135 |
|
|
if (operand1_in[`RB]) begin // value missing
|
136 |
|
|
if (write_en1 && operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
137 |
|
|
operand1 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
138 |
|
|
end else if (write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
139 |
|
|
operand1 = writeport2_in; // obtained from result bus 2
|
140 |
|
|
end else begin
|
141 |
|
|
if (opr1_used_in) begin
|
142 |
|
|
stall = 1; // operand not ready
|
143 |
|
|
if (operand1_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand1_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
144 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
145 |
|
|
end
|
146 |
|
|
end
|
147 |
|
|
end
|
148 |
|
|
end else begin
|
149 |
|
|
operand1 = operand1_in[`RB1:0];
|
150 |
|
|
end
|
151 |
|
|
|
152 |
|
|
operand2 = 0;
|
153 |
|
|
if (opr2_from_ram_in) begin
|
154 |
|
|
operand2 = ram_data_in;
|
155 |
|
|
end else if (operand2_in[`RB]) begin // value missing
|
156 |
|
|
if (write_en1 && operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
157 |
|
|
operand2 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
158 |
|
|
end else if (write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
159 |
|
|
operand2 = writeport2_in; // obtained from result bus 2
|
160 |
|
|
end else begin
|
161 |
|
|
if (opr2_used_in /*&& !mask_off*/) begin // mask_off removed because of critical timing
|
162 |
|
|
stall = 1; // operand not ready
|
163 |
|
|
if (operand2_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand2_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
164 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
165 |
|
|
end
|
166 |
|
|
end
|
167 |
|
|
end
|
168 |
|
|
end else begin // value available
|
169 |
|
|
operand2 = operand2_in[`RB1:0];
|
170 |
|
|
end
|
171 |
|
|
|
172 |
|
|
operand3 = 0;
|
173 |
|
|
if (opr3_from_ram_in) begin
|
174 |
|
|
operand3 = ram_data_in;
|
175 |
|
|
end else if (operand3_in[`RB]) begin // value missing
|
176 |
|
|
if (write_en1 && operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
177 |
|
|
operand3 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
178 |
|
|
end else if (write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
179 |
|
|
operand3 = writeport2_in; // obtained from result bus 2
|
180 |
|
|
end else begin
|
181 |
|
|
if (opr3_used_in /*&& !mask_off*/) begin // mask_off removed because of critical timing
|
182 |
|
|
stall = 1; // operand not ready
|
183 |
|
|
if (operand3_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand3_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
184 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
185 |
|
|
end
|
186 |
|
|
end
|
187 |
|
|
end
|
188 |
|
|
end else begin // value available
|
189 |
|
|
operand3 = operand3_in[`RB1:0];
|
190 |
|
|
end
|
191 |
|
|
|
192 |
|
|
opx = opx_in; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
193 |
|
|
opj = opj_in; // operation ID for conditional jump
|
194 |
|
|
result = 0;
|
195 |
|
|
jump_result = 0;
|
196 |
|
|
otout = ot_in[1:0]; // operand type for output
|
197 |
|
|
result_type = result_type_in;
|
198 |
|
|
jump_taken = 0;
|
199 |
|
|
jump_not_taken = 0;
|
200 |
|
|
nojump_target = 0;
|
201 |
|
|
relative_jump_target = 0;
|
202 |
|
|
error = 0;
|
203 |
|
|
error_parm = 0;
|
204 |
|
|
|
205 |
|
|
// auxiliary variables depending on operand type
|
206 |
|
|
case (ot_in[1:0])
|
207 |
|
|
0: begin // 8 bit
|
208 |
|
|
msb = 7; // most significant bit
|
209 |
|
|
sbit = 8'H80; // sign bit
|
210 |
|
|
sizemask = 8'HFF; // mask off unused bits
|
211 |
|
|
signbit2 = operand2[7]; // sign bit of operand 2
|
212 |
|
|
signbit3 = operand3[7]; // sign bit of operand 3
|
213 |
|
|
end
|
214 |
|
|
1: begin // 16 bit
|
215 |
|
|
msb = 15; // most significant bit
|
216 |
|
|
sbit = 16'H8000; // sign bit
|
217 |
|
|
sizemask = 16'HFFFF; // mask off unused bits
|
218 |
|
|
signbit2 = operand2[15]; // sign bit of operand 2
|
219 |
|
|
signbit3 = operand3[15]; // sign bit of operand 3
|
220 |
|
|
end
|
221 |
|
|
2: begin // 32 bit
|
222 |
|
|
msb = 31; // most significant bit
|
223 |
|
|
sbit = 32'H80000000; // sign bit
|
224 |
|
|
sizemask = 32'HFFFFFFFF; // mask off unused bits
|
225 |
|
|
signbit2 = operand2[31]; // sign bit of operand 2
|
226 |
|
|
signbit3 = operand3[31]; // sign bit of operand 3
|
227 |
|
|
end
|
228 |
|
|
3: begin // 64 bit, or 32 if 64 bit not supported
|
229 |
|
|
msb = `RB1; // most significant bit
|
230 |
|
|
sbit = {1'b1,{(`RB-1){1'b0}}}; // sign bit
|
231 |
|
|
sizemask = ~(`RB'b0); // mask off unused bits
|
232 |
|
|
signbit2 = operand2[`RB1]; // sign bit of operand 2
|
233 |
|
|
signbit3 = operand3[`RB1]; // sign bit of operand 3
|
234 |
|
|
end
|
235 |
|
|
endcase
|
236 |
|
|
|
237 |
|
|
|
238 |
|
|
|
239 |
|
|
////////////////////////////////////////////////
|
240 |
|
|
// Select ALU operation
|
241 |
|
|
////////////////////////////////////////////////
|
242 |
|
|
|
243 |
|
|
if (opx == `II_MOVE || opx == `II_STORE) begin
|
244 |
|
|
// simple move instructions
|
245 |
|
|
result = operand3;
|
246 |
|
|
|
247 |
|
|
end else if (opx == `IX_READ_SPEC || opx == `IX_WRITE_SPEC) begin
|
248 |
|
|
// read or write special registers
|
249 |
|
|
result = operand2;
|
250 |
|
|
|
251 |
|
|
end else if (opx == `II_SIGN_EXTEND || opx == `II_SIGN_EXTEND_ADD || opx == `IX_RELATIVE_JUMP) begin
|
252 |
|
|
// instructions involving sign extension
|
253 |
|
|
logic [`RB1:0] sign_ex; // result of sign extension
|
254 |
|
|
logic [`RB1:0] sign_ex_sc; // result of sign extension and scaling
|
255 |
|
|
otout = 3; // 64 bit output
|
256 |
|
|
// sign extend:
|
257 |
|
|
case (ot_in[1:0])
|
258 |
|
|
0: sign_ex = {{56{operand3[ 7]}},operand3[7:0]}; // 8 bit
|
259 |
|
|
1: sign_ex = {{48{operand3[15]}},operand3[15:0]}; // 16 bit
|
260 |
|
|
2: sign_ex = {{32{operand3[31]}},operand3[31:0]}; // 32 bit
|
261 |
|
|
3: sign_ex = operand3[`RB1:0]; // 64 bit
|
262 |
|
|
endcase
|
263 |
|
|
if (opx == `II_SIGN_EXTEND_ADD) begin
|
264 |
|
|
// scale sign_ex.
