| 1 |
6 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
// Engineer: Agner Fog
|
| 3 |
|
|
//
|
| 4 |
|
|
// Create Date: 2021-06-06
|
| 5 |
|
|
// Last modified: 2021-06-06
|
| 6 |
|
|
// Module Name: mul_div
|
| 7 |
|
|
// Project Name: ForwardCom soft core
|
| 8 |
|
|
// Target Devices: Artix 7
|
| 9 |
|
|
// Tool Versions: Vivado v. 2020.1
|
| 10 |
|
|
// License: CERN-OHL-W v. 2 or later
|
| 11 |
|
|
// Description: Arithmetic-logic unit for multiplication and division
|
| 12 |
|
|
// of general purpose registers.
|
| 13 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
| 14 |
|
|
|
| 15 |
|
|
`include "defines.vh"
|
| 16 |
|
|
|
| 17 |
|
|
module mul_div (
|
| 18 |
|
|
input clock, // system clock (100 MHz)
|
| 19 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
| 20 |
|
|
input reset, // system reset
|
| 21 |
|
|
input valid_in, // data from previous stage ready
|
| 22 |
|
|
input stall_in, // pipeline is stalled
|
| 23 |
|
|
input [31:0] instruction_in, // current instruction, up to 3 words long. Only first word used here
|
| 24 |
|
|
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
|
| 25 |
|
|
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
|
| 26 |
|
|
input mask_alternative_in, // mask register and fallback register used for alternative purposes
|
| 27 |
|
|
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
| 28 |
|
|
input vector_in, // vector registers used
|
| 29 |
|
|
input [6:0] opx_in, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
| 30 |
|
|
input [2:0] ot_in, // operand type
|
| 31 |
|
|
input [5:0] option_bits_in, // option bits from IM3 or mask
|
| 32 |
|
|
|
| 33 |
|
|
// monitor result buses:
|
| 34 |
|
|
input write_en1, // a result is written to writeport1
|
| 35 |
|
|
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
|
| 36 |
|
|
input [`RB1:0] writeport1_in, // result bus 1
|
| 37 |
|
|
input write_en2, // a result is written to writeport2
|
| 38 |
|
|
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
|
| 39 |
|
|
input [`RB1:0] writeport2_in, // result bus 2
|
| 40 |
|
|
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle
|
| 41 |
|
|
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle
|
| 42 |
|
|
|
| 43 |
|
|
// Register values sampled from result bus in previous stages
|
| 44 |
|
|
input [`RB:0] operand1_in, // first register operand or fallback
|
| 45 |
|
|
input [`RB:0] operand2_in, // second register operand RS
|
| 46 |
|
|
input [`RB:0] operand3_in, // last register operand RT
|
| 47 |
|
|
input [`MASKSZ:0] regmask_val_in, // mask register
|
| 48 |
|
|
input [`RB1:0] ram_data_in, // memory operand from data ram
|
| 49 |
|
|
input opr2_from_ram_in, // value of operand 2 comes from data ram
|
| 50 |
|
|
input opr3_from_ram_in, // value of last operand comes from data ram
|
| 51 |
|
|
input opr1_used_in, // operand1_in is needed
|
| 52 |
|
|
input opr2_used_in, // operand2_in is needed
|
| 53 |
|
|
input opr3_used_in, // operand3_in is needed
|
| 54 |
|
|
input regmask_used_in, // regmask_val_in is needed
|
| 55 |
|
|
|
| 56 |
|
|
output reg valid_out, // for debug display: alu is active
|
| 57 |
|
|
output reg register_write_out,
|
| 58 |
|
|
output reg [4:0] register_a_out, // register to write
|
| 59 |
|
|
output reg [`RB1:0] result_out, //
|
| 60 |
|
|
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
|
| 61 |
|
|
