| 1 |
12 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
// Engineer: Agner Fog
|
| 3 |
|
|
//
|
| 4 |
|
|
// Create Date: 2020-06-06
|
| 5 |
|
|
// Last modified: 2021-08-03
|
| 6 |
|
|
// Module Name: decoder
|
| 7 |
|
|
// Project Name: ForwardCom soft core
|
| 8 |
|
|
// Target Devices: Artix 7
|
| 9 |
|
|
// Tool Versions: Vivado v. 2020.1
|
| 10 |
|
|
// License: CERN-OHL-W
|
| 11 |
|
|
// Description: Arithmetic-logic unit for general purpose registers.
|
| 12 |
|
|
// Executes add, subtract, bit manipulation, etc.
|
| 13 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
| 14 |
|
|
|
| 15 |
|
|
`include "defines.vh"
|
| 16 |
|
|
`include "subfunctions.vh"
|
| 17 |
|
|
|
| 18 |
|
|
module alu (
|
| 19 |
|
|
input clock, // system clock
|
| 20 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
| 21 |
|
|
input reset, // system reset
|
| 22 |
|
|
input valid_in, // data from previous stage ready
|
| 23 |
|
|
input stall_in, // pipeline is stalled
|
| 24 |
|
|
|
| 25 |
|
|
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
|
| 26 |
|
|
input [31:0] instruction_in, // current instruction, only first word used here
|
| 27 |
|
|
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
|
| 28 |
|
|
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
|
| 29 |
|
|
input mask_alternative_in, // mask register and fallback register used for alternative purposes
|
| 30 |
|
|
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
| 31 |
|
|
input vector_in, // vector registers used
|
| 32 |
|
|
input [6:0] opx_in, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
| 33 |
|
|
input [5:0] opj_in, // operation ID for conditional jump instructions
|
| 34 |
|
|
input [2:0] ot_in, // operand type
|
| 35 |
|
|
input [5:0] option_bits_in, // option bits from IM3 or mask
|
| 36 |
|
|
input [15:0] im2_bits_in, // constant bits from IM2 as extra operand
|
| 37 |
|
|
|
| 38 |
|
|
// monitor result buses:
|
| 39 |
|
|
input write_en1, // a result is written to writeport1
|
| 40 |
|
|
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
|
| 41 |
|
|
input [`RB1:0] writeport1_in, // result bus 1
|
| 42 |
|
|
input write_en2, // a result is written to writeport2
|
| 43 |
|
|
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
|
| 44 |
|
|
input [`RB1:0] writeport2_in, // result bus 2
|
| 45 |
|
|
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle
|
| 46 |
|
|
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle
|
| 47 |
|
|
|
| 48 |
|
|
// Register values sampled from result bus in previous stages
|
| 49 |
|
|
input [`RB:0] operand1_in, // first register operand or fallback
|
| 50 |
|
|
input [`RB:0] operand2_in, // second register operand RS
|
| 51 |
|
|
input [`RB:0] operand3_in, // last register operand RT
|
| 52 |
|
|
input [`MASKSZ:0] regmask_val_in, // mask register
|
| 53 |
|
|
input [`RB1:0] ram_data_in, // memory operand from data ram
|
| 54 |
|
|
input opr2_from_ram_in, // value of operand 2 comes from data ram
|
| 55 |
|
|
input opr3_from_ram_in, // value of last operand comes from data ram
|
| 56 |
|
|
input opr1_used_in, // operand1_in is needed
|
| 57 |
|
|
input opr2_used_in, // operand2_in is needed
|
| 58 |
|
|
input opr3_used_in, // operand3_in is needed
|
| 59 |
|
|
input regmask_used_in, // regmask_val_in is needed
|
| 60 |
|
|
|
| 61 |
|
|
output reg valid_out, // for debug display: alu is active
|
| 62 |
|
|
output reg register_write_out,
|
| 63 |
|
|
output reg [5:0] register_a_out, // register to write
|
| 64 |
|
|
output reg [`RB1:0] result_out, // output result to destination register
|
| 65 |
|
|
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
|
| 66 |
|
|
output reg jump_out, // jump instruction: jump taken
|
| 67 |
|
|
output reg nojump_out, // jump instruction: jump not taken
|
| 68 |
|
|
output reg [`CODE_ADDR_WIDTH-1:0] jump_pointer_out, // jump target to fetch unit
|
| 69 |
|
|
output reg stall_out, // alu is waiting for an operand or not ready to receive a new instruction
|
| 70 |
|
|
output reg stall_next_out, // alu will be waiting in next clock cycle
|
| 71 |
|
|
output reg error_out, // unknown instruction
|
| 72 |
|
|
output reg error_parm_out, // wrong parameter for instruction
|
| 73 |
|
|
|
| 74 |
|
|
// outputs for debugger:
|
| 75 |
|
|
output reg [31:0] debug1_out, // debug information
|
| 76 |
|
|
output reg [31:0] debug2_out // temporary debug information
|
| 77 |
|
|
);
|
| 78 |
|
|
|
| 79 |
|
|
logic [`RB1:0] operand1; // first register operand RD or RU. bit `RB is 1 if invalid
|
| 80 |
|
|
logic [`RB1:0] operand2; // second register operand RS. bit `RB is 1 if invalid
|
| 81 |
|
|
logic [`RB1:0] operand3; // last register operand RT. bit `RB is 1 if invalid
|
| 82 |
|
|
logic [`MASKSZ:0] regmask_val; // mask register
|
| 83 |
|
|
logic [1:0] otout; // operand type for output
|
| 84 |
|
|
logic [5:0] msb; // index to most significant bit
|
| 85 |
|
|
logic signbit2, signbit3; // sign bits of operands
|
| 86 |
|
|
logic [`RB1:0] sbit; // position of sign bit
|
| 87 |
|
|
logic [`RB1:0] result; // result for output
|
| 88 |
|
|
logic [1:0] result_type; // type of result
|
| 89 |
|
|
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
| 90 |
|
|
logic [6:0] opj; // operation ID for conditional jump
|
| 91 |
|
|
logic jump_result; // result of jump condition (needs inversion if opj[0])
|
| 92 |
|
|
|
| 93 |
|
|
logic mask_off; // result is masked off
|
| 94 |
|
|
logic stall; // waiting for operands
|
| 95 |
|
|
logic stall_next; // will be waiting for operands in next clock cycle
|
| 96 |
|
|
logic error; // unknown instruction
|
| 97 |
|
|
logic error_parm; // wrong parameter for instruction
|
| 98 |
|
|
logic jump_taken; // conditional jump is jumping
|
| 99 |
|
|
logic jump_not_taken; // conditional jump is not jumping or target follows immediately
|
| 100 |
|
|
logic normal_output; // normal register output
|
| 101 |
|
|
|
| 102 |
|
|
logic [`CODE_ADDR_WIDTH-1:0] nojump_target; // next address if not jumping
|
| 103 |
|
|
logic [`CODE_ADDR_WIDTH-1:0] relative_jump_target; // jump target for multiway relative jump
|
| 104 |
|
|
// It seems to be more efficient to truncate operands locally by ANDing with sizemask than to
|
| 105 |
|
|
// make separate wires for the truncated operands, because wiring is more expensive than logic:
|
| 106 |
|
|
logic [`RB1:0] sizemask; // mask for operand type
|
| 107 |
|
|
|
| 108 |
|
|
always_comb begin
|
| 109 |
|
|
stall = 0;
|
| 110 |
|
|
stall_next = 0;
|
| 111 |
|
|
regmask_val = 0;
|
| 112 |
|
|
|
| 113 |
|
|
// get all inputs
|
| 114 |
|
|
if (regmask_val_in[`MASKSZ]) begin // value missing
|
| 115 |
|
|
if (write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
| 116 |
|
|
regmask_val = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
| 117 |
|
|
end else if (write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
| 118 |
|
|
regmask_val = writeport2_in[(`MASKSZ-1):0]; // obtained from result bus 2
|