|
265 |
|
|
// The scale factor is limited to 3 here for timing reasons so that it fits a 6-input LUT
|
266 |
|
|
// A full barrel shifter takes too much time
|
267 |
|
|
case (option_bits_in[1:0]) // optional shift count in option bits
|
268 |
|
|
0: sign_ex_sc = sign_ex; // scale factor 1
|
269 |
|
|
1: sign_ex_sc = {sign_ex,1'b0}; // scale factor 2
|
270 |
|
|
2: sign_ex_sc = {sign_ex,2'b0}; // scale factor 4
|
271 |
|
|
3: sign_ex_sc = {sign_ex,3'b0}; // scale factor 8
|
272 |
|
|
endcase
|
273 |
|
|
result = sign_ex_sc + operand2; // add
|
274 |
|
|
if (|(option_bits_in[5:2])) error_parm = 1; // shift count > 3
|
275 |
|
|
|
276 |
|
|
end else begin
|
277 |
|
|
result = sign_ex;
|
278 |
|
|
end
|
279 |
|
|
if (opx == `IX_RELATIVE_JUMP) begin
|
280 |
|
|
relative_jump_target = sign_ex + operand2[`RB1:2] - {1'b1,{(`CODE_ADDR_START-2){1'b0}}}; // subtract (code memory start)/4
|
281 |
|
|
if (|(operand2[1:0])) error_parm = 1; // jump to misaligned address
|
282 |
|
|
end
|
283 |
|
|
|
284 |
|
|
end else if (opx == `II_COMPARE || (opx >= `II_MIN && opx <= `II_MAX_U)) begin
|
285 |
|
|
// instructions involving signed and unsigned compare. operation defined by option bits
|
286 |
|
|
logic b1, b2, b3, eq, less; // intermediate results
|
287 |
|
|
logic [`RB1:0] sbit1;
|
288 |
|
|
b1 = 0; b2 = 0; b3 = 0; eq = 0; less = 0;
|
289 |
|
|
// flip a 1 in the sign bit position if comparison is signed (option_bits_in[3] = 0)
|
290 |
|
|
sbit1 = option_bits_in[3] ? `RB'b0 : sbit; // sign bit if signed
|
291 |
|
|
eq = (operand2 & sizemask) == (operand3 & sizemask); // operands are equal
|
292 |
|
|
less = ((operand2 & sizemask) ^ sbit1) < ((operand3 & sizemask) ^ sbit1); // a < b, signed or unsigned
|
293 |
|
|
|
294 |
|
|
if (option_bits_in[2:1] == 0) begin
|
295 |
|
|
b1 = eq; // a == b
|
296 |
|
|
end else if (option_bits_in[2:1] == 1) begin
|
297 |
|
|
b1 = less; // a < b
|
298 |
|
|
end else if (option_bits_in[2:1] == 2) begin
|
299 |
|
|
b1 = ~less & ~eq; // a > b
|
300 |
|
|
end else begin
|
301 |
|
|
logic [`RB1:0] absa;
|
302 |
|
|
logic [`RB1:0] absb;
|
303 |
|
|
absa = signbit2 ? -operand2 : operand2; // abs(a)
|
304 |
|
|
absb = signbit3 ? -operand3 : operand3; // abs(b)
|
305 |
|
|
b1 = (absa & sizemask) < (absb & sizemask); // abs(a) < abs(b)
|
306 |
|
|
end
|
307 |
|
|
jump_result = b1; // result for conditional jump
|
308 |
|
|
b2 = b1 ^ option_bits_in[0]; // bit 0 of condition code inverts the result
|
309 |
|
|
|
310 |
|
|
// alternative use of mask
|
311 |
|
|
case (option_bits_in[5:4])
|
312 |
|
|
2'b00: b3 = regmask_val[0] ? b2 : operand1[0]; // normal fallback
|
313 |
|
|
2'b01: b3 = regmask_val[0] & b2 & operand1[0]; // mask & result & fallback
|
314 |
|
|
2'b10: b3 = regmask_val[0] & (b2 | operand1[0]); // mask & (result | fallback)
|
315 |
|
|
2'b11: b3 = regmask_val[0] & (b2 ^ operand1[0]); // mask & (result ^ fallback)
|
316 |
|
|
endcase
|
317 |
|
|
|
318 |
|
|
// copy remaining bits from mask
|
319 |
|
|
if (opx == `II_COMPARE && instruction_in[`MASK] != 3'b111) begin
|
320 |
|
|
result[`RB1:1] = regmask_val[(`MASKSZ-1):1];
|
321 |
|
|
end
|
322 |
|
|
|
323 |
|
|
if (opx >= `II_MIN) begin
|
324 |
|
|
// min and max instructions
|
325 |
|
|
result = b1 ? operand2 : operand3;
|
326 |
|
|
end else if (regmask_used_in | mask_alternative_in) begin
|
327 |
|
|
// combine result with rest of mask or NUMCONTR
|
328 |
|
|
result = {regmask_val[(`MASKSZ-1):1],b3}; // get remaining bits from mask
|
329 |
|
|
end else begin
|
330 |
|
|
// normal compare
|
331 |
|
|
result = b3;
|
332 |
|
|
end
|
333 |
|
|
|
334 |
|
|
end else if (opx == `II_ADD || opx == `II_SUB) begin
|
335 |
|
|
// addition, subtraction, and conditional jumps involving addition or subtraction
|
336 |
|
|
logic [`RB:0] bigresult; // one extra bit on result for carry
|
337 |
|
|
logic zero; // result is zero
|
338 |
|
|
logic sign; // sign of result
|
339 |
|
|
logic carry; // unsigned carry/borrow
|
340 |
|
|
logic overflow; // signed overflow
|
341 |
|
|
|
342 |
|
|
if (~opx[0]) bigresult = operand2 + operand3; // add
|
343 |
|
|
else bigresult = operand2 - operand3; // subtract
|
344 |
|
|
result = bigresult[`RB1:0]; // result without extra carry bit
|
345 |
|
|
|
346 |
|
|
case (ot_in[1:0])
|
347 |
|
|
0: begin // 8 bit