output reg stall_out, // alu is waiting for an operand or not ready to receive a new instruction
|
| 62 |
|
|
output reg stall_next_out, // alu will be waiting in next clock cycle
|
| 63 |
|
|
output reg error_out, // unknown instruction
|
| 64 |
|
|
output reg error_parm_out, // wrong parameter for instruction
|
| 65 |
|
|
|
| 66 |
|
|
// outputs for debugger:
|
| 67 |
|
|
output reg [31:0] debug1_out, // debug information
|
| 68 |
|
|
output reg [31:0] debug2_out // temporary debug information
|
| 69 |
|
|
);
|
| 70 |
|
|
|
| 71 |
|
|
logic [`RB1:0] operand1; // first register operand RD or RU. bit `RB is 1 if invalid
|
| 72 |
|
|
logic [`RB1:0] operand2; // second register operand RS. bit `RB is 1 if invalid
|
| 73 |
|
|
logic [`RB1:0] operand3; // last register operand RT. bit `RB is 1 if invalid
|
| 74 |
|
|
logic [`MASKSZ:0] regmask_val; // mask register
|
| 75 |
|
|
logic [1:0] otout; // operand type for output
|
| 76 |
|
|
logic [5:0] msb; // index to most significant bit
|
| 77 |
|
|
logic signbit2, signbit3; // sign bits of three operands
|
| 78 |
|
|
logic [`RB1:0] sbit; // position of sign bit
|
| 79 |
|
|
logic [`RB1:0] result; // result for output
|
| 80 |
|
|
logic [1:0] result_type; // type of result
|
| 81 |
|
|
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
| 82 |
|
|
logic mask_off; // result is masked off
|
| 83 |
|
|
logic stall; // waiting for operands
|
| 84 |
|
|
logic stall_next; // will be waiting for operands in next clock cycle
|
| 85 |
|
|
logic error; // unknown instruction
|
| 86 |
|
|
logic error_parm; // wrong parameter for instruction
|
| 87 |
|
|
|
| 88 |
|
|
// It seems to be more efficient to truncate operands locally by ANDing with sizemask than to
|
| 89 |
|
|
// make separate wires for the truncated operands, because wiring is more expensive than logic:
|
| 90 |
|
|
logic [`RB1:0] sizemask; // mask for operand type
|
| 91 |
|
|
|
| 92 |
|
|
logic [31:0] temp_debug; // temporary debug signals
|
| 93 |
|
|
|
| 94 |
|
|
always_comb begin
|
| 95 |
|
|
// get all inputs
|
| 96 |
|
|
stall = 0;
|
| 97 |
|
|
stall_next = 0;
|
| 98 |
|
|
regmask_val = 0;
|
| 99 |
|
|
temp_debug = 0; // temporary debug signals
|
| 100 |
|
|
|
| 101 |
|
|
if (regmask_val_in[`MASKSZ]) begin // value missing
|
| 102 |
|
|
if (write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
| 103 |
|
|
regmask_val = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
| 104 |
|
|
end else if (write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
| 105 |
|
|
regmask_val = writeport2_in[(`MASKSZ-1):0]; // obtained from result bus 2
|
| 106 |
|
|
end else begin
|
| 107 |
|
|
if (regmask_used_in) begin
|
| 108 |
|
|
stall = 1; // operand not ready
|
| 109 |
|
|
temp_debug[0] = 1; // debug info about cause of stall
|
| 110 |
|
|
if (regmask_val_in[`TAG_WIDTH-1:0] != predict_tag1_in && regmask_val_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
| 111 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
| 112 |
|
|
end
|
| 113 |
|
|
end
|
| 114 |
|
|
end
|
| 115 |
|
|
end else begin // value available
|
| 116 |
|
|
regmask_val = regmask_val_in;
|
| 117 |
|
|
end
|
| 118 |
|
|
|
| 119 |
|
|
mask_off = regmask_used_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in;
|
| 120 |
|
|
|
| 121 |
|
|
operand1 = 0;
|
| 122 |
|
|
if (operand1_in[`RB]) begin // value missing
|
| 123 |
|
|
if (write_en1 && operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