| 119 |
|
|
end else begin
|
| 120 |
|
|
if (regmask_used_in) begin
|
| 121 |
|
|
stall = 1; // operand not ready
|
| 122 |
|
|
if (regmask_val_in[`TAG_WIDTH-1:0] != predict_tag1_in && regmask_val_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
| 123 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
| 124 |
|
|
end
|
| 125 |
|
|
end
|
| 126 |
|
|
end
|
| 127 |
|
|
end else begin // value available
|
| 128 |
|
|
regmask_val = regmask_val_in;
|
| 129 |
|
|
end
|
| 130 |
|
|
|
| 131 |
|
|
// result is masked off
|
| 132 |
|
|
mask_off = regmask_used_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in;
|
| 133 |
|
|
|
| 134 |
|
|
operand1 = 0;
|
| 135 |
|
|
if (operand1_in[`RB]) begin // value missing
|
| 136 |
|
|
if (write_en1 && operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
| 137 |
|
|
operand1 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
| 138 |
|
|
end else if (write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
| 139 |
|
|
operand1 = writeport2_in; // obtained from result bus 2
|
| 140 |
|
|
end else begin
|
| 141 |
|
|
if (opr1_used_in) begin
|
| 142 |
|
|
stall = 1; // operand not ready
|
| 143 |
|
|
if (operand1_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand1_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
| 144 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
| 145 |
|
|
end
|
| 146 |
|
|
end
|
| 147 |
|
|
end
|
| 148 |
|
|
end else begin
|
| 149 |
|
|
operand1 = operand1_in[`RB1:0];
|
| 150 |
|
|
end
|
| 151 |
|
|
|
| 152 |
|
|
operand2 = 0;
|
| 153 |
|
|
if (opr2_from_ram_in) begin
|
| 154 |
|
|
operand2 = ram_data_in;
|
| 155 |
|
|
end else if (operand2_in[`RB]) begin // value missing
|
| 156 |
|
|
if (write_en1 && operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
| 157 |
|
|
operand2 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
| 158 |
|
|
end else if (write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
| 159 |
|
|
operand2 = writeport2_in; // obtained from result bus 2
|
| 160 |
|
|
end else begin
|
| 161 |
|
|
if (opr2_used_in /*&& !mask_off*/) begin // mask_off removed because of critical timing
|
| 162 |
|
|
stall = 1; // operand not ready
|
| 163 |
|
|
if (operand2_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand2_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
| 164 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
| 165 |
|
|
end
|
| 166 |
|
|
end
|
| 167 |
|
|
end
|
| 168 |
|
|
end else begin // value available
|
| 169 |
|
|
operand2 = operand2_in[`RB1:0];
|
| 170 |
|
|
end
|
| 171 |
|
|
|
| 172 |
|
|
operand3 = 0;
|
| 173 |
|
|
if (opr3_from_ram_in) begin
|
| 174 |
|
|
operand3 = ram_data_in;
|
| 175 |
|
|
end else if (operand3_in[`RB]) begin // value missing
|
| 176 |
|
|
if (write_en1 && operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
| 177 |
|
|
operand3 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
| 178 |
|
|
end else if (write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
| 179 |
|
|
operand3 = writeport2_in; // obtained from result bus 2
|
| 180 |
|
|
end else begin
|
| 181 |
|
|
if (opr3_used_in /*&& !mask_off*/) begin // mask_off removed because of critical timing
|
| 182 |
|
|
stall = 1; // operand not ready
|
| 183 |
|
|
if (operand3_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand3_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
| 184 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
| 185 |
|
|
end
|
| 186 |
|
|
end
|
| 187 |
|
|
end
|
| 188 |
|
|
end else begin // value available
|
| 189 |
|
|
operand3 = operand3_in[`RB1:0];
|
| 190 |
|
|
end
|
| 191 |
|
|
|
| 192 |
|
|
opx = opx_in; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
| 193 |
|
|
opj = opj_in; // operation ID for conditional jump
|
| 194 |
|
|
result = 0;
|
| 195 |
|
|
jump_result = 0;
|
| 196 |
|
|
otout = ot_in[1:0]; // operand type for output
|
| 197 |
|
|
result_type = result_type_in;
|
| 198 |
|
|
jump_taken = 0;
|
| 199 |
|
|
jump_not_taken = 0;
|
| 200 |
|
|
nojump_target = 0;
|
| 201 |
|
|
relative_jump_target = 0;
|
| 202 |
|
|
error = 0;
|
| 203 |
|
|
error_parm = 0;
|
| 204 |
|
|
|
| 205 |
|
|
// auxiliary variables depending on operand type
|
| 206 |
|
|
case (ot_in[1:0])
|
| 207 |
|
|
0: begin // 8 bit
|
| 208 |
|
|
msb = 7; // most significant bit
|
| 209 |
|
|
sbit = 8'H80; // sign bit
|
| 210 |
|
|
sizemask = 8'HFF; // mask off unused bits
|
| 211 |
|
|
signbit2 = operand2[7]; // sign bit of operand 2
|
| 212 |
|
|
signbit3 = operand3[7]; // sign bit of operand 3
|
| 213 |
|
|
end
|
| 214 |
|
|
1: begin // 16 bit
|
| 215 |
|
|
msb = 15; // most significant bit
|
| 216 |
|
|
sbit = 16'H8000; // sign bit
|
| 217 |
|
|
sizemask = 16'HFFFF; // mask off unused bits
|
| 218 |
|
|
signbit2 = operand2[15]; // sign bit of operand 2
|
| 219 |
|
|
signbit3 = operand3[15]; // sign bit of operand 3
|
| 220 |
|
|
end
|
| 221 |
|
|
2: begin // 32 bit
|
| 222 |
|
|
msb = 31; // most significant bit
|
| 223 |
|
|
sbit = 32'H80000000; // sign bit
|
| 224 |
|
|
sizemask = 32'HFFFFFFFF; // mask off unused bits
|
| 225 |
|
|
signbit2 = operand2[31]; // sign bit of operand 2
|
| 226 |
|
|
signbit3 = operand3[31]; // sign bit of operand 3
|
| 227 |
|
|
end
|
| 228 |
|
|
3: begin // 64 bit, or 32 if 64 bit not supported
|
| 229 |
|
|
msb = `RB1; // most significant bit
|
| 230 |
|
|
sbit = {1'b1,{(`RB-1){1'b0}}}; // sign bit
|
| 231 |
|
|
sizemask = ~(`RB'b0); // mask off unused bits
|
| 232 |
|
|
signbit2 = operand2[`RB1]; // sign bit of operand 2
|
| 233 |
|
|
signbit3 = operand3[`RB1]; // sign bit of operand 3
|
| 234 |
|
|
end
|
| 235 |
|
|
endcase
|
| 236 |
|
|
|
| 237 |
|
|
|
| 238 |
|
|
|
| 239 |
|
|
////////////////////////////////////////////////
|
| 240 |
|
|
// Select ALU operation
|
| 241 |
|
|
////////////////////////////////////////////////
|
| 242 |
|
|
|
| 243 |
|
|
if (opx == `II_MOVE || opx == `II_STORE) begin
|
| 244 |
|
|
// simple move instructions
|
| 245 |
|
|
result = operand3;
|
| 246 |
|
|
|
| 247 |
|
|
end else if (opx == `IX_READ_SPEC || opx == `IX_WRITE_SPEC) begin
|
| 248 |
|
|
// read or write special registers
|
| 249 |
|
|
result = operand2;
|
| 250 |
|
|
|
| 251 |
|
|
end else if (opx == `II_SIGN_EXTEND || opx == `II_SIGN_EXTEND_ADD || opx == `IX_RELATIVE_JUMP) begin
|
| 252 |
|
|
// instructions involving sign extension
|
| 253 |
|
|
logic [`RB1:0] sign_ex; // result of sign extension
|
| 254 |
|
|
logic [`RB1:0] sign_ex_sc; // result of sign extension and scaling
|
| 255 |
|
|
otout = 3; // 64 bit output
|
| 256 |
|
|
// sign extend:
|
| 257 |
|
|
case (ot_in[1:0])
|
| 258 |
|
|
0: sign_ex = {{56{operand3[ 7]}},operand3[7:0]}; // 8 bit
|
| 259 |
|
|
1: sign_ex = {{48{operand3[15]}},operand3[15:0]}; // 16 bit
|
| 260 |
|
|
2: sign_ex = {{32{operand3[31]}},operand3[31:0]}; // 32 bit
|
| 261 |
|
|
3: sign_ex = operand3[`RB1:0]; // 64 bit
|
| 262 |
|
|
endcase
|
| 263 |
|
|
if (opx == `II_SIGN_EXTEND_ADD) begin
|
| 264 |
|
|
// scale sign_ex.