|
348 |
|
|
sign = bigresult[7]; // sign bit
|
349 |
|
|
carry = bigresult[8]; // carry out (unsigned overflow)
|
350 |
|
|
end
|
351 |
|
|
1: begin // 16 bit
|
352 |
|
|
sign = bigresult[15]; // sign bit
|
353 |
|
|
carry = bigresult[16]; // carry out (unsigned overflow)
|
354 |
|
|
end
|
355 |
|
|
2: begin // 32 bit
|
356 |
|
|
sign = bigresult[31]; // sign bit
|
357 |
|
|
carry = bigresult[32]; // carry out (unsigned overflow)
|
358 |
|
|
end
|
359 |
|
|
3: begin // 64 bit (or 32)
|
360 |
|
|
sign = bigresult[`RB1]; // sign bit
|
361 |
|
|
carry = bigresult[`RB]; // carry out (unsigned overflow)
|
362 |
|
|
end
|
363 |
|
|
endcase
|
364 |
|
|
zero = ~|(result & sizemask); // result is zero
|
365 |
|
|
overflow = (signbit2 ^ signbit3 ^ ~opx[0]) & (signbit2 ^ sign); // signed overflow
|
366 |
|
|
|
367 |
|
|
// jump condition
|
368 |
|
|
case (opj[3:1])
|
369 |
|
|
`IJ_SUB_JZ >> 1: jump_result = zero;
|
370 |
|
|
`IJ_SUB_JNEG >> 1: jump_result = sign;
|
371 |
|
|
`IJ_SUB_JPOS >> 1: jump_result = ~sign & ~zero;
|
372 |
|
|
`IJ_SUB_JOVFLW >> 1: jump_result = overflow;
|
373 |
|
|
`IJ_SUB_JBORROW >> 1: jump_result = carry;
|
374 |
|
|
default: jump_result = 0;
|
375 |
|
|
endcase
|
376 |
|
|
|
377 |
|
|
end else if (opx == `II_AND || opx == `II_OR || opx == `II_XOR) begin
|
378 |
|
|
if (opx == `II_AND) begin
|
379 |
|
|
// bitwise AND, and conditional jumps involving this
|
380 |
|
|
result = operand2[`RB1:0] & operand3[`RB1:0];
|
381 |
|
|
end else if (opx == `II_OR) begin
|
382 |
|
|
// bitwise OR, and conditional jumps involving this
|
383 |
|
|
result = operand2[`RB1:0] | operand3[`RB1:0];
|
384 |
|
|
end else if (opx == `II_XOR) begin
|
385 |
|
|
// bitwise XOR, and conditional jumps involving this
|
386 |
|
|
result = operand2[`RB1:0] ^ operand3[`RB1:0];
|
387 |
|
|
end
|
388 |
|
|
jump_result = ~|(result & sizemask); // zero condition for conditional jump
|
389 |
|
|
|
390 |
|
|
end else if (opx >= `II_CLEAR_BIT && opx <= `II_TEST_BITS_OR) begin
|
391 |
|
|
// various bit manipulation instructions
|
392 |
|
|
logic [`RB1:0] onebit; // 1 in the position indicated by opr3
|
393 |
|
|
logic rbit; // result bit from test
|
394 |
|
|
rbit = 0;
|
395 |
|
|
onebit = 0;
|
396 |
|
|
if ((operand3 & sizemask) <= msb) onebit[operand3[5:0]] = 1'b1;// onebit = 1 ** opr3
|
397 |
|
|
|
398 |
|
|
case (opx)
|
399 |
|
|
`II_CLEAR_BIT: result = operand2 & ~ onebit;
|
400 |
|
|
`II_SET_BIT: result = operand2 | onebit;
|
401 |
|
|
`II_TOGGLE_BIT: result = operand2 ^ onebit;
|
402 |
|
|
`II_TEST_BIT: begin
|
403 |
|
|
rbit = |(operand2 & onebit);
|
404 |
|
|
end
|
405 |
|
|
`II_TEST_BITS_OR: begin
|
406 |
|
|
rbit = |(operand2 & operand3 & sizemask);
|
407 |
|
|
end
|
408 |
|
|
`II_TEST_BITS_AND: begin
|
409 |
|
|
rbit = ~|(((operand2 & operand3) ^ operand3) & sizemask);
|
410 |
|
|
end
|
411 |
|
|
endcase
|
412 |
|
|
jump_result = rbit; // jump condition for bit tests
|
413 |
|
|
|
414 |
|
|
if (opx >= `II_TEST_BIT && opx <= `II_TEST_BITS_OR) begin
|
415 |
|
|
// alternative use of mask and fallback in bit test instructions
|
416 |
|
|
logic a, b, c;
|
417 |
|
|
a = regmask_val[0] ^ option_bits_in[4]; // mask bit flipped by option bit 4
|
418 |
|
|
b = rbit ^ option_bits_in[2]; // result bit flipped by option bit 2
|
419 |
|
|
c = operand1[0] ^ option_bits_in[3]; // fallback bit flipped by option bit 3
|
420 |
|
|
case (option_bits_in[1:0]) // boolean operations controlled by option bits 1-0
|
421 |
|
|
2'b00: result[0] = a ? b : c; // normal fallback
|
422 |
|
|
2'b01: result[0] = a & (b & c); // mask & result & fallback
|
423 |
|
|
2'b10: result[0] = a & (b | c); // mask & (result | fallback)
|
424 |
|
|
2'b11: result[0] = a & (b ^ c); // mask & (result ^ fallback)
|
425 |
|
|
endcase
|
426 |
|
|
if (option_bits_in[5]) begin // copy remaining bits from mask or NUMCONTR
|
427 |
|
|
result[`RB1:1] = regmask_val[(`MASKSZ-1):1];
|
428 |
|
|
end
|
429 |
|
|
end
|
430 |
|
|
|
431 |
|
|
end else if ((opx >= `II_SHIFT_LEFT && opx <= `II_SHIFT_RIGHT_U) || opx == `II_FUNNEL_SHIFT
|
432 |
|
|
|| opx == `IX_MOVE_BITS1 || opx == `IX_MOVE_BITS2) begin
|
433 |
|
|
// shift instructions and other instruction involving shift and rotate
|
434 |
|
|
|
435 |
|
|
// Barrel shifters are expensive in terms of LUT use.