| 124 |
|
|
operand1 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
| 125 |
|
|
end else if (write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
| 126 |
|
|
operand1 = writeport2_in; // obtained from result bus 2
|
| 127 |
|
|
end else begin
|
| 128 |
|
|
if (opr1_used_in) begin
|
| 129 |
|
|
stall = 1; // operand not ready
|
| 130 |
|
|
temp_debug[1] = 1; // debug info about cause of stall
|
| 131 |
|
|
if (operand1_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand1_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
| 132 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
| 133 |
|
|
end
|
| 134 |
|
|
end
|
| 135 |
|
|
end
|
| 136 |
|
|
end else begin
|
| 137 |
|
|
operand1 = operand1_in[`RB1:0];
|
| 138 |
|
|
end
|
| 139 |
|
|
|
| 140 |
|
|
operand2 = 0;
|
| 141 |
|
|
if (opr2_from_ram_in) begin
|
| 142 |
|
|
operand2 = ram_data_in;
|
| 143 |
|
|
end else if (operand2_in[`RB]) begin // value missing
|
| 144 |
|
|
if (write_en1 && operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
| 145 |
|
|
operand2 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
| 146 |
|
|
end else if (write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
| 147 |
|
|
operand2 = writeport2_in; // obtained from result bus 2
|
| 148 |
|
|
end else begin
|
| 149 |
|
|
if (opr2_used_in && !mask_off) begin
|
| 150 |
|
|
stall = 1; // operand not ready
|
| 151 |
|
|
temp_debug[2] = 1; // debug info about cause of stall
|
| 152 |
|
|
if (operand2_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand2_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
| 153 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
| 154 |
|
|
end
|
| 155 |
|
|
end
|
| 156 |
|
|
end
|
| 157 |
|
|
end else begin // value available
|
| 158 |
|
|
operand2 = operand2_in[`RB1:0];
|
| 159 |
|
|
end
|
| 160 |
|
|
|
| 161 |
|
|
operand3 = 0;
|
| 162 |
|
|
if (opr3_from_ram_in) begin
|
| 163 |
|
|
operand3 = ram_data_in;
|
| 164 |
|
|
end else if (operand3_in[`RB]) begin // value missing
|
| 165 |
|
|
if (write_en1 && operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
| 166 |
|
|
operand3 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
| 167 |
|
|
end else if (write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
| 168 |
|
|
operand3 = writeport2_in; // obtained from result bus 2
|
| 169 |
|
|
end else begin
|
| 170 |
|
|
if (opr3_used_in && !mask_off) begin
|
| 171 |
|
|
stall = 1; // operand not ready
|
| 172 |
|
|
temp_debug[3] = 1; // debug info about cause of stall
|
| 173 |
|
|
if (operand3_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand3_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
| 174 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
| 175 |
|
|
end
|
| 176 |
|
|
end
|
| 177 |
|
|
end
|
| 178 |
|
|
end else begin // value available
|
| 179 |
|
|
operand3 = operand3_in[`RB1:0];
|
| 180 |
|
|
end
|
| 181 |
|
|
|
| 182 |
|
|
opx = opx_in; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
| 183 |
|
|
result = 0;
|
| 184 |
|
|
otout = ot_in[1:0]; // operand type for output
|
| 185 |
|
|
result_type = result_type_in;
|
| 186 |
|
|
error = 0;
|
| 187 |
|
|
error_parm = 0;
|
| 188 |
|
|
|
| 189 |
|
|
case (ot_in[1:0])
|
| 190 |
|
|
0: begin
|
| 191 |
|
|
msb = 7; // 8 bit
|
| 192 |
|
|
sbit = 8'H80;
|
| 193 |
|
|
sizemask = 8'HFF;
|
| 194 |
|
|
//signbit1 = operand1[7];
|
| 195 |
