1 |
19 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
// Engineer: Agner Fog
|
3 |
|
|
//
|
4 |
|
|
// Create Date: 2020-06-06
|
5 |
|
|
// Last modified: 2021-07-18
|
6 |
|
|
// Module Name: data read
|
7 |
|
|
// Project Name: ForwardCom soft core
|
8 |
|
|
// Target Devices: Artix 7
|
9 |
|
|
// Tool Versions: Vivado v. 2020.1
|
10 |
|
|
// License: CERN-OHL-W v. 2 or later
|
11 |
|
|
// Description: Waiting stage after the address generator.
|
12 |
|
|
// This pipeline stage comes after the address generator.
|
13 |
|
|
// It waits for a clock cycle while data retrieved from the data cache.
|
14 |
|
|
// Checks if a memory address is valid.
|
15 |
|
|
// Converts single format instructions to multiformat instruction code where possible
|
16 |
|
|
// Dispatches the instruction to the right execution unit.
|
17 |
|
|
//
|
18 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
19 |
|
|
`include "defines.vh"
|
20 |
|
|
|
21 |
|
|
|
22 |
|
|
module dataread (
|
23 |
|
|
input clock, // system clock (100 MHz)
|
24 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
25 |
|
|
input reset, // system reset
|
26 |
|
|
input valid_in, // data from fetch module ready
|
27 |
|
|
input stall_in, // a later stage in pipeline is stalled
|
28 |
|
|
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
|
29 |
|
|
input [63:0] instruction_in, // current instruction, up to 3 words long
|
30 |
|
|
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
|
31 |
|
|
input vector_in, // this is a vector instruction
|
32 |
|
|
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
|
33 |
|
|
input [1:0] format_in, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
34 |
|
|
//input rs_status_in, // 1: RS is register operand
|
35 |
|
|
//input rt_status_in, // 1: RT is register operand
|
36 |
|
|
//input ru_status_in, // 1: RU is used
|
37 |
|
|
//input rd_status_in, // 1: RD is used as input
|
38 |
|
|
input mask_status_in, // 1: mask register used
|
39 |
|
|
input mask_alternative_in, // mask register and fallback register used for alternative purposes
|
40 |
|
|
input [1:0] num_operands_in, // number of source operands
|
41 |
|
|
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
42 |
|
|
input [1:0] immediate_field_in, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
43 |
|
|
input memory_operand_in, // The instruction has a memory operand
|
44 |
|
|
input array_error_in, // Array index exceeds limit
|
45 |
|
|
input options3_in, // IM3 containts option bits
|
46 |
|
|
|
47 |
|
|
// monitor result buses:
|
48 |
|
|
input write_en1, // a result is written to writeport1
|
49 |
|
|
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
|
50 |
|
|
input [`RB1:0] writeport1_in, // result bus 1
|
51 |
|
|
input write_en2, // a result is written to writeport2
|
52 |
|
|
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
|
53 |
|
|
input [`RB1:0] writeport2_in, // result bus 2
|
54 |
|
|
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle
|
55 |
|
|
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle
|
56 |
|
|
|
57 |
|
|
// Register values sampled from result bus in previous stages
|
58 |
|
|
input [`RB:0] operand1_in, // value of first operand
|
59 |
|
|
input [`RB:0] operand2_in, // value of second operand
|
60 |
|
|
input [`RB:0] operand3_in, // value of last operand
|
61 |
|
|
input [`MASKSZ:0] regmask_val_in, // value of mask register
|
62 |
|
|
input [`RB1:0] address_in, // address of memory operand
|
63 |
|
|
input [`RB1:0] ram_data_in, // memory operand from data cache
|
64 |
|
|
|
65 |
|
|
output reg valid_out, // An instruction is ready for output to next stage
|
66 |
|
|
output reg [`CODE_ADDR_WIDTH-1:0] instruction_pointer_out, // address of current instruction
|
67 |
|
|
output reg [31:0] instruction_out, // first word of instruction
|
68 |
|
|
output reg stall_predict_out, // predict next stage will stall
|
69 |
|
|
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
|
70 |
|
|
output reg [`RB:0] operand1_out, // value of first operand for 3-op instructions, bit `RB is 0 if valid
|
71 |
|
|
output reg [`RB:0] operand2_out, // value of second operand, bit `RB is 0 if valid
|
72 |
|
|
output reg [`RB:0] operand3_out, // value of last operand, bit `RB is 0 if valid
|
73 |
|
|
output reg [`MASKSZ:0] mask_val_out, // value of mask, bit 32 is 0 if valid
|
74 |
|
|
output reg opr2_from_ram_out, // value of operand 2 comes from data cache
|
75 |
|
|
output reg opr3_from_ram_out, // value of last operand comes from data cache
|
76 |
|
|
output reg vector_out, // this is a vector instruction
|
77 |
|
|
output reg [1:0] category_out, // 00: multiformat, 01: single format, 10: jump
|
78 |
|
|
output reg [1:0] format_out, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
79 |
|
|
output reg [1:0] num_operands_out, // number of source operands
|
80 |
|
|
output reg [1:0] result_type_out, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
81 |
|
|
output reg opr1_used_out, // opr1_val_out is needed
|
82 |
|
|
output reg opr2_used_out, // opr2_val_out is needed
|
83 |
|
|
output reg opr3_used_out, // opr3_val_out is needed
|
84 |
|
|
output reg regmask_used_out, // regmask_val_out is needed
|
85 |
|
|
output reg mask_alternative_out,// mask register and fallback register used for alternative purposes
|
86 |
|
|
output reg [3:0] exe_unit_out, // each bit enables a particular execution unit:
|
87 |
|
|