|
436 |
|
|
// Make one universal barrel shifter to use for all shift and rotate instructions
|
437 |
|
|
logic [(`RB*2-1):0] barrel; // input to barrel shifter. 2x32 or 2x64 bits
|
438 |
|
|
logic [`RB1:0] barrel_out; // output from barrel shifter. 32 or 64 bits
|
439 |
|
|
logic [5:0] shift_count1; // shift count for barrel shifter
|
440 |
|
|
logic [5:0] shift_count2; // shift count for barrel shifter, limited
|
441 |
|
|
logic overfl; // shift count overflows
|
442 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `II_ROTATE) begin
|
443 |
|
|
shift_count1 = -operand3[5:0];
|
444 |
|
|
end else begin
|
445 |
|
|
shift_count1 = operand3[5:0];
|
446 |
|
|
end
|
447 |
|
|
|
448 |
|
|
// select input for barrel shifter
|
449 |
|
|
barrel = 0;
|
450 |
|
|
if (ot_in[1:0] == 0) begin // 8 bits
|
451 |
|
|
shift_count2 = shift_count1[2:0];
|
452 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
|
453 |
|
|
barrel[15:8] = operand2[7:0];
|
454 |
|
|
if (operand3[5:0] == 0) barrel[7:0] = operand2[7:0]; // no shift
|
455 |
|
|
end else if (opx == `II_SHIFT_RIGHT_S) begin
|
456 |
|
|
barrel[7:0] = operand2[7:0];
|
457 |
|
|
barrel[15:8] = {8{operand2[7]}}; // sign bit
|
458 |
|
|
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
|
459 |
|
|
barrel[7:0] = operand2[7:0];
|
460 |
|
|
end else if (opx == `II_ROTATE) begin
|
461 |
|
|
barrel[7:0] = operand2[7:0];
|
462 |
|
|
barrel[15:8] = operand2[7:0];
|
463 |
|
|
end else begin // funnel shift
|
464 |
|
|
barrel[7:0] = operand1[7:0];
|
465 |
|
|
barrel[15:8] = operand2[7:0];
|
466 |
|
|
end
|
467 |
|
|
end else if (ot_in[1:0] == 1) begin // 16 bits
|
468 |
|
|
shift_count2 = shift_count1[3:0];
|
469 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
|
470 |
|
|
barrel[31:16] = operand2[15:0];
|
471 |
|
|
if (operand3[5:0] == 0) barrel[15:0] = operand2[15:0]; // no shift
|
472 |
|
|
end else if (opx == `II_SHIFT_RIGHT_S) begin
|
473 |
|
|
barrel[15:0] = operand2[15:0];
|
474 |
|
|
barrel[31:16] = {16{operand2[15]}}; // sign bit
|
475 |
|
|
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
|
476 |
|
|
barrel[15:0] = operand2[15:0];
|
477 |
|
|
end else if (opx == `II_ROTATE) begin
|
478 |
|
|
barrel[15:0] = operand2[15:0];
|
479 |
|
|
barrel[31:16] = operand2[15:0];
|
480 |
|
|
end else begin // funnel shift
|
481 |
|
|
barrel[15:0] = operand1[15:0];
|
482 |
|
|
barrel[31:16] = operand2[15:0];
|
483 |
|
|
end
|
484 |
|
|
end else if (ot_in[1:0] == 2 || `RB <= 32) begin // 32 bits (or 64 bits if not supported)
|
485 |
|
|
shift_count2 = shift_count1[4:0];
|
486 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
|
487 |
|
|
barrel[63:32] = operand2[31:0];
|
488 |
|
|
if (operand3[5:0] == 0) barrel[31:0] = operand2[31:0]; // no shift
|
489 |
|
|
end else if (opx == `II_SHIFT_RIGHT_S) begin
|
490 |
|
|
barrel[31:0] = operand2[31:0];
|
491 |
|
|
barrel[63:32] = {32{operand2[31]}}; // sign bit
|
492 |
|
|
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
|
493 |
|
|
barrel[31:0] = operand2[31:0];
|
494 |
|
|
end else if (opx == `II_ROTATE) begin
|
495 |
|
|
barrel[31:0] = operand2[31:0];
|
496 |
|
|
barrel[63:32] = operand2[31:0];
|
497 |
|
|
end else begin // funnel shift
|
498 |
|
|
barrel[31:0] = operand1[31:0];
|
499 |
|
|
barrel[63:32] = operand2[31:0];
|
500 |
|
|
end
|
501 |
|
|
end else begin // 64 bits (if supported)
|
502 |
|
|
shift_count2 = shift_count1[5:0];
|
503 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
|
504 |
|
|
barrel[127:64] = operand2[63:0];
|
505 |
|
|
if (operand3[5:0] == 0) barrel[63:0] = operand2[63:0]; // no shift
|
506 |
|
|
end else if (opx == `II_SHIFT_RIGHT_S) begin
|
507 |
|
|
barrel[63:0] = operand2[63:0];
|
508 |
|
|
barrel[127:64] = {64{operand2[63]}}; // sign bit
|
509 |
|
|
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
|
510 |
|
|
barrel[63:0] = operand2[63:0];
|
511 |
|
|
end else if (opx == `II_ROTATE) begin
|
512 |
|
|
barrel[63:0] = operand2[63:0];
|
513 |
|
|
barrel[127:64] = operand2[63:0];
|
514 |
|
|
end else begin // funnel shift
|
515 |
|
|
barrel[63:0] = operand1[63:0];
|
516 |
|
|
barrel[127:64] = operand2[63:0];
|
517 |
|
|
end
|
518 |
|
|
end
|
519 |
|
|
|
520 |
|
|
// big barrel shifter
|
521 |
|
|
barrel_out = barrel[shift_count2+:`RB];
|
522 |
|
|
|
523 |
|
|
// select output
|
524 |
|
|
overfl = (operand3 & sizemask) > msb; // check if shift count overflows
|
525 |
|
|
|
526 |
|
|
if (opx == `IX_MOVE_BITS1 || opx == `IX_MOVE_BITS2) begin // move_bits instruction
|
527 |
|
|
// insert shift result in destination bit field
|
528 |
|
|
integer i;
|
529 |
|
|
for (i = 0; i < `RB; i++) begin
|
530 |
|
|
if (i >= im2_bits_in[13:8] && i <= option_bits_in) result[i] = barrel_out[i];
