| 1 |
18 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
// Engineer: Agner Fog
|
| 3 |
|
|
//
|
| 4 |
|
|
// Create Date: 2020-06-03
|
| 5 |
|
|
// Last modified: 2021-08-02
|
| 6 |
|
|
// Module Name: data_cache
|
| 7 |
|
|
// Project Name: ForwardCom soft core
|
| 8 |
|
|
// Target Devices: Artix 7
|
| 9 |
|
|
// Tool Versions: Vivado v. 2020.1
|
| 10 |
|
|
// License: CERN-OHL-W v. 2 or later
|
| 11 |
|
|
// Description: data memory or data cache for read/write data
|
| 12 |
|
|
//
|
| 13 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
| 14 |
|
|
`include "defines.vh"
|
| 15 |
|
|
|
| 16 |
|
|
|
| 17 |
|
|
// read/write data memory or cache, (2**`DATA_ADDR_WIDTH) bytes = 2**16 = 64kB
|
| 18 |
|
|
module data_memory (
|
| 19 |
|
|
input clock, // clock
|
| 20 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
| 21 |
|
|
input [`COMMON_ADDR_WIDTH-1:0] read_write_addr, // Address for reading and writing from/to ram
|
| 22 |
|
|
// The lower 3 bits of read_write_addr indicate a byte within an 8 bytes line
|
| 23 |
|
|
input read_enable, // read enable
|
| 24 |
|
|
input [1:0] read_data_size, // 8, 16, 32, or 64 bits read
|
| 25 |
|
|
input [7:0] write_enable, // write enable for each byte separately
|
| 26 |
|
|
input [63:0] write_data_in, // Data in. Always 64 bits. Any part of the write bus can be used when the data size is less than 64 bits
|
| 27 |
|
|
`ifdef DISTRIBUTED_RAM // Distributed RAM takes a lot of FPGA resources
|
| 28 |
|
|
output reg [`RB1:0] read_data_out // Data out
|
| 29 |
|
|
`else // Block RAM
|
| 30 |
|
|
output logic [`RB1:0] read_data_out // Data out
|
| 31 |
|
|
`endif
|
| 32 |
|
|
);
|
| 33 |
|
|
|
| 34 |
|
|
// read/write data ram
|
| 35 |
|
|
reg [63:0] dataram [0:(2**(`DATA_ADDR_WIDTH-3))-1]; // 64kB RAM
|
| 36 |
|
|
|
| 37 |
|
|
// split read/write address into double-word index, and byte index
|
| 38 |
|
|
logic [`DATA_ADDR_WIDTH-4:0] address_hi;
|
| 39 |
|
|
logic [2:0] address_lo;
|
| 40 |
|
|
logic address_valid;
|
| 41 |
|
|
|
| 42 |
|
|
always_comb begin
|
| 43 |
|
|
address_hi = read_write_addr[`DATA_ADDR_WIDTH-1:3]; // index to 64-bit lines
|
| 44 |
|
|
address_lo = read_write_addr[2:0]; // index to byte within line
|
| 45 |
|
|
address_valid = read_write_addr[`COMMON_ADDR_WIDTH-1:`DATA_ADDR_WIDTH] == 0; // exclude code addresses
|
| 46 |
|
|
end
|
| 47 |
|
|
|
| 48 |
|
|
|
| 49 |
|
|
// Data write:
|
| 50 |
|
|
always_ff @(posedge clock) if (clock_enable & address_valid) begin
|
| 51 |
|
|
// write data to RAM. Each byte enabled separately
|
| 52 |
|
|
if (write_enable[0]) dataram[address_hi][ 7: 0] <= write_data_in[ 7: 0];
|
| 53 |
|
|
if (write_enable[1]) dataram[address_hi][15: 8] <= write_data_in[15: 8];
|
| 54 |
|
|
if (write_enable[2]) dataram[address_hi][23:16] <= write_data_in[23:16];
|
| 55 |
|
|
if (write_enable[3]) dataram[address_hi][31:24] <= write_data_in[31:24];
|
| 56 |
|
|
if (write_enable[4]) dataram[address_hi][39:32] <= write_data_in[39:32];
|
| 57 |
|
|
if (write_enable[5]) dataram[address_hi][47:40] <= write_data_in[47:40];
|
| 58 |
|
|
if (write_enable[6]) dataram[address_hi][55:48] <= write_data_in[55:48];
|
| 59 |
|
|
if (write_enable[7]) dataram[address_hi][63:56] <= write_data_in[63:56];
|
| 60 |
|
|
end
|
| 61 |
|
|
|
| 62 |
|
|
|
| 63 |
|
|
// data read. Must have natural alignment
|
| 64 |
|
|
|
| 65 |
|
|
`ifdef DISTRIBUTED_RAM
|
| 66 |
|
|
// The multiplexer comes before the register. This is only possible with distributed RAM.
|
| 67 |
|
|
// Distributed RAM takes a lot of FPGA resources but may allow a slightly higher clock frequency.