// 1: ALU, 10: MUL, 100: DIV, 1000: IN/OUT
|
88 |
|
|
output reg [6:0] opx_out, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
89 |
|
|
output reg [5:0] opj_out, // operation ID for conditional jump instructions
|
90 |
|
|
output reg [2:0] ot_out, // operand type
|
91 |
|
|
output reg [5:0] option_bits_out, // option bits from IM3 or mask
|
92 |
|
|
output reg [15:0] im2_bits_out, // constant bits from IM2 as extra operand
|
93 |
|
|
output reg trap_out, // trap instruction detected
|
94 |
|
|
output reg array_error_out, // array index out of bounds
|
95 |
|
|
output reg read_address_error_out, // invalid read memory address
|
96 |
|
|
output reg write_address_error_out, // invalid write memory address
|
97 |
|
|
output reg misaligned_address_error_out, // misaligned read/write memory address
|
98 |
|
|
output reg [31:0] debug_out // output for debugging
|
99 |
|
|
);
|
100 |
|
|
|
101 |
|
|
// instruction components
|
102 |
|
|
logic [1:0] il; // instruction length
|
103 |
|
|
logic [2:0] mode; // instruction mode
|
104 |
|
|
logic [2:0] mode2; // mode2 in format E
|
105 |
|
|
logic M; // M bit
|
106 |
|
|
logic [2:0] otype; // operand type in instruction
|
107 |
|
|
logic [5:0] op1; // OP1 in instruction
|
108 |
|
|
logic [1:0] op2; // OP2 in instruction
|
109 |
|
|
logic is_addr_instr; // this is an address instruction
|
110 |
|
|
logic [5:0] option_bits; // option bits
|
111 |
|
|
logic [15:0] im2_bits; // constant bits from IM2 as extra operand
|
112 |
|
|
logic [1:0] last_operand; // 0: last operand is a register,
|
113 |
|
|
// 1: last operand i an immediate constant
|
114 |
|
|
// 2: last operand is memory
|
115 |
|
|
// 3: both memory and immediate operands
|
116 |
|
|
logic half_precision; // half precision float
|
117 |
|
|
logic swap_operands; // swap last two operands
|
118 |
|
|
logic [3:0] exe_unit;
|
119 |
|
|
|
120 |
|
|
// operand values. Extra bit is 1 if not found
|
121 |
|
|
logic [`RB:0] opr1_val; // first operand if 3 operands
|
122 |
|
|
logic [`RB:0] opr2_val; // first operand if 2 operands, second operand if 3 operands
|
123 |
|
|
logic [`RB:0] opr3_val; // last operand
|
124 |
|
|
logic [`MASKSZ:0] regmask_val; // value of mask register, bit 32 indicates missing
|
125 |
|
|
logic opr2_from_ram; // value of operand 2 comes from data ram
|
126 |
|
|
logic opr3_from_ram; // value of last operand comes from data ram
|
127 |
|
|
logic opr1_used; // operand 1 is used
|
128 |
|
|
logic opr2_used; // operand 2 is used
|
129 |
|
|
logic opr3_used; // operand 3 is used
|
130 |
|
|
logic mask_off; // mask is zero
|
131 |
|
|
logic stall_predict; // predict that alu will stall in next clock cycle
|
132 |
|
|
logic read_address_error; // invalid read memory address
|
133 |
|
|
logic write_address_error; // invalid write memory address
|
134 |
|
|
logic misaligned_address_error; // misaligned read/write memory address
|
135 |
|
|
logic [31:0] jump_offset; // relative jump offset
|
136 |
|
|
|
137 |
|
|
// converted operation id
|
138 |
|
|
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
139 |
|
|
logic [5:0] opj; // operation ID for conditional jump instructions
|
140 |
|
|
|
141 |
|
|
// temporary storage of register values if found during stall. High bit is zero if valid
|
142 |
|
|
reg [`RB:0] opr1_val_temp; // value of first operand, bit `RB indicates missing
|
143 |
|
|
reg [`RB:0] opr2_val_temp; // value of second operand, bit `RB indicates missing
|
144 |
|
|
reg [`RB:0] opr3_val_temp; // value of last operand, bit `RB indicates missing
|
145 |
|
|
reg [`MASKSZ:0] regmask_val_temp; // value of mask register, bit 32 indicates missing
|
146 |
|
|
reg last_stall; // was stalled in last clock cycle. May obtain register values from the temporary registers
|
147 |
|
|
reg last_valid; // input was valid in last clock cycle. May obtain memory input
|
148 |
|
|
|
149 |
|
|
always_comb begin
|
150 |
|
|
il = instruction_in[`IL]; // instruction length
|
151 |
|
|
mode = instruction_in[`MODE]; // format mode
|
152 |
|
|
mode2 = instruction_in[`MODE2]; // format mode2
|
153 |
|
|
M = instruction_in[`M]; // M bit
|
154 |
|
|
op1 = instruction_in[`OP1]; // op1 operation
|
155 |
|
|
op2 = instruction_in[`OP2]; // op2 operation
|
156 |
|
|
option_bits = 0; // option bits from IM3 etc.
|
157 |
|
|
opr1_used = 0; // operand 1 used
|
158 |
|
|
opr2_used = 0; // operand 2 used
|
159 |
|
|
opr3_used = 0; // operand 3 used
|
160 |
|
|
half_precision = 0; // float16. not implemented yet
|
161 |
|
|
swap_operands = 0; // swap operands 2 and 3
|
162 |
|
|
mask_off = 0; // mask known to be zero
|
163 |
|
|
stall_predict = 0; // predict stall in next clock
|
164 |
|
|
read_address_error = 0; // read address out of range
|
165 |
|
|
write_address_error = 0; // write address out of range
|
166 |
|
|
misaligned_address_error = 0; // read or write to misaligned address
|
167 |
|
|
opr2_from_ram = 0; // value of operand 2 comes from data memory
|
168 |
|
|
opr3_from_ram = 0; // value of last operand comes from data memory
|
169 |
|
|
im2_bits = instruction_in[`IM2E]; // IM2 may be used as extra immediate operand
|
170 |
|
|
// look for address instruction in format 2.9A:
|
171 |
|
|
is_addr_instr = (il == 2 && mode == 1 && M && op1 == `II_ADDRESS_29);
|
172 |
|
|
|
173 |
|
|
// Detect operand type
|
174 |
|
|
if (format_in == `FORMAT_C) begin
|
175 |
|
|
otype = 2; // default operand type in format C is int32.