|
531 |
|
|
else result[i] = operand1[i];
|
532 |
|
|
end
|
533 |
|
|
|
534 |
|
|
end else if (overfl) begin
|
535 |
|
|
if (opx == `II_SHIFT_RIGHT_S) result = {`RB{signbit2}}; // shift right overflows to sign bit
|
536 |
|
|
else if (opx == `II_ROTATE) result = barrel_out; // rotate has no overflow
|
537 |
|
|
else result = 0; // all other shifts overflow to zero
|
538 |
|
|
|
539 |
|
|
end else begin
|
540 |
|
|
result = barrel_out; // result of shift or rotate
|
541 |
|
|
end
|
542 |
|
|
|
543 |
|
|
|
544 |
|
|
end else if (opx == `II_ADD_ADD) begin
|
545 |
|
|
// 3-operand add. signs are controlled by option bits
|
546 |
|
|
// (this is separate from the add and subtract operations with conditional jumps because the timing is critical)
|
547 |
|
|
logic [`RB1:0] r1, r2, r3;
|
548 |
|
|
r1 = option_bits_in[0] ? -operand1[`RB1:0] : operand1[`RB1:0];
|
549 |
|
|
r2 = option_bits_in[1] ? -operand2[`RB1:0] : operand2[`RB1:0];
|
550 |
|
|
r3 = option_bits_in[2] ? -operand3[`RB1:0] : operand3[`RB1:0];
|
551 |
|
|
result = r1 + r2 + r3;
|
552 |
|
|
|
553 |
|
|
end else if (opx == `II_SELECT_BITS) begin
|
554 |
|
|
// select_bits instruction
|
555 |
|
|
result = (operand1[`RB1:0] & operand3[`RB1:0]) | (operand2[`RB1:0] & ~operand3[`RB1:0]);
|
556 |
|
|
|
557 |
|
|
// bit scan is critical in terms of timing. Several different implementations tried here:
|
558 |
|
|
`define BITSCAN_BASED_ON_ROUNDP2
|
559 |
|
|
`ifdef BITSCAN_BASED_ON_ROUNDP2 // bit scan and roundp2 instructions combined. This takes less resources
|
560 |
|
|
|
561 |
|
|
end else if (opx == `IX_BIT_SCAN || opx == `IX_ROUNDP2) begin
|
562 |
|
|
//
|
563 |
|
|
// using bit index method because this makes roundp2 simple
|
564 |
|
|
|
565 |
|
|
logic [`RB1:0] a; // intermediate results
|
566 |
|
|
logic [`RB1:0] b;
|
567 |
|
|
logic [`RB1:0] c;
|
568 |
|
|
logic [`RB1:0] d;
|
569 |
|
|
logic [6:0] bitscan_result;
|
570 |
|
|
logic [5:0] r;
|
571 |
|
|
logic iszero; // input is zero
|
572 |
|
|
logic ispow2; // input is a power of 2
|
573 |
|
|
r = 0; iszero = 0;
|
574 |
|
|
|
575 |
|
|
a = operand2 & sizemask;
|
576 |
|
|
ispow2 = ~|(a & (a-1)); // a is a power of 2
|
577 |
|
|
|
578 |
|
|
if (opx == `IX_ROUNDP2 || operand3[0]) begin
|
579 |
|
|
// bitscan reverse scan
|
580 |
|
|
`ifdef SUPPORT_64BIT
|
581 |
|
|
b = reversebits64(a); // reverse order of bits (in subfunctions.vh)
|
582 |
|
|
c = b & ~(b-1); // isolate lowest 1-bit
|
583 |
|
|
d = reversebits64(c); // reverse back again
|
584 |
|
|
`else
|
585 |
|
|
b = reversebits32(a); // reverse order of bits (in subfunctions.vh)
|
586 |
|
|
c = b & ~(b-1); // isolate lowest 1-bit
|
587 |
|
|
d = reversebits32(c); // reverse back again
|
588 |
|
|
`endif
|
589 |
|
|
end else begin
|
590 |
|
|
// bitscan forward scan
|
591 |
|
|
d = a & ~(a-1); // isolate lowest 1-bit
|
592 |
|
|
end
|
593 |
|
|
|
594 |
|
|
// bitindex implemented in subfunctions.vh
|
595 |
|
|
bitscan_result = bitindex(d);
|
596 |
|
|
r = bitscan_result[6:1];
|
597 |
|
|
iszero = bitscan_result[0];
|
598 |
|
|
|
599 |
|
|
if (iszero) begin // input is zero. output determined by option bit 1
|
600 |
|
|
if (operand3[4]) begin
|
601 |
|
|
result = ~(`RB'b0); // return -1 if zero
|
602 |
|
|
end else begin
|
603 |
|
|
result = `RB'b0; // return 0 if zero
|
604 |
|
|
end
|
605 |
|
|
end else if (opx == `IX_BIT_SCAN) begin
|
606 |
|
|
result = r; // output result
|
607 |
|
|
end else if (!operand3[0] || ispow2) begin
|
608 |
|
|
// roundp2 round down to nearest power of 2
|
609 |
|
|
result = d;
|
610 |
|
|
end else begin
|
611 |
|
|
// round up to nearest power of 2
|
612 |
|
|
if (signbit2) begin // overflow
|
613 |
|
|
result = operand3[5] ? ~(`RB'b0) : 0; // return 0 or -1 if overflow
|
614 |
|
|
end else begin
|
615 |
|
|
result = {d,1'b0}; // round up
|
616 |
|
|
end
|
617 |
|
|
end
|
618 |
|
|
|
619 |
|
|
`else // bit scan and roundp2 instructions implemented separately
|
620 |
|
|
|
621 |
|
|
end else if (opx == `IX_ROUNDP2) begin
|
622 |
|
|
|
623 |
|
|
logic [`RB1:0] a; // intermediate results
|
624 |
|
|
logic [`RB1:0] b;
|
625 |
|
|
logic [`RB1:0] c;
|
626 |
|
|
logic [`RB1:0] d;
|
627 |
|
|
logic iszero; // input is zero
|
628 |
|
|
logic ispow2; // input is a power of 2
|
629 |
|
|
|
630 |
|
|
a = operand2 & sizemask; // cut off input to desired operand size
|
631 |
|
|
iszero = ~|a; // input is zero
|
632 |
|
|
ispow2 = ~|(a & (a-1)); // input is a power of 2
|
633 |
|
|
|
634 |
|
|
`ifdef SUPPORT_64BIT
|
635 |
|
|
b = reversebits64(a); // reverse order of bits (in subfunctions.vh)
|
636 |
|
|
c = b & ~(b-1); // isolate lowest 1-bit
|
637 |
|
|
d = reversebits64(c); // reverse back again
|
638 |
|
|