|
| 265 |
|
|
// The scale factor is limited to 3 here for timing reasons so that it fits a 6-input LUT
|
| 266 |
|
|
// A full barrel shifter takes too much time
|
| 267 |
|
|
case (option_bits_in[1:0]) // optional shift count in option bits
|
| 268 |
|
|
0: sign_ex_sc = sign_ex; // scale factor 1
|
| 269 |
|
|
1: sign_ex_sc = {sign_ex,1'b0}; // scale factor 2
|
| 270 |
|
|
2: sign_ex_sc = {sign_ex,2'b0}; // scale factor 4
|
| 271 |
|
|
3: sign_ex_sc = {sign_ex,3'b0}; // scale factor 8
|
| 272 |
|
|
endcase
|
| 273 |
|
|
result = sign_ex_sc + operand2; // add
|
| 274 |
|
|
if (|(option_bits_in[5:2])) error_parm = 1; // shift count > 3
|
| 275 |
|
|
|
| 276 |
|
|
end else begin
|
| 277 |
|
|
result = sign_ex;
|
| 278 |
|
|
end
|
| 279 |
|
|
if (opx == `IX_RELATIVE_JUMP) begin
|
| 280 |
|
|
relative_jump_target = sign_ex + operand2[`RB1:2] - {1'b1,{(`CODE_ADDR_START-2){1'b0}}}; // subtract (code memory start)/4
|
| 281 |
|
|
if (|(operand2[1:0])) error_parm = 1; // jump to misaligned address
|
| 282 |
|
|
end
|
| 283 |
|
|
|
| 284 |
|
|
end else if (opx == `II_COMPARE || (opx >= `II_MIN && opx <= `II_MAX_U)) begin
|
| 285 |
|
|
// instructions involving signed and unsigned compare. operation defined by option bits
|
| 286 |
|
|
logic b1, b2, b3, eq, less; // intermediate results
|
| 287 |
|
|
logic [`RB1:0] sbit1;
|
| 288 |
|
|
b1 = 0; b2 = 0; b3 = 0; eq = 0; less = 0;
|
| 289 |
|
|
// flip a 1 in the sign bit position if comparison is signed (option_bits_in[3] = 0)
|
| 290 |
|
|
sbit1 = option_bits_in[3] ? `RB'b0 : sbit; // sign bit if signed
|
| 291 |
|
|
eq = (operand2 & sizemask) == (operand3 & sizemask); // operands are equal
|
| 292 |
|
|
less = ((operand2 & sizemask) ^ sbit1) < ((operand3 & sizemask) ^ sbit1); // a < b, signed or unsigned
|
| 293 |
|
|
|
| 294 |
|
|
if (option_bits_in[2:1] == 0) begin
|
| 295 |
|
|
b1 = eq; // a == b
|
| 296 |
|
|
end else if (option_bits_in[2:1] == 1) begin
|
| 297 |
|
|
b1 = less; // a < b
|
| 298 |
|
|
end else if (option_bits_in[2:1] == 2) begin
|
| 299 |
|
|
b1 = ~less & ~eq; // a > b
|
| 300 |
|
|
end else begin
|
| 301 |
|
|
logic [`RB1:0] absa;
|
| 302 |
|
|
logic [`RB1:0] absb;
|
| 303 |
|
|
absa = signbit2 ? -operand2 : operand2; // abs(a)
|
| 304 |
|
|
absb = signbit3 ? -operand3 : operand3; // abs(b)
|
| 305 |
|
|
b1 = (absa & sizemask) < (absb & sizemask); // abs(a) < abs(b)
|
| 306 |
|
|
end
|
| 307 |
|
|
jump_result = b1; // result for conditional jump
|
| 308 |
|
|
b2 = b1 ^ option_bits_in[0]; // bit 0 of condition code inverts the result
|
| 309 |
|
|
|
| 310 |
|
|
// alternative use of mask
|
| 311 |
|
|
case (option_bits_in[5:4])
|
| 312 |
|
|
2'b00: b3 = regmask_val[0] ? b2 : operand1[0]; // normal fallback
|
| 313 |
|
|
2'b01: b3 = regmask_val[0] & b2 & operand1[0]; // mask & result & fallback
|
| 314 |
|
|
2'b10: b3 = regmask_val[0] & (b2 | operand1[0]); // mask & (result | fallback)
|
| 315 |
|
|
2'b11: b3 = regmask_val[0] & (b2 ^ operand1[0]); // mask & (result ^ fallback)
|
| 316 |
|
|
endcase
|
| 317 |
|
|
|
| 318 |
|
|
// copy remaining bits from mask
|
| 319 |
|
|
if (opx == `II_COMPARE && instruction_in[`MASK] != 3'b111) begin
|
| 320 |
|
|
result[`RB1:1] = regmask_val[(`MASKSZ-1):1];
|
| 321 |
|
|
end
|
| 322 |
|
|
|
| 323 |
|
|
if (opx >= `II_MIN) begin
|
| 324 |
|
|
// min and max instructions
|
| 325 |
|
|
result = b1 ? operand2 : operand3;
|
| 326 |
|
|
end else if (regmask_used_in | mask_alternative_in) begin
|
| 327 |
|
|
// combine result with rest of mask or NUMCONTR
|
| 328 |
|
|
result = {regmask_val[(`MASKSZ-1):1],b3}; // get remaining bits from mask
|
| 329 |
|
|
end else begin
|
| 330 |
|
|
// normal compare
|
| 331 |
|
|
result = b3;
|
| 332 |
|
|
end
|
| 333 |
|
|
|
| 334 |
|
|
end else if (opx == `II_ADD || opx == `II_SUB) begin
|
| 335 |
|
|
// addition, subtraction, and conditional jumps involving addition or subtraction
|
| 336 |
|
|
logic [`RB:0] bigresult; // one extra bit on result for carry
|
| 337 |
|
|
logic zero; // result is zero
|
| 338 |
|
|
logic sign; // sign of result
|
| 339 |
|
|
logic carry; // unsigned carry/borrow
|
| 340 |
|
|
logic overflow; // signed overflow
|
| 341 |
|
|
|
| 342 |
|
|
if (~opx[0]) bigresult = operand2 + operand3; // add
|
| 343 |
|
|
else bigresult = operand2 - operand3; // subtract
|
| 344 |
|
|
result = bigresult[`RB1:0]; // result without extra carry bit
|
| 345 |
|
|
|
| 346 |
|
|
case (ot_in[1:0])
|
| 347 |
|
|
0: begin // 8 bit
|
| 348 |
|
|
sign = bigresult[7]; // sign bit
|
| 349 |
|
|
carry = bigresult[8]; // carry out (unsigned overflow)
|
| 350 |
|
|
end
|
| 351 |
|
|
1: begin // 16 bit
|
| 352 |
|
|
sign = bigresult[15]; // sign bit
|
| 353 |
|
|
carry = bigresult[16]; // carry out (unsigned overflow)
|
| 354 |
|
|
end
|
| 355 |
|
|
2: begin // 32 bit
|
| 356 |
|
|
sign = bigresult[31]; // sign bit
|
| 357 |
|
|
carry = bigresult[32]; // carry out (unsigned overflow)
|
| 358 |
|
|
end
|
| 359 |
|
|
3: begin // 64 bit (or 32)
|
| 360 |
|
|
sign = bigresult[`RB1]; // sign bit
|
| 361 |
|
|
carry = bigresult[`RB]; // carry out (unsigned overflow)
|
| 362 |
|
|
end
|
| 363 |
|
|
endcase
|
| 364 |
|
|
zero = ~|(result & sizemask); // result is zero
|
| 365 |
|
|
overflow = (signbit2 ^ signbit3 ^ ~opx[0]) & (signbit2 ^ sign); // signed overflow
|
| 366 |
|
|
|
| 367 |
|
|
// jump condition
|
| 368 |
|
|
case (opj[3:1])
|
| 369 |
|
|
`IJ_SUB_JZ >> 1: jump_result = zero;
|
| 370 |
|
|
`IJ_SUB_JNEG >> 1: jump_result = sign;
|
| 371 |
|
|
`IJ_SUB_JPOS >> 1: jump_result = ~sign & ~zero;
|
| 372 |
|
|
`IJ_SUB_JOVFLW >> 1: jump_result = overflow;
|
| 373 |
|
|
`IJ_SUB_JBORROW >> 1: jump_result = carry;
|
| 374 |
|
|
default: jump_result = 0;
|
| 375 |
|
|
endcase
|
| 376 |
|
|
|
| 377 |
|
|
end else if (opx == `II_AND || opx == `II_OR || opx == `II_XOR) begin
|
| 378 |
|
|
if (opx == `II_AND) begin
|
| 379 |
|
|
// bitwise AND, and conditional jumps involving this