|
176 |
|
|
// Exceptions to format C operand type:
|
177 |
|
|
if (mode == 1) begin // format 1.1C.
|
178 |
|
|
if (op1[0]) otype = 3; // optype is int64 when op1 is odd
|
179 |
|
|
end
|
180 |
|
|
if (mode == 4) begin // format 1.4C.
|
181 |
|
|
if (op1 < 8) begin
|
182 |
|
|
otype = 1; // optype is int16 when op1 < 8
|
183 |
|
|
end else if (op1 < 32) begin
|
184 |
|
|
otype = 2 | op1[0]; // optype is int32 for even op1, int64 for odd op1
|
185 |
|
|
end else if (op1 < `II_ADD_H14) begin
|
186 |
|
|
otype = 5 + op1[0]; // optype is float32 for even op1, float64 for odd op1
|
187 |
|
|
end else begin
|
188 |
|
|
otype = 1; // 16 bits or float16
|
189 |
|
|
half_precision = 1; // half precision single format instructions
|
190 |
|
|
end
|
191 |
|
|
end
|
192 |
|
|
if (mode == 7) begin // format 1.7C
|
193 |
|
|
if ((op1 & -2) == `IJ_SUB_MAXLEN_JPOS) otype = 3; // sub_maxlen/jump instruction has int64
|
194 |
|
|
end
|
195 |
|
|
end else if (vector_in) begin
|
196 |
|
|
otype = instruction_in[`OT];
|
197 |
|
|
end else begin
|
198 |
|
|
otype = instruction_in[`OT] & 3'b011;
|
199 |
|
|
end
|
200 |
|
|
|
201 |
|
|
/*
|
202 |
|
|
// detect if half precision
|
203 |
|
|
if (category_in == `CAT_MULTI && op1 >= `II_ADD_FLOAT16 && op1 <= `II_MUL_ADD_FLOAT16)
|
204 |
|
|
half_precision = 1; // half precision multiformat instructions
|
205 |
|
|
if (category_in == `CAT_SINGLE && il == 1 && mode == 4 && op1 >= `II_ADD_H14 && op1 <= `II_MUL_H14)
|
206 |
|
|
half_precision = 1; // half precision single format instructions
|
207 |
|
|
*/
|
208 |
|
|
// detect if last two operands should be swapped
|
209 |
|
|
if (category_in == `CAT_MULTI && (op1 == `II_SUB_REV || op1 == `II_DIV_REV || op1 == `II_MUL_ADD2))
|
210 |
|
|
swap_operands = 1;
|
211 |
|
|
|
212 |
|
|
// look for register values in result buses
|
213 |
|
|
if (last_stall && opr1_val_temp[`RB] == 0) opr1_val = opr1_val_temp; // obtained during stall
|
214 |
|
|
else if (operand1_in[`RB] == 1 && write_en1 && operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) opr1_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
215 |
|
|
else if (operand1_in[`RB] == 1 && write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) opr1_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
216 |
|
|
else opr1_val = operand1_in;
|
217 |
|
|
|
218 |
|
|
if (last_stall && opr2_val_temp[`RB] == 0) opr2_val = opr2_val_temp; // obtained during stall
|
219 |
|
|
else if (operand2_in[`RB] == 1 && write_en1 && operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) opr2_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
220 |
|
|
else if (operand2_in[`RB] == 1 && write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) opr2_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
221 |
|
|
else opr2_val = operand2_in;
|
222 |
|
|
|
223 |
|
|
if (operand3_in[`RB] == 1 && write_en1 && operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) opr3_val = {1'b0, writeport1_in}; // obtained from result bus 1
|
224 |
|
|
else if (operand3_in[`RB] == 1 && write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) opr3_val = {1'b0, writeport2_in}; // obtained from result bus 2
|
225 |
|
|
else if (last_stall && opr3_val_temp[`RB] == 0) opr3_val = opr3_val_temp; // obtained during stall
|
226 |
|
|
else opr3_val = operand3_in;
|
227 |
|
|
|
228 |
|
|
if (last_stall && regmask_val_temp[`MASKSZ] == 0) regmask_val = regmask_val_temp; // obtained during stall
|
229 |
|
|
if (regmask_val_in[`MASKSZ] == 1 && write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) regmask_val = {1'b0, writeport1_in[`MASKSZ-1:0]}; // obtained from result bus 1
|
230 |
|
|
else if (regmask_val_in[`MASKSZ] == 1 && write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) regmask_val = {1'b0, writeport2_in[`MASKSZ-1:0]}; // obtained from result bus 2
|
231 |
|
|
else regmask_val = regmask_val_in;
|
232 |
|
|
|
233 |
|
|
// look for memory operand
|
234 |
|
|
if (memory_operand_in) begin
|
235 |
|
|
if (last_stall && last_valid) begin
|
236 |
|
|
// value from data memory is available early because of stall
|
237 |
|
|
if (immediate_field_in != `IMMED_NONE) begin
|
238 |
|
|
opr2_val = ram_data_in;
|
239 |
|
|
end else begin
|
240 |
|
|
opr3_val = ram_data_in;
|
241 |
|
|
end
|
242 |
|
|
end else begin
|
243 |
|
|
if (immediate_field_in != `IMMED_NONE) begin
|
244 |
|
|
opr2_from_ram = 1;
|
245 |
|
|
end else begin
|
246 |
|
|
opr3_from_ram = 1;
|
247 |
|
|
end
|
248 |
|
|
end
|
249 |
|
|
end
|
250 |
|
|
|
251 |
|
|
// check if memory operand is valid
|
252 |
|
|
// (this check is not placed in the address generator stage because of timing constraints)
|
253 |
|
|
if (valid_in && memory_operand_in && !is_addr_instr) begin
|
254 |
|
|
|
255 |
|
|
// invalid read memory address:
|
256 |
|
|
read_address_error = result_type_in != `RESULT_MEM &&
|
257 |
|
|
address_in >= 2**`DATA_ADDR_WIDTH; // can read from data only
|
258 |
|
|
|
259 |
|
|
// Invalid write memory address:
|
260 |
|
|
// To do: fix this when write access to code memory is removed.