|
| 68 |
|
|
|
| 69 |
|
|
always_ff @(posedge clock) if (clock_enable & address_valid & read_enable) begin
|
| 70 |
|
|
|
| 71 |
|
|
// Each 64-bit RAM line may be divided into
|
| 72 |
|
|
// eight bytes, four 16-bit halfwords, two 32-bit words, or one 64-bit double word:
|
| 73 |
|
|
case (address_lo)
|
| 74 |
|
|
0: read_data_out[7:0] <= dataram[address_hi][ 7: 0];
|
| 75 |
|
|
1: read_data_out[7:0] <= dataram[address_hi][15: 8];
|
| 76 |
|
|
2: read_data_out[7:0] <= dataram[address_hi][23:16];
|
| 77 |
|
|
3: read_data_out[7:0] <= dataram[address_hi][31:24];
|
| 78 |
|
|
4: read_data_out[7:0] <= dataram[address_hi][39:32];
|
| 79 |
|
|
5: read_data_out[7:0] <= dataram[address_hi][47:40];
|
| 80 |
|
|
6: read_data_out[7:0] <= dataram[address_hi][55:48];
|
| 81 |
|
|
7: read_data_out[7:0] <= dataram[address_hi][63:56];
|
| 82 |
|
|
endcase
|
| 83 |
|
|
|
| 84 |
|
|
case (address_lo[2:1])
|
| 85 |
|
|
0: read_data_out[15:8] <= dataram[address_hi][15: 8];
|
| 86 |
|
|
1: read_data_out[15:8] <= dataram[address_hi][31:24];
|
| 87 |
|
|
2: read_data_out[15:8] <= dataram[address_hi][47:40];
|
| 88 |
|
|
3: read_data_out[15:8] <= dataram[address_hi][63:56];
|
| 89 |
|
|
endcase
|
| 90 |
|
|
|
| 91 |
|
|
case (address_lo[2])
|
| 92 |
|
|
0: read_data_out[31:16] <= dataram[address_hi][31:16];
|
| 93 |
|
|
1: read_data_out[31:16] <= dataram[address_hi][63:48];
|
| 94 |
|
|
endcase
|
| 95 |
|
|
|
| 96 |
|
|
`ifdef SUPPORT_64BIT
|
| 97 |
|
|
read_data_out[63:32] <= dataram[address_hi][63:32];
|
| 98 |
|
|
`endif
|
| 99 |
|
|
end
|
| 100 |
|
|
|
| 101 |
|
|
`else
|
| 102 |
|
|
// block RAM. The multiplexer must come after the register
|
| 103 |
|
|
|
| 104 |
|
|
reg [63:0] read_data; // a whole line read from the RAM
|
| 105 |
|
|
reg [2:0] address_lo2; // address_lo saved
|
| 106 |
|
|
|
| 107 |
|
|
|
| 108 |
|
|
always_ff @(posedge clock) if (clock_enable & address_valid & read_enable) begin
|
| 109 |
|
|
read_data <= dataram[address_hi]; // read a 64 bits line from ram
|
| 110 |
|
|
address_lo2 <= address_lo; // save low part of address
|
| 111 |
|
|
end
|
| 112 |
|
|
|
| 113 |
|
|
always_comb begin
|
| 114 |
|
|
// Each 64-bit RAM line may be divided into eight bytes, four 16-bit halfwords,
|
| 115 |
|
|
// two 32-bit words, or one 64-bit double word.
|
| 116 |
|
|
// The speed of this multiplexer is very critical because it adds to the delay
|
| 117 |
|
|
// in the execution unit. We are saving time by not setting unused parts of
|
| 118 |
|
|
// read_data_out to zero.
|
| 119 |
|
|
case (address_lo2)
|
| 120 |
|
|
0: read_data_out[7:0] = read_data[ 7: 0];
|
| 121 |
|
|
1: read_data_out[7:0] = read_data[15: 8];
|
| 122 |
|
|
2: read_data_out[7:0] = read_data[23:16];
|
| 123 |
|
|
3: read_data_out[7:0] = read_data[31:24];
|
| 124 |
|
|
4: read_data_out[7:0] = read_data[39:32];
|
| 125 |
|
|
5: read_data_out[7:0] = read_data[47:40];
|
| 126 |
|
|
6: read_data_out[7:0] = read_data[55:48];
|
| 127 |
|
|
7: read_data_out[7:0] = read_data[63:56];
|
| 128 |
|
|
endcase
|
| 129 |
|
|
|
| 130 |
|
|
case (address_lo2[2:1])
|
| 131 |
|
|
0: read_data_out[15:8] = read_data[15: 8];
|
| 132 |
|
|
1: read_data_out[15:8] = read_data[31:24];
|
| 133 |
|
|
2: read_data_out[15:8] = read_data[47:40];
|
| 134 |
|
|
3: read_data_out[15:8] = read_data[63:56];
|
| 135 |
|
|
endcase
|
| 136 |
|
|
|
| 137 |
|
|
case (address_lo2[2])
|
| 138 |
|
|
0: read_data_out[31:16] = read_data[31:16];
|
| 139 |
|
|
1: read_data_out[31:16] = read_data[63:48];
|
| 140 |
|
|
endcase
|
| 141 |
|
|
|
| 142 |
|
|
`ifdef SUPPORT_64BIT
|
| 143 |
|
|
read_data_out[63:32] = read_data[63:32];
|
| 144 |
|
|
`endif
|
| 145 |
|
|
end
|
| 146 |
|
|
|
| 147 |
|
|
`endif
|
| 148 |
|
|
|
| 149 |
|
|
endmodule
|