|
| 380 |
|
|
result = operand2[`RB1:0] & operand3[`RB1:0];
|
| 381 |
|
|
end else if (opx == `II_OR) begin
|
| 382 |
|
|
// bitwise OR, and conditional jumps involving this
|
| 383 |
|
|
result = operand2[`RB1:0] | operand3[`RB1:0];
|
| 384 |
|
|
end else if (opx == `II_XOR) begin
|
| 385 |
|
|
// bitwise XOR, and conditional jumps involving this
|
| 386 |
|
|
result = operand2[`RB1:0] ^ operand3[`RB1:0];
|
| 387 |
|
|
end
|
| 388 |
|
|
jump_result = ~|(result & sizemask); // zero condition for conditional jump
|
| 389 |
|
|
|
| 390 |
|
|
end else if (opx >= `II_CLEAR_BIT && opx <= `II_TEST_BITS_OR) begin
|
| 391 |
|
|
// various bit manipulation instructions
|
| 392 |
|
|
logic [`RB1:0] onebit; // 1 in the position indicated by opr3
|
| 393 |
|
|
logic rbit; // result bit from test
|
| 394 |
|
|
rbit = 0;
|
| 395 |
|
|
onebit = 0;
|
| 396 |
|
|
if ((operand3 & sizemask) <= msb) onebit[operand3[5:0]] = 1'b1;// onebit = 1 ** opr3
|
| 397 |
|
|
|
| 398 |
|
|
case (opx)
|
| 399 |
|
|
`II_CLEAR_BIT: result = operand2 & ~ onebit;
|
| 400 |
|
|
`II_SET_BIT: result = operand2 | onebit;
|
| 401 |
|
|
`II_TOGGLE_BIT: result = operand2 ^ onebit;
|
| 402 |
|
|
`II_TEST_BIT: begin
|
| 403 |
|
|
rbit = |(operand2 & onebit);
|
| 404 |
|
|
end
|
| 405 |
|
|
`II_TEST_BITS_OR: begin
|
| 406 |
|
|
rbit = |(operand2 & operand3 & sizemask);
|
| 407 |
|
|
end
|
| 408 |
|
|
`II_TEST_BITS_AND: begin
|
| 409 |
|
|
rbit = ~|(((operand2 & operand3) ^ operand3) & sizemask);
|
| 410 |
|
|
end
|
| 411 |
|
|
endcase
|
| 412 |
|
|
jump_result = rbit; // jump condition for bit tests
|
| 413 |
|
|
|
| 414 |
|
|
if (opx >= `II_TEST_BIT && opx <= `II_TEST_BITS_OR) begin
|
| 415 |
|
|
// alternative use of mask and fallback in bit test instructions
|
| 416 |
|
|
logic a, b, c;
|
| 417 |
|
|
a = regmask_val[0] ^ option_bits_in[4]; // mask bit flipped by option bit 4
|
| 418 |
|
|
b = rbit ^ option_bits_in[2]; // result bit flipped by option bit 2
|
| 419 |
|
|
c = operand1[0] ^ option_bits_in[3]; // fallback bit flipped by option bit 3
|
| 420 |
|
|
case (option_bits_in[1:0]) // boolean operations controlled by option bits 1-0
|
| 421 |
|
|
2'b00: result[0] = a ? b : c; // normal fallback
|
| 422 |
|
|
2'b01: result[0] = a & (b & c); // mask & result & fallback
|
| 423 |
|
|
2'b10: result[0] = a & (b | c); // mask & (result | fallback)
|
| 424 |
|
|
2'b11: result[0] = a & (b ^ c); // mask & (result ^ fallback)
|
| 425 |
|
|
endcase
|
| 426 |
|
|
if (option_bits_in[5]) begin // copy remaining bits from mask or NUMCONTR
|
| 427 |
|
|
result[`RB1:1] = regmask_val[(`MASKSZ-1):1];
|
| 428 |
|
|
end
|
| 429 |
|
|
end
|
| 430 |
|
|
|
| 431 |
|
|
end else if ((opx >= `II_SHIFT_LEFT && opx <= `II_SHIFT_RIGHT_U) || opx == `II_FUNNEL_SHIFT
|
| 432 |
|
|
|| opx == `IX_MOVE_BITS1 || opx == `IX_MOVE_BITS2) begin
|
| 433 |
|
|
// shift instructions and other instruction involving shift and rotate
|
| 434 |
|
|
|
| 435 |
|
|
// Barrel shifters are expensive in terms of LUT use.
|
| 436 |
|
|
// Make one universal barrel shifter to use for all shift and rotate instructions
|
| 437 |
|
|
logic [(`RB*2-1):0] barrel; // input to barrel shifter. 2x32 or 2x64 bits
|
| 438 |
|
|
logic [`RB1:0] barrel_out; // output from barrel shifter. 32 or 64 bits
|
| 439 |
|
|
logic [5:0] shift_count1; // shift count for barrel shifter
|
| 440 |
|
|
logic [5:0] shift_count2; // shift count for barrel shifter, limited
|
| 441 |
|
|
logic overfl; // shift count overflows
|
| 442 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `II_ROTATE) begin
|
| 443 |
|
|
shift_count1 = -operand3[5:0];
|
| 444 |
|
|
end else begin
|
| 445 |
|
|
shift_count1 = operand3[5:0];
|
| 446 |
|
|
end
|
| 447 |
|
|
|
| 448 |
|
|
// select input for barrel shifter
|
| 449 |
|
|
barrel = 0;
|
| 450 |
|
|
if (ot_in[1:0] == 0) begin // 8 bits
|
| 451 |
|
|
shift_count2 = shift_count1[2:0];
|
| 452 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
|
| 453 |
|
|
barrel[15:8] = operand2[7:0];
|
| 454 |
|
|
if (operand3[5:0] == 0) barrel[7:0] = operand2[7:0]; // no shift
|
| 455 |
|
|
end else if (opx == `II_SHIFT_RIGHT_S) begin
|
| 456 |
|
|
barrel[7:0] = operand2[7:0];
|
| 457 |
|
|
barrel[15:8] = {8{operand2[7]}}; // sign bit
|
| 458 |
|
|
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
|
| 459 |
|
|
barrel[7:0] = operand2[7:0];
|
| 460 |
|
|
end else if (opx == `II_ROTATE) begin
|
| 461 |
|
|
barrel[7:0] = operand2[7:0];
|
| 462 |
|
|
barrel[15:8] = operand2[7:0];
|
| 463 |
|
|
end else begin // funnel shift
|
| 464 |
|
|
barrel[7:0] = operand1[7:0];
|
| 465 |
|
|
barrel[15:8] = operand2[7:0];
|
| 466 |
|
|
end
|
| 467 |
|
|
end else if (ot_in[1:0] == 1) begin // 16 bits
|
| 468 |
|
|
shift_count2 = shift_count1[3:0];
|
| 469 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
|
| 470 |
|
|
barrel[31:16] = operand2[15:0];
|
| 471 |
|
|
if (operand3[5:0] == 0) barrel[15:0] = operand2[15:0]; // no shift
|
| 472 |
|
|
end else if (opx == `II_SHIFT_RIGHT_S) begin
|
| 473 |
|
|
barrel[15:0] = operand2[15:0];
|
| 474 |
|
|
barrel[31:16] = {16{operand2[15]}}; // sign bit
|
| 475 |
|
|
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
|
| 476 |
|
|
barrel[15:0] = operand2[15:0];
|
| 477 |
|
|
end else if (opx == `II_ROTATE) begin
|
| 478 |
|
|
barrel[15:0] = operand2[15:0];
|
| 479 |
|
|
barrel[31:16] = operand2[15:0];
|
| 480 |
|
|
end else begin // funnel shift
|
| 481 |
|
|
barrel[15:0] = operand1[15:0];
|
| 482 |
|
|
barrel[31:16] = operand2[15:0];
|
| 483 |
|
|
end
|
| 484 |
|
|
end else if (ot_in[1:0] == 2 || `RB <= 32) begin // 32 bits (or 64 bits if not supported)
|
| 485 |
|
|
shift_count2 = shift_count1[4:0];
|
| 486 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
|
| 487 |
|
|
barrel[63:32] = operand2[31:0];
|
| 488 |
|
|
if (operand3[5:0] == 0) barrel[31:0] = operand2[31:0]; // no shift
|
| 489 |
|
|
end else if (opx == `II_SHIFT_RIGHT_S) begin
|