|
261 |
|
|
// Note: The calculation of write_address_error is not done in the address generator
|
262 |
|
|
// stage because of critical timing. It is too late to disable illegal writes in this
|
263 |
|
|
// stage. We must find a solution to this in future versions with memory protection.
|
264 |
|
|
// For now, we will be satisfied with program halt.
|
265 |
|
|
write_address_error = result_type_in == `RESULT_MEM &&
|
266 |
|
|
address_in >= 2**`COMMON_ADDR_WIDTH; // can write to data or code
|
267 |
|
|
|
268 |
|
|
// misaligned read/write memory address:
|
269 |
|
|
case (otype)
|
270 |
|
|
0: // int8
|
271 |
|
|
misaligned_address_error = 0;
|
272 |
|
|
1: // int16
|
273 |
|
|
misaligned_address_error = address_in[0];
|
274 |
|
|
2, 5: // int32, float32
|
275 |
|
|
misaligned_address_error = address_in[1:0] != 0;
|
276 |
|
|
3, 6: // int64, float64
|
277 |
|
|
misaligned_address_error = address_in[2:0] != 0;
|
278 |
|
|
4, 7: // int128, float128
|
279 |
|
|
misaligned_address_error = address_in[3:0] != 0;
|
280 |
|
|
endcase
|
281 |
|
|
end
|
282 |
|
|
|
283 |
|
|
// find jump offset
|
284 |
|
|
jump_offset = 0;
|
285 |
|
|
|
286 |
|
|
if (category_in == `CAT_JUMP) begin
|
287 |
|
|
if (il == 1 && mode == 6) begin
|
288 |
|
|
// 1.6 B: Short jump with two register operands and 8 bit offset (IM1).
|
289 |
|
|
jump_offset = {{24{instruction_in[`IM1S]}},instruction_in[`IM1]}; // sign extend
|
290 |
|
|
|
291 |
|
|
end else if (il == 1 && mode == 7) begin
|
292 |
|
|
// 1.7 C: Short jump with one register operand, an 8-bit immediate constant (IM2) and 8 bit offset (IM1),
|
293 |
|
|
jump_offset = {{24{instruction_in[`IM1S]}},instruction_in[`IM1]}; // sign extend
|
294 |
|
|
|
295 |
|
|
end else if (il == 2 && mode == 5) begin
|
296 |
|
|
if (op1 == 0) begin
|
297 |
|
|
// 2.5.0A: Double size jump with three register operands and 24 bit jump offset
|
298 |
|
|
jump_offset = {{8{instruction_in[55]}},instruction_in[55:32]}; // sign extend 24 bit offset
|
299 |
|
|
|
300 |
|
|
end else if (op1 == 1) begin
|
301 |
|
|
// format 2.5.1B: jump with one register, one 16 bit operand, and 16 bit offset
|
302 |
|
|
jump_offset = {{16{instruction_in[63]}},instruction_in[63:48]}; // sign extend 16 bit offset
|
303 |
|
|
|
304 |
|
|
end else if (op1 == 2) begin
|
305 |
|
|
// format 2.5.2B: jump with one register, a memory operand with 16 bit address, and 16 bit offset
|
306 |
|
|
jump_offset = {{16{instruction_in[63]}},instruction_in[63:48]}; // sign extend 16 bit offset
|
307 |
|
|
|
308 |
|
|
end else if (op1 == 4) begin
|
309 |
|
|
// format 2.5.4C: jump with one register, one 8 bit operand, and 32 bit offset
|
310 |
|
|
jump_offset = instruction_in[63:32]; // 32 bit offset
|
311 |
|
|
|
312 |
|
|
end else if (op1 == 5) begin
|
313 |
|
|
// format 2.5.5C: jump with one register, one 32 bit operand, and 8 bit offset
|
314 |
|
|
jump_offset = {{24{instruction_in[15]}},instruction_in[15:8]}; // sign extend 8 bit offset
|
315 |
|
|
|
316 |
|
|
end
|
317 |
|
|
|
318 |
|
|
end else if (il == 3 && mode == 1) begin
|
319 |
|
|
if (op1 == 0) begin
|
320 |
|
|
// 3.1.0A: Triple size jump with two register operands and 24 bit jump offset and 32 bit address
|
321 |
|
|
jump_offset = {{8{instruction_in[55]}},instruction_in[55:32]}; // sign extend 24 bit offset
|
322 |
|
|
end else if (op1 == 1) begin
|
323 |
|
|
// 3.1.1B: Jump with two registers, a 32 bit operand, and 32 bit jump offset
|
324 |
|
|
jump_offset = instruction_in[63:32]; // 32 bit jump offset
|
325 |
|
|
end
|
326 |
|
|
end
|
327 |
|
|
end
|
328 |
|
|
|
329 |
|
|
// get condition code for jump instructions
|
330 |
|
|
opj = 0;
|
331 |
|
|
if (category_in == `CAT_JUMP) begin
|
332 |
|
|
if (il == 1) begin
|
333 |
|
|
if (mode == 7 && op1 <= `II_UNCOND_JUMP) opj = 0; // unconditional jump or call handled by fetch unit
|
334 |
|
|
else if (op1 == `II_RETURN) opj = 0; // return handled by fetch unit
|
335 |
|
|
else opj = op1;
|
336 |
|
|
end else if (il == 2 && mode == 5 && op1 == 0) begin
|
337 |
|
|
opj = instruction_in[61:56]; // format 2.5.0A: opj in upper part of IM2
|
338 |
|
|
end else if (il == 2 && mode == 5 && op1 == 7) begin // system call
|