`else
|
639 |
|
|
b = reversebits32(a); // reverse order of bits (in subfunctions.vh)
|
640 |
|
|
c = b & ~(b-1); // isolate lowest 1-bit
|
641 |
|
|
d = reversebits32(c); // reverse back again
|
642 |
|
|
`endif
|
643 |
|
|
|
644 |
|
|
if (iszero) begin // input is zero. output determined by option bit 4
|
645 |
|
|
if (operand3[4]) begin
|
646 |
|
|
result = ~(`RB'b0); // return -1 if zero
|
647 |
|
|
end else begin
|
648 |
|
|
result = 0; // return 0 if zero
|
649 |
|
|
end
|
650 |
|
|
end else if (~operand3[0] | ispow2) begin
|
651 |
|
|
// roundp2 round down to nearest power of 2
|
652 |
|
|
result = d;
|
653 |
|
|
end else begin
|
654 |
|
|
// round up to nearest power of 2
|
655 |
|
|
if (signbit2) begin // overflow
|
656 |
|
|
result = operand3[5] ? ~(`RB'b0) : 0; // return 0 or -1 if overflow
|
657 |
|
|
end else begin
|
658 |
|
|
result = {d,1'b0}; // round up
|
659 |
|
|
end
|
660 |
|
|
end
|
661 |
|
|
|
662 |
|
|
end else if (opx == `IX_BIT_SCAN) begin
|
663 |
|
|
|
664 |
|
|
logic [`RB1:0] a; // input cut off to desired operand size
|
665 |
|
|
logic [`RB1:0] b; // input with bits reversed
|
666 |
|
|
logic [`RB1:0] c; // input bits reversed if forward scan
|
667 |
|
|
logic [6:0] r; // bitscan result
|
668 |
|
|
logic iszero; // input is zero
|
669 |
|
|
|
670 |
|
|
a = operand2 & sizemask; // cut off input to desired operand size
|
671 |
|
|
|
672 |
|
|
// reverse bits if forward scan
|
673 |
|
|
case (ot_in[1:0])
|
674 |
|
|
0: b = reversebits8(operand2[7:0]); // 8 bit
|
675 |
|
|
1: b = reversebits16(operand2[15:0]); // 16 bit
|
676 |
|
|
`ifdef SUPPORT_64BIT
|
677 |
|
|
3: b = reversebits64(operand2[63:0]); // 64 bit
|
678 |
|
|
`endif
|
679 |
|
|
default: b = reversebits32(operand2[31:0]); // 32 bit
|
680 |
|
|
endcase
|
681 |
|
|
|
682 |
|
|
if (operand3[0]) c = a; // reverse scan
|
683 |
|
|
else c = b; // forward scan
|
684 |
|
|
|
685 |
|
|
// bitscan function defined in subfunctions.vh
|
686 |
|
|
r = bitscan64A(a); // this implementation may be faster?
|
687 |
|
|
//r = bitscan64C(c); // alternative implementation
|
688 |
|
|
iszero = r[0]; // input is zero
|
689 |
|
|
|
690 |
|
|
if (iszero) begin // input is zero. output determined by option bit 4
|
691 |
|
|
if (operand3[4]) begin
|
692 |
|
|
result = ~(`RB'b0); // return -1 if zero
|
693 |
|
|
end else begin
|
694 |
|
|
result = 0; // return 0 if zero
|
695 |
|
|
end
|
696 |
|
|
end else begin
|
697 |
|
|
result = r[6:1]; // normal bitscan result
|
698 |
|
|
end
|
699 |
|
|
|
700 |
|
|
`endif
|
701 |
|
|
|
702 |
|
|
|
703 |
|
|
end else if (opx == `IX_POPCOUNT) begin
|
704 |
|
|
// popcount instruction. functions are is in subfunctions.vh
|
705 |
|
|
if (`RB <= 32) result = popcount32(operand2 & sizemask);
|
706 |
|
|
else result = popcount64(operand2 & sizemask);
|
707 |
|
|
|
708 |
|
|
end else if (opx == `IX_ABS) begin
|
709 |
|
|
// abs instruction
|
710 |
|
|
if (~signbit2) begin
|
711 |
|
|
result = operand2; // input is not negative
|
712 |
|
|
end else if ((operand2 & ~sbit & sizemask) == 0) begin
|
713 |
|
|
// overflow
|
714 |
|
|
case (operand3[1:0]) // last operand determines what to do with overflow
|
715 |
|
|
0: result = operand2; // overfloaw wraps around
|
716 |
|
|
1: result = ~sbit; // overfloaw gives saturation
|
717 |
|
|
2: result = 0; // overflow gives 0
|
718 |
|
|
endcase
|
719 |
|
|
end else begin
|
720 |
|
|
result = -operand2; // input is negative. change sign
|
721 |
|
|
end
|
722 |
|
|
|
723 |
|
|
end else if (opx == `IX_TRUTH_TAB3) begin
|
724 |
|
|
// truth_tab3 instruction
|
725 |
|
|
// truth_table_lookup is in subfunctions.vh
|
726 |
|
|
result = truth_table_lookup(operand1, operand2, operand3, im2_bits_in[7:0]);
|
727 |
|
|
if (option_bits_in[0]) result[`RB1:1] = 0; // output only bit 0
|
728 |
|
|
else if (option_bits_in[1]) result[`RB1:1] = regmask_val[(`MASKSZ-1):1]; // remaining bits from mask
|
729 |
|
|
|
730 |
|
|
end else if (opx == `IX_INSERT_HI) begin
|
731 |
|
|
// insert constant into high 32 bits, leave low 32 bit unchanged
|
732 |
|
|
`ifdef SUPPORT_64BIT
|
733 |
|
|
result = {operand3[31:0],operand2[31:0]};
|
734 |
|
|
`else
|
735 |
|
|
result = operand2;
|
736 |
|
|
`endif
|
737 |
|
|
|
738 |
|
|
end else if (category_in == `CAT_JUMP) begin
|
739 |
|
|
// jump instructions that have no corresponding general instruction
|
740 |
|
|
|
741 |
|
|
if (opj[5:0] >= `IJ_INC_COMP_JBELOW && opj[5:0] <= `IJ_INC_COMP_JABOVE+1) begin
|
742 |
|
|
// loop instruction: increment and jump if below/above
|
743 |
|
|
|
744 |
|
|
`ifdef THIS_VERSION_IS_SLOW__IT_IS_NOT_USED
|
745 |
|
|
// This version is slow because the addition and the compare both involve a big carry-lookahead circuit.