| 490 |
|
|
barrel[31:0] = operand2[31:0];
|
| 491 |
|
|
barrel[63:32] = {32{operand2[31]}}; // sign bit
|
| 492 |
|
|
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
|
| 493 |
|
|
barrel[31:0] = operand2[31:0];
|
| 494 |
|
|
end else if (opx == `II_ROTATE) begin
|
| 495 |
|
|
barrel[31:0] = operand2[31:0];
|
| 496 |
|
|
barrel[63:32] = operand2[31:0];
|
| 497 |
|
|
end else begin // funnel shift
|
| 498 |
|
|
barrel[31:0] = operand1[31:0];
|
| 499 |
|
|
barrel[63:32] = operand2[31:0];
|
| 500 |
|
|
end
|
| 501 |
|
|
end else begin // 64 bits (if supported)
|
| 502 |
|
|
shift_count2 = shift_count1[5:0];
|
| 503 |
|
|
if (opx == `II_SHIFT_LEFT || opx == `IX_MOVE_BITS1) begin
|
| 504 |
|
|
barrel[127:64] = operand2[63:0];
|
| 505 |
|
|
if (operand3[5:0] == 0) barrel[63:0] = operand2[63:0]; // no shift
|
| 506 |
|
|
end else if (opx == `II_SHIFT_RIGHT_S) begin
|
| 507 |
|
|
barrel[63:0] = operand2[63:0];
|
| 508 |
|
|
barrel[127:64] = {64{operand2[63]}}; // sign bit
|
| 509 |
|
|
end else if (opx == `II_SHIFT_RIGHT_U || opx == `IX_MOVE_BITS2) begin
|
| 510 |
|
|
barrel[63:0] = operand2[63:0];
|
| 511 |
|
|
end else if (opx == `II_ROTATE) begin
|
| 512 |
|
|
barrel[63:0] = operand2[63:0];
|
| 513 |
|
|
barrel[127:64] = operand2[63:0];
|
| 514 |
|
|
end else begin // funnel shift
|
| 515 |
|
|
barrel[63:0] = operand1[63:0];
|
| 516 |
|
|
barrel[127:64] = operand2[63:0];
|
| 517 |
|
|
end
|
| 518 |
|
|
end
|
| 519 |
|
|
|
| 520 |
|
|
// big barrel shifter
|
| 521 |
|
|
barrel_out = barrel[shift_count2+:`RB];
|
| 522 |
|
|
|
| 523 |
|
|
// select output
|
| 524 |
|
|
overfl = (operand3 & sizemask) > msb; // check if shift count overflows
|
| 525 |
|
|
|
| 526 |
|
|
if (opx == `IX_MOVE_BITS1 || opx == `IX_MOVE_BITS2) begin // move_bits instruction
|
| 527 |
|
|
// insert shift result in destination bit field
|
| 528 |
|
|
integer i;
|
| 529 |
|
|
for (i = 0; i < `RB; i++) begin
|
| 530 |
|
|
if (i >= im2_bits_in[13:8] && i <= option_bits_in) result[i] = barrel_out[i];
|
| 531 |
|
|
else result[i] = operand1[i];
|
| 532 |
|
|
end
|
| 533 |
|
|
|
| 534 |
|
|
end else if (overfl) begin
|
| 535 |
|
|
if (opx == `II_SHIFT_RIGHT_S) result = {`RB{signbit2}}; // shift right overflows to sign bit
|
| 536 |
|
|
else if (opx == `II_ROTATE) result = barrel_out; // rotate has no overflow
|
| 537 |
|
|
else result = 0; // all other shifts overflow to zero
|
| 538 |
|
|
|
| 539 |
|
|
end else begin
|
| 540 |
|
|
result = barrel_out; // result of shift or rotate
|
| 541 |
|
|
end
|
| 542 |
|
|
|
| 543 |
|
|
|
| 544 |
|
|
end else if (opx == `II_ADD_ADD) begin
|
| 545 |
|
|
// 3-operand add. signs are controlled by option bits
|
| 546 |
|
|
// (this is separate from the add and subtract operations with conditional jumps because the timing is critical)
|
| 547 |
|
|
logic [`RB1:0] r1, r2, r3;
|
| 548 |
|
|
r1 = option_bits_in[0] ? -operand1[`RB1:0] : operand1[`RB1:0];
|
| 549 |
|
|
r2 = option_bits_in[1] ? -operand2[`RB1:0] : operand2[`RB1:0];
|
| 550 |
|
|
r3 = option_bits_in[2] ? -operand3[`RB1:0] : operand3[`RB1:0];
|
| 551 |
|
|
result = r1 + r2 + r3;
|
| 552 |
|
|
|
| 553 |
|
|
end else if (opx == `II_SELECT_BITS) begin
|
| 554 |
|
|
// select_bits instruction
|
| 555 |
|
|
result = (operand1[`RB1:0] & operand3[`RB1:0]) | (operand2[`RB1:0] & ~operand3[`RB1:0]);
|
| 556 |
|
|
|
| 557 |
|
|
// bit scan is critical in terms of timing. Several different implementations tried here:
|
| 558 |
|
|
`define BITSCAN_BASED_ON_ROUNDP2
|
| 559 |
|
|
`ifdef BITSCAN_BASED_ON_ROUNDP2 // bit scan and roundp2 instructions combined. This takes less resources
|
| 560 |
|
|
|
| 561 |
|
|
end else if (opx == `IX_BIT_SCAN || opx == `IX_ROUNDP2) begin
|
| 562 |
|
|
//
|
| 563 |
|
|
// using bit index method because this makes roundp2 simple
|
| 564 |
|
|
|
| 565 |
|
|
logic [`RB1:0] a; // intermediate results
|
| 566 |
|
|
logic [`RB1:0] b;
|
| 567 |
|
|
logic [`RB1:0] c;
|
| 568 |
|
|
logic [`RB1:0] d;
|
| 569 |
|
|
logic [6:0] bitscan_result;
|
| 570 |
|
|
logic [5:0] r;
|
| 571 |
|
|
logic iszero; // input is zero
|
| 572 |
|
|
logic ispow2; // input is a power of 2
|
| 573 |
|
|
r = 0; iszero = 0;
|
| 574 |
|
|
|
| 575 |
|
|
a = operand2 & sizemask;
|
| 576 |
|
|
ispow2 = ~|(a & (a-1)); // a is a power of 2
|
| 577 |
|
|
|
| 578 |
|
|
if (opx == `IX_ROUNDP2 || operand3[0]) begin
|
| 579 |
|
|
// bitscan reverse scan
|
| 580 |
|
|
`ifdef SUPPORT_64BIT
|
| 581 |
|
|
b = reversebits64(a); // reverse order of bits (in subfunctions.vh)
|
| 582 |
|
|
c = b & ~(b-1); // isolate lowest 1-bit
|
| 583 |
|
|
d = reversebits64(c); // reverse back again
|
| 584 |
|
|
`else
|
| 585 |
|
|
b = reversebits32(a); // reverse order of bits (in subfunctions.vh)
|
| 586 |
|
|
c = b & ~(b-1); // isolate lowest 1-bit
|
| 587 |
|
|
d = reversebits32(c); // reverse back again
|
| 588 |
|
|
`endif
|
| 589 |
|
|
end else begin
|
| 590 |
|
|
// bitscan forward scan
|
| 591 |
|
|
d = a & ~(a-1); // isolate lowest 1-bit
|
| 592 |
|
|
end
|
| 593 |
|
|
|
| 594 |
|
|
// bitindex implemented in subfunctions.vh
|
| 595 |
|
|
bitscan_result = bitindex(d);
|
| 596 |
|
|
r = bitscan_result[6:1];
|
| 597 |
|
|
iszero = bitscan_result[0];
|
| 598 |
|
|
|
| 599 |
|
|
if (iszero) begin // input is zero. output determined by option bit 1
|
| 600 |
|
|
if (operand3[4]) begin
|
| 601 |
|
|
result = ~(`RB'b0); // return -1 if zero
|
| 602 |
|
|
end else begin
|
| 603 |
|
|
result = `RB'b0; // return 0 if zero
|
| 604 |
|
|
end
|
| 605 |
|
|
end else if (opx == `IX_BIT_SCAN) begin
|
| 606 |
|
|
result = r; // output result
|
| 607 |
|
|
end else if (!operand3[0] || ispow2) begin
|
| 608 |
|
|
// roundp2 round down to nearest power of 2
|
| 609 |
|
|
result = d;
|
| 610 |
|
|
end else begin
|
| 611 |
|
|
// round up to nearest power of 2
|
| 612 |
|
|
if (signbit2) begin // overflow
|
| 613 |
|
|
result = operand3[5] ? ~(`RB'b0) : 0; // return 0 or -1 if overflow