339 |
|
|
opj = `IJ_SYSCALL;
|
340 |
|
|
end else if (il == 3 && mode == 1 && op1 == 0) begin
|
341 |
|
|
opj = instruction_in[61:56]; // format 3.1.0A: opj in upper part of IM2
|
342 |
|
|
end else if (op1 < 8) begin // other jump formats have opj in IM1
|
343 |
|
|
opj = instruction_in[5:0];
|
344 |
|
|
end else begin
|
345 |
|
|
opj = 56; // unknown
|
346 |
|
|
end
|
347 |
|
|
end
|
348 |
|
|
|
349 |
|
|
// get option bits
|
350 |
|
|
if (options3_in && format_in == `FORMAT_E) begin
|
351 |
|
|
option_bits = instruction_in[`IM3E]; // option bits in IM3
|
352 |
|
|
end else if (category_in == `CAT_JUMP) begin
|
353 |
|
|
// imitate compare instruction option bits for compare/jump
|
354 |
|
|
case (opj[5:1])
|
355 |
|
|
// ignore bit 0 of opj here: it is inserted in the alu stage
|
356 |
|
|
`IJ_COMPARE_JEQ>>1: option_bits = 4'b0000;
|
357 |
|
|
`IJ_COMPARE_JSB>>1: option_bits = 4'b0010;
|
358 |
|
|
`IJ_COMPARE_JSA>>1: option_bits = 4'b0100;
|
359 |
|
|
`IJ_COMPARE_JUB>>1: option_bits = 4'b1010;
|
360 |
|
|
`IJ_COMPARE_JUA>>1: option_bits = 4'b1100;
|
361 |
|
|
endcase
|
362 |
|
|
end else if (category_in == `CAT_MULTI && op1 >= `II_MIN && op1 <= `II_MAX_U) begin
|
363 |
|
|
// use compare unit to implement max and min
|
364 |
|
|
case (op1[1:0])
|
365 |
|
|
0: option_bits = 4'b0010; // min, signed
|
366 |
|
|
1: option_bits = 4'b1010; // min, unsigned
|
367 |
|
|
2: option_bits = 4'b0100; // max, signed
|
368 |
|
|
3: option_bits = 4'b1100; // max, unsigned
|
369 |
|
|
endcase
|
370 |
|
|
end
|
371 |
|
|
|
372 |
|
|
// convert op1 to opx: operation id in execution unit
|
373 |
|
|
opx = `IX_UNDEF; // default is undefined
|
374 |
|
|
if (category_in == `CAT_MULTI) begin
|
375 |
|
|
opx = op1; // mostly same id for multiformat instructions
|
376 |
|
|
if (op1 == `II_SUB_REV) opx = `II_SUB; // operands have been swapped
|
377 |
|
|
if (op1 == `II_DIV_REV) opx = `II_DIV; // operands have been swapped
|
378 |
|
|
|
379 |
|
|
end else if (category_in == `CAT_JUMP) begin
|
380 |
|
|
// convert jump instructions to corresponding general ALU instructions
|
381 |
|
|
if (opj <= `IJ_SUB_JBORROW + 1) opx = `II_SUB;
|
382 |
|
|
else if (opj <= `IJ_AND_JZ + 1) opx = `II_AND;
|
383 |
|
|
else if (opj <= `IJ_OR_JZ + 1) opx = `II_OR;
|
384 |
|
|
else if (opj <= `IJ_XOR_JZ + 1) opx = `II_XOR;
|
385 |
|
|
else if (opj <= `IJ_ADD_JCARRY + 1) opx = `II_ADD;
|
386 |
|
|
else if (opj <= `IJ_AND_JZ + 1) opx = `II_AND;
|
387 |
|
|
else if (opj <= `IJ_TEST_BIT_JTRUE + 1) opx = `II_TEST_BIT;
|
388 |
|
|
else if (opj <= `IJ_TEST_BITS_AND + 1) opx = `II_TEST_BITS_AND;
|
389 |
|
|
else if (opj <= `IJ_TEST_BITS_OR + 1) opx = `II_TEST_BITS_OR;
|
390 |
|
|
else if (opj <= `IJ_COMPARE_JUA + 1) opx = `II_COMPARE;
|
391 |
|
|
else if ((opj & ~1) == `II_INDIRECT_JUMP) begin // 58
|
392 |
|
|
if ((il == 1 && mode == 6) || (il == 2 && mode == 5 && op1[2:0] == 2))
|
393 |
|
|
opx = `IX_INDIRECT_JUMP; // indirect jump w memory operand, format 1.6 and 2.5.2
|
394 |
|
|
else opx = `IX_UNCOND_JUMP; // unconditional jump format 2.5.4 and 3.1.1
|
395 |
|
|
end else if ((opj & ~1) == `II_JUMP_RELATIVE) begin // 60
|
396 |
|
|
if (il == 1 && mode == 7) opx = `IX_INDIRECT_JUMP;
|
397 |
|
|
else opx = `IX_RELATIVE_JUMP;
|
398 |
|
|
end
|
399 |
|
|
else opx = 0;
|
400 |
|
|
|
401 |
|
|
end else if (il == 1 && mode == 1) begin
|
402 |
|
|
// format 1.1 C. single format instructions with 16 bit constant
|
403 |
|
|
case (op1[5:1]) // even and odd op1 values treated together, they differ only by operand type
|
404 |
|
|
`II_ADD11 >> 1: opx = `II_ADD;
|
405 |
|
|
`II_MUL11 >> 1: opx = `II_MUL;
|
406 |
|
|
`II_ADDSHIFT16_11 >> 1: opx = `II_ADD;
|
407 |
|
|
`II_SHIFT_ADD_11 >> 1: opx = `II_ADD;
|
408 |
|
|
`II_SHIFT_AND_11 >> 1: opx = `II_AND;
|
409 |
|
|
`II_SHIFT_OR_11 >> 1: opx = `II_OR;
|
410 |
|
|
`II_SHIFT_XOR_11 >> 1: opx = `II_XOR;
|
411 |
|
|
default: opx = `IX_UNDEF;
|
412 |
|
|
endcase
|
413 |
|
|
if (op1 <= `II_MOVE11_LAST) opx = `II_MOVE; // five different move instructions
|
414 |
|
|
|
415 |
|
|
end else if (il == 1 && mode == 0 && M) begin
|
416 |
|
|
// format 1.8 B. single format instructions with 8 bit constant
|
417 |
|
|
case (op1)