|
746 |
|
|
// Use this version only if timing is not critical
|
747 |
|
|
logic eq, less;
|
748 |
|
|
result = operand2 + 1; // increment
|
749 |
|
|
eq = (result & sizemask) == (operand3 & sizemask); // operands are equal
|
750 |
|
|
less = ((result & sizemask) ^ sbit) < ((operand3 & sizemask) ^ sbit); // a+1 < b, signed
|
751 |
|
|
if (opj[1]) begin
|
752 |
|
|
jump_result = ~less & ~eq; // above
|
753 |
|
|
end else begin
|
754 |
|
|
jump_result = less; // below
|
755 |
|
|
end
|
756 |
|
|
`else
|
757 |
|
|
// This version is faster because it does most of the compare in parallel with the addition
|
758 |
|
|
logic less; // a < b, signed
|
759 |
|
|
logic result_equal_limit; // a + 1 == b
|
760 |
|
|
logic b_is_min; // the limit b is INT_MIN. a+1 < b always false
|
761 |
|
|
logic overflow1; // a+1 overflows
|
762 |
|
|
// The overflow check may not be important, but we want to make sure that the result is always
|
763 |
|
|
// the same as if the increment and the compare are coded as two separate instructions
|
764 |
|
|
result = operand2 + 1; // increment
|
765 |
|
|
less = ((operand2 & sizemask) ^ sbit) < ((operand3 & sizemask) ^ sbit); // a < b, signed
|
766 |
|
|
overflow1 = ((operand2 & sizemask) ^ sbit) == sizemask; // a+1 overflows
|
767 |
|
|
b_is_min = ((operand3 & sizemask) ^ sbit) == 0; // limit is INT_MIN, nothing is less than limit
|
768 |
|
|
result_equal_limit = ((result ^ operand3) & sizemask) == 0; // a + 1 == b
|
769 |
|
|
if (opj[1]) begin // increment_compare/jump_above
|
770 |
|
|
// check if a+1 > b <=> !(a+1 <= b) <=> !(a < b || overflow)
|
771 |
|
|
jump_result = ~(less | overflow1); // a+1 > b
|
772 |
|
|
end else begin // increment_compare/jump_below
|
773 |
|
|
// check if a+1 < b <=> (a < b && a+1 != b) || (overflow && b != INT_MIN)
|
774 |
|
|
jump_result = (less & ~result_equal_limit) | (overflow1 & ~b_is_min); // a + 1 < b
|
775 |
|
|
end
|
776 |
|
|
|
777 |
|
|
`endif
|
778 |
|
|
|
779 |
|
|
end else if (opj[5:1] == `IJ_SUB_MAXLEN_JPOS >> 1) begin
|
780 |
|
|
|
781 |
|
|
// vector loop instruction: subtract maximum vector length and jump if positive
|
782 |
|
|
logic [`RB1:0] max_vector_length;
|
783 |
|
|
logic sign; // sign of result
|
784 |
|
|
logic zero; // result is zero
|
785 |
|
|
if (`NUM_VECTOR_UNITS > 0) max_vector_length = `NUM_VECTOR_UNITS * 8;
|
786 |
|
|
else max_vector_length = 8; // make sure max_vector_length is not zero to avoid infinite loop
|
787 |
|
|
result = operand2 - max_vector_length;
|
788 |
|
|
|
789 |
|
|
zero = ~|(result & sizemask);
|
790 |
|
|
case (ot_in[1:0])
|
791 |
|
|
0: sign = result[7]; // 8 bit
|
792 |
|
|
1: sign = result[15]; // 16 bit
|
793 |
|
|
2: sign = result[31]; // 32 bit
|
794 |
|
|
3: sign = result[`RB1]; // 64 bit (or 32)
|
795 |
|
|
endcase
|
796 |
|
|
`ifdef SUPPORT_64BIT
|
797 |
|
|
if (instruction_in[`IL] == 1) begin
|
798 |
|
|
// 64 bits in format C
|
799 |
|
|
otout = 3; // 64 bit output
|
800 |
|
|
sign = result[`RB1];
|
801 |
|
|
zero = ~|result;
|
802 |
|
|
end
|
803 |
|
|
`endif
|
804 |
|
|
jump_result = ~sign & ~zero;
|
805 |
|
|
|
806 |
|
|
end
|
807 |
|
|
|
808 |
|
|
end else if (opx == `II_NOP) begin
|
809 |
|
|
// nop instruction. do nothing
|
810 |
|
|
|
811 |
|
|
end else begin
|
812 |
|
|
// unknown instruction. error
|
813 |
|
|
error = 1;
|
814 |
|
|
|
815 |
|
|
end
|
816 |
|
|
|
817 |
|
|
if (vector_in) error = 1; // Vector instructions not supported yet
|
818 |
|
|
|
819 |
|
|
if (category_in == `CAT_JUMP) begin
|
820 |
|
|
|
821 |
|
|
// manage conditional jump conditions
|
822 |
|
|
|
823 |
|
|
logic [1:0] il;
|
824 |
|
|
logic [2:0] mode;
|
825 |
|
|
il = instruction_in[`IL];
|
826 |
|
|
mode = instruction_in[`MODE];
|
827 |
|
|
|
828 |
|
|
// calculate target if not jumping
|
829 |
|
|
//instruction_length = il[1] ? il : 1; // il cannot be 0 for jump instructions)
|
830 |
|
|
nojump_target = instruction_pointer_in + il;
|
831 |
|
|
// treat jump as not taken if jump target is equal to nojump target
|
832 |
|
|
jump_not_taken = nojump_target == operand1_in;
|
833 |
|
|
|
834 |
|
|
// detect jump result
|
835 |
|
|
if (jump_result ^ opj[0]) jump_taken = 1; // bit 0 of opj inverts the condition
|
836 |
|
|
|
837 |
|
|
if (opj > `IJ_LAST_CONDITIONAL) jump_taken = 1; // unconditional jump always taken
|
838 |
|
|
|
839 |
|
|
if (opj == `IJ_TRAP) begin // trap and IJ_SYSCALL have same opj. Both will stop debugger
|
840 |
|
|
jump_taken = 0; // use trap as debug breakpoint. Resume execution in next instruction
|
841 |
|
|
end
|
842 |
|
|
|
843 |
|
|
// compare, test and indirect jumps have no register return. The decoder takes care of result_type = `RESULT_NONE;
|
844 |
|
|
end
|
845 |
|
|
|
846 |
|
|
// normal register output
|
847 |
|
|
// regmask_used_in removed from this equation because of critical timing:
|
848 |
|
|
normal_output = valid_in & ~stall & ~stall_in
|
849 |
|
|
& (result_type == `RESULT_REG | result_type == `RESULT_SYS)
|
850 |
|
|
& (regmask_val[0] | mask_alternative_in) & ~vector_in;
|
851 |
|
|
|
852 |
|
|
end
|
853 |
|
|
|
854 |
|
|
|
855 |
|
|
// outputs
|
856 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
857 |
|
|
if (normal_output) begin
|
858 |
|
|
// normal register output
|
859 |
|
|
case (otout)
|
860 |
|
|
0: result_out <= result[7:0];
|
861 |
|
|
1: result_out <= result[15:0];
|
862 |
|
|
2: result_out <= result[31:0];
|
863 |
|
|
3: result_out <= result[`RB1:0];
|
864 |
|
|
endcase
|
865 |
|
|
register_write_out <= ~reset;
|
866 |
|
|
tag_val_out <= tag_val_in;
|
867 |
|
|
// destination register number. high bit is 1 for system registers
|
868 |
|
|
register_a_out <= {result_type[0],instruction_in[`RD]};
|
869 |
|
|
|
870 |
|
|
end else if (!valid_in || stall || stall_in || result_type == `RESULT_MEM || result_type == `RESULT_NONE || vector_in) begin
|
871 |
|
|
// stall_in must disable the output to avoid executing the same instruction twice.