|
| 614 |
|
|
end else begin
|
| 615 |
|
|
result = {d,1'b0}; // round up
|
| 616 |
|
|
end
|
| 617 |
|
|
end
|
| 618 |
|
|
|
| 619 |
|
|
`else // bit scan and roundp2 instructions implemented separately
|
| 620 |
|
|
|
| 621 |
|
|
end else if (opx == `IX_ROUNDP2) begin
|
| 622 |
|
|
|
| 623 |
|
|
logic [`RB1:0] a; // intermediate results
|
| 624 |
|
|
logic [`RB1:0] b;
|
| 625 |
|
|
logic [`RB1:0] c;
|
| 626 |
|
|
logic [`RB1:0] d;
|
| 627 |
|
|
logic iszero; // input is zero
|
| 628 |
|
|
logic ispow2; // input is a power of 2
|
| 629 |
|
|
|
| 630 |
|
|
a = operand2 & sizemask; // cut off input to desired operand size
|
| 631 |
|
|
iszero = ~|a; // input is zero
|
| 632 |
|
|
ispow2 = ~|(a & (a-1)); // input is a power of 2
|
| 633 |
|
|
|
| 634 |
|
|
`ifdef SUPPORT_64BIT
|
| 635 |
|
|
b = reversebits64(a); // reverse order of bits (in subfunctions.vh)
|
| 636 |
|
|
c = b & ~(b-1); // isolate lowest 1-bit
|
| 637 |
|
|
d = reversebits64(c); // reverse back again
|
| 638 |
|
|
`else
|
| 639 |
|
|
b = reversebits32(a); // reverse order of bits (in subfunctions.vh)
|
| 640 |
|
|
c = b & ~(b-1); // isolate lowest 1-bit
|
| 641 |
|
|
d = reversebits32(c); // reverse back again
|
| 642 |
|
|
`endif
|
| 643 |
|
|
|
| 644 |
|
|
if (iszero) begin // input is zero. output determined by option bit 4
|
| 645 |
|
|
if (operand3[4]) begin
|
| 646 |
|
|
result = ~(`RB'b0); // return -1 if zero
|
| 647 |
|
|
end else begin
|
| 648 |
|
|
result = 0; // return 0 if zero
|
| 649 |
|
|
end
|
| 650 |
|
|
end else if (~operand3[0] | ispow2) begin
|
| 651 |
|
|
// roundp2 round down to nearest power of 2
|
| 652 |
|
|
result = d;
|
| 653 |
|
|
end else begin
|
| 654 |
|
|
// round up to nearest power of 2
|
| 655 |
|
|
if (signbit2) begin // overflow
|
| 656 |
|
|
result = operand3[5] ? ~(`RB'b0) : 0; // return 0 or -1 if overflow
|
| 657 |
|
|
end else begin
|
| 658 |
|
|
result = {d,1'b0}; // round up
|
| 659 |
|
|
end
|
| 660 |
|
|
end
|
| 661 |
|
|
|
| 662 |
|
|
end else if (opx == `IX_BIT_SCAN) begin
|
| 663 |
|
|
|
| 664 |
|
|
logic [`RB1:0] a; // input cut off to desired operand size
|
| 665 |
|
|
logic [`RB1:0] b; // input with bits reversed
|
| 666 |
|
|
logic [`RB1:0] c; // input bits reversed if forward scan
|
| 667 |
|
|
logic [6:0] r; // bitscan result
|
| 668 |
|
|
logic iszero; // input is zero
|
| 669 |
|
|
|
| 670 |
|
|
a = operand2 & sizemask; // cut off input to desired operand size
|
| 671 |
|
|
|
| 672 |
|
|
// reverse bits if forward scan
|
| 673 |
|
|
case (ot_in[1:0])
|
| 674 |
|
|
0: b = reversebits8(operand2[7:0]); // 8 bit
|
| 675 |
|
|
1: b = reversebits16(operand2[15:0]); // 16 bit
|
| 676 |
|
|
`ifdef SUPPORT_64BIT
|
| 677 |
|
|
3: b = reversebits64(operand2[63:0]); // 64 bit
|
| 678 |
|
|
`endif
|
| 679 |
|
|
default: b = reversebits32(operand2[31:0]); // 32 bit
|
| 680 |
|
|
endcase
|
| 681 |
|
|
|
| 682 |
|
|
if (operand3[0]) c = a; // reverse scan
|
| 683 |
|
|
else c = b; // forward scan
|
| 684 |
|
|
|
| 685 |
|
|
// bitscan function defined in subfunctions.vh
|
| 686 |
|
|
r = bitscan64A(a); // this implementation may be faster?
|
| 687 |
|
|
//r = bitscan64C(c); // alternative implementation
|
| 688 |
|
|
iszero = r[0]; // input is zero
|
| 689 |
|
|
|
| 690 |
|
|
if (iszero) begin // input is zero. output determined by option bit 4
|
| 691 |
|
|
if (operand3[4]) begin
|
| 692 |
|
|
result = ~(`RB'b0); // return -1 if zero
|
| 693 |
|
|
end else begin
|
| 694 |
|
|
result = 0; // return 0 if zero
|
| 695 |
|
|
end
|
| 696 |
|
|
end else begin
|
| 697 |
|
|
result = r[6:1]; // normal bitscan result
|
| 698 |
|
|
end
|
| 699 |
|
|
|
| 700 |
|
|
`endif
|
| 701 |
|
|
|
| 702 |
|
|
|
| 703 |
|
|
end else if (opx == `IX_POPCOUNT) begin
|
| 704 |
|
|
// popcount instruction. functions are is in subfunctions.vh
|
| 705 |
|
|
if (`RB <= 32) result = popcount32(operand2 & sizemask);
|
| 706 |
|
|
else result = popcount64(operand2 & sizemask);
|
| 707 |
|
|
|
| 708 |
|
|
end else if (opx == `IX_ABS) begin
|
| 709 |
|
|
// abs instruction
|
| 710 |
|
|
if (~signbit2) begin
|
| 711 |
|
|
result = operand2; // input is not negative
|
| 712 |
|
|
end else if ((operand2 & ~sbit & sizemask) == 0) begin
|
| 713 |
|
|
// overflow
|
| 714 |
|
|
case (operand3[1:0]) // last operand determines what to do with overflow
|
| 715 |
|
|
0: result = operand2; // overfloaw wraps around
|
| 716 |
|
|
1: result = ~sbit; // overfloaw gives saturation
|
| 717 |
|
|
2: result = 0; // overflow gives 0
|
| 718 |
|
|
endcase
|
| 719 |
|
|
end else begin
|
| 720 |
|
|
result = -operand2; // input is negative. change sign
|
| 721 |
|
|
end
|
| 722 |
|
|
|
| 723 |
|
|
end else if (opx == `IX_TRUTH_TAB3) begin
|
| 724 |
|
|
// truth_tab3 instruction
|
| 725 |
|
|
// truth_table_lookup is in subfunctions.vh
|
| 726 |
|
|
result = truth_table_lookup(operand1, operand2, operand3, im2_bits_in[7:0]);
|
| 727 |
|
|
if (option_bits_in[0]) result[`RB1:1] = 0; // output only bit 0
|
| 728 |
|
|
else if (option_bits_in[1]) result[`RB1:1] = regmask_val[(`MASKSZ-1):1]; // remaining bits from mask
|
| 729 |
|
|
|
| 730 |
|
|
end else if (opx == `IX_INSERT_HI) begin
|
| 731 |
|
|
// insert constant into high 32 bits, leave low 32 bit unchanged
|
| 732 |
|
|
`ifdef SUPPORT_64BIT
|
| 733 |
|
|
result = {operand3[31:0],operand2[31:0]};
|
| 734 |
|
|
`else
|
| 735 |
|
|
result = operand2;
|
| 736 |
|
|
`endif
|
| 737 |
|
|
|
| 738 |
|
|
end else if (category_in == `CAT_JUMP) begin
|
| 739 |
|
|
// jump instructions that have no corresponding general instruction
|
| 740 |
|
|
|
| 741 |
|
|
if (opj[5:0] >= `IJ_INC_COMP_JBELOW && opj[5:0] <= `IJ_INC_COMP_JABOVE+1) begin
|
| 742 |
|
|
// loop instruction: increment and jump if below/above
|
| 743 |
|
|
|
| 744 |
|
|
`ifdef THIS_VERSION_IS_SLOW__IT_IS_NOT_USED
|
| 745 |
|
|
// This version is slow because the addition and the compare both involve a big carry-lookahead circuit.