|
418 |
|
|
`II_SHIFT_ABS18: opx = `IX_ABS;
|
419 |
|
|
`II_BITSCAN_18: opx = `IX_BIT_SCAN;
|
420 |
|
|
`II_ROUNDP2_18: opx = `IX_ROUNDP2;
|
421 |
|
|
`II_POPCOUNT_18: opx = `IX_POPCOUNT;
|
422 |
|
|
`II_READ_SPEC18: opx = `IX_READ_SPEC;
|
423 |
|
|
`II_WRITE_SPEC18: opx = `IX_WRITE_SPEC;
|
424 |
|
|
`II_READ_CAP18: opx = `IX_READ_CAPABILITIES;
|
425 |
|
|
`II_WRITE_CAP18: opx = `IX_WRITE_CAPABILITIES;
|
426 |
|
|
`II_READ_PERF18: opx = `IX_READ_PERF;
|
427 |
|
|
`II_READ_PERFS18: opx = `IX_READ_PERFS;
|
428 |
|
|
`II_READ_SYS18: opx = `IX_READ_SYS;
|
429 |
|
|
`II_WRITE_SYS18: opx = `IX_WRITE_SYS;
|
430 |
|
|
`II_INPUT_18: opx = `IX_INPUT;
|
431 |
|
|
`II_OUTPUT_18: opx = `IX_OUTPUT;
|
432 |
|
|
endcase
|
433 |
|
|
|
434 |
|
|
end else if (il == 2 && (mode == 0 && !M || mode == 2) && mode2 == 6) begin // format 2.0.6 and 2.2.6
|
435 |
|
|
if (op1 == `II_TRUTH_TAB3 && op2 == `II2_TRUTH_TAB3) opx = `IX_TRUTH_TAB3;
|
436 |
|
|
|
437 |
|
|
end else if (il == 2 && (mode == 0 && !M || mode == 2) && mode2 == 7) begin
|
438 |
|
|
// format 2.0.7 and 2.2.7 single format
|
439 |
|
|
if (op1 == `II_MOVE_BITS && op2 == `II2_MOVE_BITS) begin // move_bits instruction.
|
440 |
|
|
// Do calculations on constant operands here to save critical time in the alu stage
|
441 |
|
|
logic [5:0] move_from; // bit position to move from
|
442 |
|
|
logic [5:0] move_to; // bit position to move to
|
443 |
|
|
logic [5:0] num_bits; // number of bits to move
|
444 |
|
|
logic [6:0] end_to; // end of destination bit field
|
445 |
|
|
move_from = instruction_in[37:32]; // low part of im2
|
446 |
|
|
move_to = instruction_in[45:40]; // high part of im2
|
447 |
|
|
num_bits = instruction_in[`IM3E]; // number of bits to move
|
448 |
|
|
if (move_from > move_to) begin // IX_MOVE_BITS2 if shifting right
|
449 |
|
|
opx = `IX_MOVE_BITS2;
|
450 |
|
|
end else begin
|
451 |
|
|
opx = `IX_MOVE_BITS1; // IX_MOVE_BITS1 if shifting left
|
452 |
|
|
end
|
453 |
|
|
end_to = {1'b0,move_to} + num_bits - 1;// end of destination bit field.
|
454 |
|
|
if (end_to[6]) option_bits[5:0] = 6'b111111; // saturate on overflow
|
455 |
|
|
else option_bits = end_to[5:0];
|
456 |
|
|
// begin of destination bit field is in im2_bits[13:8]
|
457 |
|
|
// end of destination bit field is in option_bits
|
458 |
|
|
opr3_val[7:0] = move_from - move_to; // shift right count, or -(shift left count)
|
459 |
|
|
end
|
460 |
|
|
|
461 |
|
|
end else if (il == 2 && mode == 5) begin
|
462 |
|
|
// format 2.5 B. single format instructions with 32 bit constant
|
463 |
|
|
if (op1 == `II_STOREI) opx = `II_STORE;
|
464 |
|
|
|
465 |
|
|
end else if (il == 2 && mode == 1 && M) begin
|
466 |
|
|
// format 2.9A. single format instructions with 32 bit constant
|
467 |
|
|
case (op1)
|
468 |
|
|
`II_MOVE_HI_29: opx = `II_MOVE; // shifted left by 32 here. just store result
|
469 |
|
|
`II_INSERT_HI_29: opx = `IX_INSERT_HI;
|
470 |
|
|
`II_ADDU_29: opx = `II_ADD;
|
471 |
|
|
`II_SUBU_29: opx = `II_SUB;
|
472 |
|
|
`II_ADD_HI_29: opx = `II_ADD;
|
473 |
|
|
`II_AND_HI_29: opx = `II_SUB;
|
474 |
|
|
`II_OR_HI_29: opx = `II_OR;
|
475 |
|
|
`II_XOR_HI_29: opx = `II_XOR;
|
476 |
|
|
`II_ADDRESS_29: opx = `II_MOVE; // address instruction. resolved in this state. just store result
|
477 |
|
|
endcase
|
478 |
|
|
end
|
479 |
|
|
|
480 |
|
|
// select execution unit
|
481 |
|
|
if (opx == `IX_INPUT || opx == `IX_OUTPUT || (opx >= `IX_READ_CAPABILITIES && opx <= `IX_WRITE_SYS+1)) begin
|
482 |
|
|
exe_unit = 4'b1000; // input/output unit. also handles system registers
|
483 |
|
|
end else if (opx >= `II_DIV && opx <= `II_REM_U) begin
|
484 |
|
|
exe_unit = 4'b0100; // division unit
|
485 |
|
|
end else if ((opx >= `II_MUL && opx <= `II_MUL_HI_U) || opx == `II_MUL_ADD || opx == `II_MUL_ADD2) begin
|
486 |
|
|
exe_unit = 4'b0010; // multiplication unit
|
487 |
|
|
end else begin
|
488 |
|
|
exe_unit = 4'b0001; // general ALU unit
|
489 |
|
|
end
|
490 |
|
|
|
491 |
|
|
// find which operands are used
|
492 |
|
|
mask_off = result_type_in != `RESULT_MEM && mask_status_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in && !vector_in;
|
493 |
|
|
|
494 |
|
|
if (mask_status_in) begin