|
872 |
|
|
// note: the FPGA has no internal tri-state buffers. We need to simulate result bus by or'ing outputs
|
873 |
|
|
register_write_out <= 0;
|
874 |
|
|
result_out <= 0;
|
875 |
|
|
register_a_out <= 0;
|
876 |
|
|
tag_val_out <= 0;
|
877 |
|
|
|
878 |
|
|
end else /*if (!regmask_val[0] && !mask_alternative_in) */ begin
|
879 |
|
|
// mask is zero. output is fallback
|
880 |
|
|
case (otout)
|
881 |
|
|
0: result_out <= operand1[7:0];
|
882 |
|
|
1: result_out <= operand1[15:0];
|
883 |
|
|
2: result_out <= operand1[31:0];
|
884 |
|
|
3: result_out <= operand1[`RB1:0];
|
885 |
|
|
endcase
|
886 |
|
|
register_write_out <= ~reset;
|
887 |
|
|
register_a_out <= {1'b0,instruction_in[`RD]};
|
888 |
|
|
tag_val_out <= tag_val_in;
|
889 |
|
|
end
|
890 |
|
|
|
891 |
|
|
if (stall || stall_in || !valid_in) begin
|
892 |
|
|
jump_out <= 0;
|
893 |
|
|
nojump_out <= 0;
|
894 |
|
|
|
895 |
|
|
end else if (category_in == `CAT_JUMP) begin
|
896 |
|
|
// additional output for conditional jump instructions
|
897 |
|
|
if (jump_not_taken | ~jump_taken) begin
|
898 |
|
|
jump_out <= 0;
|
899 |
|
|
nojump_out <= valid_in;
|
900 |
|
|
jump_pointer_out <= nojump_target;
|
901 |
|
|
end else begin // jump taken
|
902 |
|
|
jump_out <= valid_in && !reset;
|
903 |
|
|
nojump_out <= 0;
|
904 |
|
|
end
|
905 |
|
|
|
906 |
|
|
end else begin
|
907 |
|
|
// not a jump instruction
|
908 |
|
|
jump_out <= 0;
|
909 |
|
|
nojump_out <= 0;
|
910 |
|
|
jump_pointer_out <= 0;
|
911 |
|
|
end
|
912 |
|
|
|
913 |
|
|
// special cases for indirect jumps
|
914 |
|
|
if (opx == `IX_INDIRECT_JUMP) begin
|
915 |
|
|
jump_pointer_out <= operand3[`RB1:2] - {1'b1,{(`CODE_ADDR_START-2){1'b0}}}; // jump target = (last operand - code memory start)/ 4
|
916 |
|
|
if (|(operand3[1:0])) error_parm_out <= 1; // misaligned jump target
|
917 |
|
|
|
918 |
|
|
end else if (opx == `IX_RELATIVE_JUMP) begin // jump target is calculated
|
919 |
|
|
jump_pointer_out <= relative_jump_target;
|
920 |
|
|
|
921 |
|
|
end else begin
|
922 |
|
|
jump_pointer_out <= operand1_in; // jump target is calculated in previous stage
|
923 |
|
|
end
|
924 |
|
|
|
925 |
|
|
// other outputs
|
926 |
|
|
valid_out <= !stall & valid_in & !reset; // a valid output is produced
|
927 |
|
|
stall_out <= stall & valid_in & !reset; // stalled. waiting for operand
|
928 |
|
|
stall_next_out <= stall_next & valid_in & !reset; // predict stall in next clock cycle
|
929 |
|
|
error_out <= error & valid_in & !reset; // unknown instruction
|
930 |
|
|
error_parm_out <= error_parm & valid_in & !reset; // wrong parameter
|
931 |
|
|
|
932 |
|
|
|
933 |
|
|
// outputs for debugger:
|
934 |
|
|
debug1_out <= 0;
|
935 |
|
|
|
936 |
|
|
debug1_out[6:0] <= opx;
|
937 |
|
|
debug1_out[14:8] <= opj;
|
938 |
|
|
|
939 |
|
|
|
940 |
|
|
debug1_out[21:20] <= category_in;
|
941 |
|
|
|
942 |
|
|
debug1_out[24] <= stall;
|
943 |
|
|
debug1_out[25] <= stall_next;
|
944 |
|
|
debug1_out[27] <= error;
|
945 |
|
|
|
946 |
|
|
debug1_out[28] <= jump_taken;
|
947 |
|
|
debug1_out[29] <= jump_not_taken;
|
948 |
|
|
debug1_out[30] <= jump_result;
|
949 |
|
|
debug1_out[31] <= valid_in;
|
950 |
|
|
debug2_out[16] <= opr1_used_in;
|
951 |
|
|
debug2_out[17] <= opr2_used_in;
|
952 |
|
|
debug2_out[18] <= opr3_used_in;
|
953 |
|
|
debug2_out[19] <= regmask_used_in;
|
954 |
|
|
debug2_out[20] <= mask_alternative_in;
|
955 |
|
|
debug2_out[21] <= mask_off;
|
956 |
|
|
/*
|
957 |
|
|
debug2_out[22] <= regmask_val_in[0];
|
958 |
|
|
debug2_out[23] <= regmask_val_in[`MASKSZ];
|
959 |
|
|
debug2_out[27:24] <= regmask_val[3:0];
|
960 |
|
|
debug2_out[28] <= regmask_val[`MASKSZ];
|
961 |
|
|
*/
|
962 |
|
|
end
|
963 |
|
|
|
964 |
|
|
endmodule
|