|
| 746 |
|
|
// Use this version only if timing is not critical
|
| 747 |
|
|
logic eq, less;
|
| 748 |
|
|
result = operand2 + 1; // increment
|
| 749 |
|
|
eq = (result & sizemask) == (operand3 & sizemask); // operands are equal
|
| 750 |
|
|
less = ((result & sizemask) ^ sbit) < ((operand3 & sizemask) ^ sbit); // a+1 < b, signed
|
| 751 |
|
|
if (opj[1]) begin
|
| 752 |
|
|
jump_result = ~less & ~eq; // above
|
| 753 |
|
|
end else begin
|
| 754 |
|
|
jump_result = less; // below
|
| 755 |
|
|
end
|
| 756 |
|
|
`else
|
| 757 |
|
|
// This version is faster because it does most of the compare in parallel with the addition
|
| 758 |
|
|
logic less; // a < b, signed
|
| 759 |
|
|
logic result_equal_limit; // a + 1 == b
|
| 760 |
|
|
logic b_is_min; // the limit b is INT_MIN. a+1 < b always false
|
| 761 |
|
|
logic overflow1; // a+1 overflows
|
| 762 |
|
|
// The overflow check may not be important, but we want to make sure that the result is always
|
| 763 |
|
|
// the same as if the increment and the compare are coded as two separate instructions
|
| 764 |
|
|
result = operand2 + 1; // increment
|
| 765 |
|
|
less = ((operand2 & sizemask) ^ sbit) < ((operand3 & sizemask) ^ sbit); // a < b, signed
|
| 766 |
|
|
overflow1 = ((operand2 & sizemask) ^ sbit) == sizemask; // a+1 overflows
|
| 767 |
|
|
b_is_min = ((operand3 & sizemask) ^ sbit) == 0; // limit is INT_MIN, nothing is less than limit
|
| 768 |
|
|
result_equal_limit = ((result ^ operand3) & sizemask) == 0; // a + 1 == b
|
| 769 |
|
|
if (opj[1]) begin // increment_compare/jump_above
|
| 770 |
|
|
// check if a+1 > b <=> !(a+1 <= b) <=> !(a < b || overflow)
|
| 771 |
|
|
jump_result = ~(less | overflow1); // a+1 > b
|
| 772 |
|
|
end else begin // increment_compare/jump_below
|
| 773 |
|
|
// check if a+1 < b <=> (a < b && a+1 != b) || (overflow && b != INT_MIN)
|
| 774 |
|
|
jump_result = (less & ~result_equal_limit) | (overflow1 & ~b_is_min); // a + 1 < b
|
| 775 |
|
|
end
|
| 776 |
|
|
|
| 777 |
|
|
`endif
|
| 778 |
|
|
|
| 779 |
|
|
end else if (opj[5:1] == `IJ_SUB_MAXLEN_JPOS >> 1) begin
|
| 780 |
|
|
|
| 781 |
|
|
// vector loop instruction: subtract maximum vector length and jump if positive
|
| 782 |
|
|
logic [`RB1:0] max_vector_length;
|
| 783 |
|
|
logic sign; // sign of result
|
| 784 |
|
|
logic zero; // result is zero
|
| 785 |
|
|
if (`NUM_VECTOR_UNITS > 0) max_vector_length = `NUM_VECTOR_UNITS * 8;
|
| 786 |
|
|
else max_vector_length = 8; // make sure max_vector_length is not zero to avoid infinite loop
|
| 787 |
|
|
result = operand2 - max_vector_length;
|
| 788 |
|
|
|
| 789 |
|
|
zero = ~|(result & sizemask);
|
| 790 |
|
|
case (ot_in[1:0])
|
| 791 |
|
|
0: sign = result[7]; // 8 bit
|
| 792 |
|
|
1: sign = result[15]; // 16 bit
|
| 793 |
|
|
2: sign = result[31]; // 32 bit
|
| 794 |
|
|
3: sign = result[`RB1]; // 64 bit (or 32)
|
| 795 |
|
|
endcase
|
| 796 |
|
|
`ifdef SUPPORT_64BIT
|
| 797 |
|
|
if (instruction_in[`IL] == 1) begin
|
| 798 |
|
|
// 64 bits in format C
|
| 799 |
|
|
otout = 3; // 64 bit output
|
| 800 |
|
|
sign = result[`RB1];
|
| 801 |
|
|
zero = ~|result;
|
| 802 |
|
|
end
|
| 803 |
|
|
`endif
|
| 804 |
|
|
jump_result = ~sign & ~zero;
|
| 805 |
|
|
|
| 806 |
|
|
end
|
| 807 |
|
|
|
| 808 |
|
|
end else if (opx == `II_NOP) begin
|
| 809 |
|
|
// nop instruction. do nothing
|
| 810 |
|
|
|
| 811 |
|
|
end else begin
|
| 812 |
|
|
// unknown instruction. error
|
| 813 |
|
|
error = 1;
|
| 814 |
|
|
|
| 815 |
|
|
end
|
| 816 |
|
|
|
| 817 |
|
|
if (vector_in) error = 1; // Vector instructions not supported yet
|
| 818 |
|
|
|
| 819 |
|
|
if (category_in == `CAT_JUMP) begin
|
| 820 |
|
|
|
| 821 |
|
|
// manage conditional jump conditions
|
| 822 |
|
|
|
| 823 |
|
|
logic [1:0] il;
|
| 824 |
|
|
logic [2:0] mode;
|
| 825 |
|
|
il = instruction_in[`IL];
|
| 826 |
|
|
mode = instruction_in[`MODE];
|
| 827 |
|
|
|
| 828 |
|
|
// calculate target if not jumping
|
| 829 |
|
|
//instruction_length = il[1] ? il : 1; // il cannot be 0 for jump instructions)
|
| 830 |
|
|
nojump_target = instruction_pointer_in + il;
|
| 831 |
|
|
// treat jump as not taken if jump target is equal to nojump target
|
| 832 |
|
|
jump_not_taken = nojump_target == operand1_in;
|
| 833 |
|
|
|
| 834 |
|
|
// detect jump result
|
| 835 |
|
|
if (jump_result ^ opj[0]) jump_taken = 1; // bit 0 of opj inverts the condition
|
| 836 |
|
|
|
| 837 |
|
|
if (opj > `IJ_LAST_CONDITIONAL) jump_taken = 1; // unconditional jump always taken
|
| 838 |
|
|
|
| 839 |
|
|
if (opj == `IJ_TRAP) begin // trap and IJ_SYSCALL have same opj. Both will stop debugger
|
| 840 |
|
|
jump_taken = 0; // use trap as debug breakpoint. Resume execution in next instruction
|
| 841 |
|
|
end
|
| 842 |
|
|
|
| 843 |
|
|
// compare, test and indirect jumps have no register return. The decoder takes care of result_type = `RESULT_NONE;
|
| 844 |
|
|
end
|
| 845 |
|
|
|
| 846 |
|
|
// normal register output
|
| 847 |
|
|
// regmask_used_in removed from this equation because of critical timing:
|
| 848 |
|
|
normal_output = valid_in & ~stall & ~stall_in
|
| 849 |
|
|
& (result_type == `RESULT_REG | result_type == `RESULT_SYS)
|
| 850 |
|
|
& (regmask_val[0] | mask_alternative_in) & ~vector_in;
|
| 851 |
|
|
|
| 852 |
|
|
end
|
| 853 |
|
|
|
| 854 |
|
|
|
| 855 |
|
|
// outputs
|
| 856 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
| 857 |
|
|
if (normal_output) begin
|
| 858 |
|
|
// normal register output
|
| 859 |
|
|
case (otout)
|
| 860 |
|
|
0: result_out <= result[7:0];
|
| 861 |
|
|
1: result_out <= result[15:0];
|
| 862 |
|
|
2: result_out <= result[31:0];
|
| 863 |
|
|
3: result_out <= result[`RB1:0];
|
| 864 |
|
|
endcase
|
| 865 |
|
|
register_write_out <= ~reset;
|
| 866 |
|
|
tag_val_out <= tag_val_in;
|
| 867 |
|
|
// destination register number. high bit is 1 for system registers
|
| 868 |
|
|
register_a_out <= {result_type[0],instruction_in[`RD]};
|
| 869 |
|
|
|
| 870 |
|
|
end else if (!valid_in || stall || stall_in || result_type == `RESULT_MEM || result_type == `RESULT_NONE || vector_in) begin
|
| 871 |
|
|
// stall_in must disable the output to avoid executing the same instruction twice.