|
495 |
|
|
if (regmask_val[`MASKSZ] == 0) begin
|
496 |
|
|
// a mask is used and the value is already available
|
497 |
|
|
if (regmask_val[0]) begin
|
498 |
|
|
// mask is 1. operands are needed. fallback not needed
|
499 |
|
|
if (num_operands_in > 0) opr3_used = 1;
|
500 |
|
|
if (num_operands_in > 1) opr2_used = 1;
|
501 |
|
|
if (num_operands_in > 2) opr1_used = 1;
|
502 |
|
|
end else begin
|
503 |
|
|
// mask is 0. operands are not needed. fallback is needed
|
504 |
|
|
opr1_used = 1;
|
505 |
|
|
end
|
506 |
|
|
end else begin
|
507 |
|
|
// a mask is used. The value is not available yet. operands and fallback are needed
|
508 |
|
|
if (num_operands_in > 0) opr3_used = 1;
|
509 |
|
|
if (num_operands_in > 1) opr2_used = 1;
|
510 |
|
|
opr1_used = 1;
|
511 |
|
|
end
|
512 |
|
|
end else begin
|
513 |
|
|
// mask not used. fallback not needed
|
514 |
|
|
if (num_operands_in > 0) opr3_used = 1;
|
515 |
|
|
if (num_operands_in > 1) opr2_used = 1;
|
516 |
|
|
if (num_operands_in > 2) opr1_used = 1;
|
517 |
|
|
end
|
518 |
|
|
|
519 |
|
|
if (mask_alternative_in) opr1_used = 1; // alternative use of fallback register
|
520 |
|
|
|
521 |
|
|
// predict stall in ALU
|
522 |
|
|
stall_predict =
|
523 |
|
|
(opr1_used && opr1_val[`RB] && predict_tag1_in != opr1_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr1_val[`TAG_WIDTH-1:0]) ||
|
524 |
|
|
(opr2_used && opr2_val[`RB] && predict_tag1_in != opr2_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr2_val[`TAG_WIDTH-1:0] && !mask_off) ||
|
525 |
|
|
(opr3_used && opr3_val[`RB] && predict_tag1_in != opr3_val[`TAG_WIDTH-1:0] && predict_tag2_in != opr3_val[`TAG_WIDTH-1:0] && !mask_off) ||
|
526 |
|
|
(mask_status_in && regmask_val[`MASKSZ] && predict_tag1_in != regmask_val[`TAG_WIDTH-1:0] && predict_tag2_in != regmask_val[`TAG_WIDTH-1:0]);
|
527 |
|
|
end
|
528 |
|
|
|
529 |
|
|
// save values from result bus during stall
|
530 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
531 |
|
|
if (stall_in) begin
|
532 |
|
|
opr1_val_temp <= opr1_val; // temporary save during stall
|
533 |
|
|
opr2_val_temp <= opr2_val; // temporary save during stall
|
534 |
|
|
opr3_val_temp <= opr3_val; // temporary save during stall
|
535 |
|
|
regmask_val_temp <= regmask_val; // temporary save during stall
|
536 |
|
|
end else begin
|
537 |
|
|
opr1_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
538 |
|
|
opr2_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
539 |
|
|
opr3_val_temp <= {1'b1,`RB'b0}; // reset when not stalled
|
540 |
|
|
regmask_val_temp <= {1'b1,`MASKSZ'b0}; // reset when not stalled
|
541 |
|
|
end
|
542 |
|
|
end
|
543 |
|
|
|
544 |
|
|
// output operands
|
545 |
|
|
always_ff @(posedge clock) if (clock_enable && !stall_in) begin
|
546 |
|
|
if (!swap_operands) begin // normal operand order
|
547 |
|
|
|
548 |
|
|
// jump instructions
|
549 |
|
|
if (category_in == `CAT_JUMP) begin
|
550 |
|
|
if (opj < `IJ_JUMP_INDIRECT_MEM || opx == `IX_UNCOND_JUMP) begin
|
551 |
|
|
// calculate jump target = ip + il + offset (il cannot be 0 for jump instructions)
|
552 |
|
|
operand1_out[`RB1:0] <= instruction_pointer_in + {{32{jump_offset[31]}},jump_offset} + il;
|
553 |
|
|
operand1_out[`RB] <= 0; // indicate not missing
|
554 |
|
|
end else begin
|
555 |
|
|
// target address not known yet. Make sure we don't accidentally assume no jump
|
556 |
|
|
operand1_out <= ~(`RB'b0); // -1 for unknown target address
|
557 |
|
|
end
|
558 |
|
|
end else begin
|
559 |
|
|
operand1_out <= opr1_val;
|
560 |
|
|
end
|
561 |
|
|
operand2_out <= opr2_val;
|
562 |
|
|
operand3_out <= opr3_val;
|
563 |
|
|
opr2_from_ram_out <= opr2_from_ram; // value of operand 2 comes from data cache
|
564 |
|
|
opr3_from_ram_out <= opr3_from_ram; // value of last operand comes from data cache
|
565 |
|
|
opr1_used_out <= opr1_used;
|
566 |
|
|
opr2_used_out <= opr2_used;
|
567 |
|
|
opr3_used_out <= opr3_used;
|
568 |
|
|
// disable ram input if error (removed because of critical timing):
|
569 |
|
|
/*
|
570 |
|
|
if (array_error_in || read_address_error) begin
|
571 |
|
|
opr2_from_ram_out <= 0;
|
572 |
|
|
opr3_from_ram_out <= 0;
|
573 |
|
|
if (opr2_from_ram) operand2_out <= 0;