|
| 872 |
|
|
// note: the FPGA has no internal tri-state buffers. We need to simulate result bus by or'ing outputs
|
| 873 |
|
|
register_write_out <= 0;
|
| 874 |
|
|
result_out <= 0;
|
| 875 |
|
|
register_a_out <= 0;
|
| 876 |
|
|
tag_val_out <= 0;
|
| 877 |
|
|
|
| 878 |
|
|
end else /*if (!regmask_val[0] && !mask_alternative_in) */ begin
|
| 879 |
|
|
// mask is zero. output is fallback
|
| 880 |
|
|
case (otout)
|
| 881 |
|
|
0: result_out <= operand1[7:0];
|
| 882 |
|
|
1: result_out <= operand1[15:0];
|
| 883 |
|
|
2: result_out <= operand1[31:0];
|
| 884 |
|
|
3: result_out <= operand1[`RB1:0];
|
| 885 |
|
|
endcase
|
| 886 |
|
|
register_write_out <= ~reset;
|
| 887 |
|
|
register_a_out <= {1'b0,instruction_in[`RD]};
|
| 888 |
|
|
tag_val_out <= tag_val_in;
|
| 889 |
|
|
end
|
| 890 |
|
|
|
| 891 |
|
|
if (stall || stall_in || !valid_in) begin
|
| 892 |
|
|
jump_out <= 0;
|
| 893 |
|
|
nojump_out <= 0;
|
| 894 |
|
|
|
| 895 |
|
|
end else if (category_in == `CAT_JUMP) begin
|
| 896 |
|
|
// additional output for conditional jump instructions
|
| 897 |
|
|
if (jump_not_taken | ~jump_taken) begin
|
| 898 |
|
|
jump_out <= 0;
|
| 899 |
|
|
nojump_out <= valid_in;
|
| 900 |
|
|
jump_pointer_out <= nojump_target;
|
| 901 |
|
|
end else begin // jump taken
|
| 902 |
|
|
jump_out <= valid_in && !reset;
|
| 903 |
|
|
nojump_out <= 0;
|
| 904 |
|
|
end
|
| 905 |
|
|
|
| 906 |
|
|
end else begin
|
| 907 |
|
|
// not a jump instruction
|
| 908 |
|
|
jump_out <= 0;
|
| 909 |
|
|
nojump_out <= 0;
|
| 910 |
|
|
jump_pointer_out <= 0;
|
| 911 |
|
|
end
|
| 912 |
|
|
|
| 913 |
|
|
// special cases for indirect jumps
|
| 914 |
|
|
if (opx == `IX_INDIRECT_JUMP) begin
|
| 915 |
|
|
jump_pointer_out <= operand3[`RB1:2] - {1'b1,{(`CODE_ADDR_START-2){1'b0}}}; // jump target = (last operand - code memory start)/ 4
|
| 916 |
|
|
if (|(operand3[1:0])) error_parm_out <= 1; // misaligned jump target
|
| 917 |
|
|
|
| 918 |
|
|
end else if (opx == `IX_RELATIVE_JUMP) begin // jump target is calculated
|
| 919 |
|
|
jump_pointer_out <= relative_jump_target;
|
| 920 |
|
|
|
| 921 |
|
|
end else begin
|
| 922 |
|
|
jump_pointer_out <= operand1_in; // jump target is calculated in previous stage
|
| 923 |
|
|
end
|
| 924 |
|
|
|
| 925 |
|
|
// other outputs
|
| 926 |
|
|
valid_out <= !stall & valid_in & !reset; // a valid output is produced
|
| 927 |
|
|
stall_out <= stall & valid_in & !reset; // stalled. waiting for operand
|
| 928 |
|
|
stall_next_out <= stall_next & valid_in & !reset; // predict stall in next clock cycle
|
| 929 |
|
|
error_out <= error & valid_in & !reset; // unknown instruction
|
| 930 |
|
|
error_parm_out <= error_parm & valid_in & !reset; // wrong parameter
|
| 931 |
|
|
|
| 932 |
|
|
|
| 933 |
|
|
// outputs for debugger:
|
| 934 |
|
|
debug1_out <= 0;
|
| 935 |
|
|
|
| 936 |
|
|
debug1_out[6:0] <= opx;
|
| 937 |
|
|
debug1_out[14:8] <= opj;
|
| 938 |
|
|
|
| 939 |
|
|
|
| 940 |
|
|
debug1_out[21:20] <= category_in;
|
| 941 |
|
|
|
| 942 |
|
|
debug1_out[24] <= stall;
|
| 943 |
|
|
debug1_out[25] <= stall_next;
|
| 944 |
|
|
debug1_out[27] <= error;
|
| 945 |
|
|
|
| 946 |
|
|
debug1_out[28] <= jump_taken;
|
| 947 |
|
|
debug1_out[29] <= jump_not_taken;
|
| 948 |
|
|
debug1_out[30] <= jump_result;
|
| 949 |
|
|
debug1_out[31] <= valid_in;
|
| 950 |
|
|
debug2_out[16] <= opr1_used_in;
|
| 951 |
|
|
debug2_out[17] <= opr2_used_in;
|
| 952 |
|
|
debug2_out[18] <= opr3_used_in;
|
| 953 |
|
|
debug2_out[19] <= regmask_used_in;
|
| 954 |
|
|
debug2_out[20] <= mask_alternative_in;
|
| 955 |
|
|
debug2_out[21] <= mask_off;
|
| 956 |
|
|
/*
|
| 957 |
|
|
debug2_out[22] <= regmask_val_in[0];
|
| 958 |
|
|
debug2_out[23] <= regmask_val_in[`MASKSZ];
|
| 959 |
|
|
debug2_out[27:24] <= regmask_val[3:0];
|
| 960 |
|
|
debug2_out[28] <= regmask_val[`MASKSZ];
|
| 961 |
|
|
*/
|
| 962 |
|
|
end
|
| 963 |
|
|
|
| 964 |
|
|
endmodule
|