|
574 |
|
|
if (opr3_from_ram) operand3_out <= 0;
|
575 |
|
|
end*/
|
576 |
|
|
|
577 |
|
|
end else begin // swap last two operands
|
578 |
|
|
operand1_out <= opr1_val;
|
579 |
|
|
operand2_out <= opr3_val;
|
580 |
|
|
operand3_out <= opr2_val;
|
581 |
|
|
opr2_from_ram_out <= opr3_from_ram; // value of operand 2 comes from data cache
|
582 |
|
|
opr3_from_ram_out <= opr2_from_ram; // value of last operand comes from data cache
|
583 |
|
|
opr1_used_out <= opr1_used;
|
584 |
|
|
opr2_used_out <= opr3_used;
|
585 |
|
|
opr3_used_out <= opr2_used;
|
586 |
|
|
// disable ram input if error (removed because of critical timing):
|
587 |
|
|
/*
|
588 |
|
|
if (array_error_in || read_address_error) begin
|
589 |
|
|
opr2_from_ram_out <= 0;
|
590 |
|
|
opr3_from_ram_out <= 0;
|
591 |
|
|
if (opr2_from_ram) operand3_out <= 0;
|
592 |
|
|
if (opr3_from_ram) operand2_out <= 0;
|
593 |
|
|
end*/
|
594 |
|
|
end
|
595 |
|
|
|
596 |
|
|
mask_val_out <= regmask_val;
|
597 |
|
|
|
598 |
|
|
// other outputs
|
599 |
|
|
regmask_used_out <= mask_status_in;
|
600 |
|
|
instruction_pointer_out <= instruction_pointer_in; // address of current instruction
|
601 |
|
|
instruction_out <= instruction_in[31:0];
|
602 |
|
|
tag_val_out <= tag_val_in; // instruction tag value
|
603 |
|
|
vector_out <= vector_in; // this is a vector instruction
|
604 |
|
|
mask_alternative_out <= mask_alternative_in;
|
605 |
|
|
opx_out <= opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
606 |
|
|
opj_out <= opj; // operation ID for conditional jump instructions
|
607 |
|
|
ot_out <= otype; // operand type
|
608 |
|
|
option_bits_out <= option_bits; // option bits in format E
|
609 |
|
|
im2_bits_out <= im2_bits; // constant bits from IM2 as extra operand
|
610 |
|
|
|
611 |
|
|
result_type_out <= result_type_in; // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
612 |
|
|
num_operands_out <= num_operands_in; // number of source operands
|
613 |
|
|
category_out <= category_in; // 00: multiformat, 01: single format, 10: jump
|
614 |
|
|
format_out <= format_in; // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
615 |
|
|
|
616 |
|
|
// choose which execution unit to use
|
617 |
|
|
exe_unit_out <= exe_unit;
|
618 |
|
|
// detect trap instruction. will enable single step mode in next clock cycle
|
619 |
|
|
trap_out <= (il == 1 && mode == 7 && op1 == `IJ_TRAP && valid_in);
|
620 |
|
|
end
|
621 |
|
|
|
622 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
623 |
|
|
|
624 |
|
|
if (reset) valid_out <= 0;
|
625 |
|
|
else if (!stall_in) valid_out <= valid_in;
|
626 |
|
|
|
627 |
|
|
last_stall <= stall_in & valid_in;
|
628 |
|
|
last_valid <= valid_in;
|
629 |
|
|
array_error_out <= array_error_in & valid_in; // array index out of bounds
|
630 |
|
|
read_address_error_out <= read_address_error & valid_in; // invalid read memory address
|
631 |
|
|
write_address_error_out <= write_address_error & valid_in; // invalid write memory address
|
632 |
|
|
misaligned_address_error_out <= misaligned_address_error & valid_in; // misaligned read/write memory address
|
633 |
|
|
|
634 |
|
|
// predict stall
|
635 |
|
|
if (exe_unit[2] && 0) begin
|
636 |
|
|
stall_predict_out <= valid_in; // To do: stall if div unit busy
|
637 |
|
|
end else begin
|
638 |
|
|
stall_predict_out <= stall_predict && valid_in && !stall_in; // not all operands and units are ready
|
639 |
|
|
end
|
640 |
|
|
|
641 |
|
|
// debug output
|
642 |
|
|
debug_out <= 0;
|
643 |
|
|
debug_out[1:0] <= result_type_in;
|
644 |
|
|
debug_out[5:4] <= num_operands_in;
|
645 |
|
|
debug_out[9:8] <= mask_status_in;
|
646 |
|
|
debug_out[10] <= mask_alternative_in;
|
647 |
|
|
debug_out[11] <= mask_off;
|
648 |
|
|
|
649 |
|
|
debug_out[12] <= regmask_val[0];
|
650 |
|
|
debug_out[15] <= regmask_val[`MASKSZ];
|
651 |
|
|
|
652 |
|
|
debug_out[16] <= opr1_used;
|
653 |
|
|
debug_out[17] <= opr2_used;
|
654 |
|
|
debug_out[18] <= opr3_used;
|
655 |
|
|
debug_out[19] <= swap_operands;
|
656 |
|
|
|
657 |
|
|
debug_out[20] <= stall_predict;
|
658 |
|
|
|
659 |
|
|
debug_out[25:24] <= il;
|
660 |
|
|
|
661 |
|
|
|
662 |
|
|
end
|
663 |
|
|
|
664 |
|
|
endmodule
|