|
|
signbit2 = operand2[7];
|
| 196 |
|
|
signbit3 = operand3[7];
|
| 197 |
|
|
end
|
| 198 |
|
|
1: begin
|
| 199 |
|
|
msb = 15; // 16 bit
|
| 200 |
|
|
sbit = 16'H8000;
|
| 201 |
|
|
sizemask = 16'HFFFF;
|
| 202 |
|
|
//signbit1 = operand1[15];
|
| 203 |
|
|
signbit2 = operand2[15];
|
| 204 |
|
|
signbit3 = operand3[15];
|
| 205 |
|
|
end
|
| 206 |
|
|
2: begin
|
| 207 |
|
|
msb = 31; // 32 bit
|
| 208 |
|
|
sbit = 32'H80000000;
|
| 209 |
|
|
sizemask = 32'HFFFFFFFF;
|
| 210 |
|
|
//signbit1 = operand1[31];
|
| 211 |
|
|
signbit2 = operand2[31];
|
| 212 |
|
|
signbit3 = operand3[31];
|
| 213 |
|
|
end
|
| 214 |
|
|
3: begin
|
| 215 |
|
|
msb = `RB1; // 64 bit
|
| 216 |
|
|
sbit = {1'b1,{(`RB-1){1'b0}}};
|
| 217 |
|
|
sizemask = ~(`RB'b0);
|
| 218 |
|
|
//signbit1 = operand1[`RB1];
|
| 219 |
|
|
signbit2 = operand2[`RB1];
|
| 220 |
|
|
signbit3 = operand3[`RB1];
|
| 221 |
|
|
end
|
| 222 |
|
|
endcase
|
| 223 |
|
|
|
| 224 |
|
|
|
| 225 |
|
|
////////////////////////////////////////////////
|
| 226 |
|
|
// Select ALU operation
|
| 227 |
|
|
////////////////////////////////////////////////
|
| 228 |
|
|
|
| 229 |
|
|
result = 0;
|
| 230 |
|
|
|
| 231 |
|
|
if (opx == `II_MUL) begin
|
| 232 |
|
|
|
| 233 |
|
|
error = 1; // instruction not supported yet
|
| 234 |
|
|
|
| 235 |
|
|
end else if (opx == `II_MUL_HI || opx == `II_MUL_HI_U) begin
|
| 236 |
|
|
|
| 237 |
|
|
error = 1; // instruction not supported yet
|
| 238 |
|
|
|
| 239 |
|
|
end else if (opx == `II_DIV || opx == `II_DIV_U) begin
|
| 240 |
|
|
|
| 241 |
|
|
error = 1; // instruction not supported yet
|
| 242 |
|
|
|
| 243 |
|
|
end else if (opx == `II_REM || opx == `II_REM_U) begin
|
| 244 |
|
|
|
| 245 |
|
|
error = 1; // instruction not supported yet
|
| 246 |
|
|
|
| 247 |
|
|
end else begin
|
| 248 |
|
|
|
| 249 |
|
|
error = 1; // unknown instruction
|
| 250 |
|
|
|
| 251 |
|
|
end
|
| 252 |
|
|
|
| 253 |
|
|
if (vector_in) error = 1; // Vector instructions not supported yet
|
| 254 |
|
|
|
| 255 |
|
|
end
|
| 256 |
|
|
|
| 257 |
|
|
|
| 258 |
|
|
// output
|
| 259 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
| 260 |
|
|
if (!valid_in) begin
|
| 261 |
|
|
register_write_out <= 0;
|
| 262 |
|
|
// note: the FPGA has no internal tri-state buffers. We need to simulate result bus by or'ing outputs
|
| 263 |
|
|
result_out <= 0;
|
| 264 |
|
|
register_a_out <= 0;
|
| 265 |
|
|
tag_val_out <= 0;
|
| 266 |
|
|
|
| 267 |
|
|
// stall_in must disable the output to avoid executing the same instruction twice)
|
| 268 |
|
|
end else if (stall || stall_in) begin
|
| 269 |
|
|
register_write_out <= 0;
|
| 270 |
|
|
result_out <= 0;
|
| 271 |
|
|
register_a_out <= 0;
|
| 272 |
|
|
tag_val_out <= 0;
|
| 273 |
|
|
|
| 274 |
|
|
end else if (result_type != `RESULT_REG) begin
|
| 275 |
|
|
// no output?
|
| 276 |
|
|
register_write_out <= 0;
|
| 277 |
|
|
result_out <= 0;
|
| 278 |
|
|
register_a_out <= 0;
|
| 279 |
|
|
tag_val_out <= 0;
|
| 280 |
|
|
|
| 281 |
|
|
end else if (regmask_used_in && !regmask_val[0] & !vector_in) begin
|
| 282 |
|
|
// mask is zero. output is fallback
|
| 283 |
|
|
case (otout)
|
| 284 |
|
|
0: result_out <= operand1[7:0];
|
| 285 |
|
|
1: result_out <= operand1[15:0];
|
| 286 |
|
|
2: result_out <= operand1[31:0];
|
| 287 |
|
|
3: result_out <= operand1[`RB1:0];
|
| 288 |
|
|
endcase
|
| 289 |
|
|
register_write_out <= ~reset;
|
| 290 |
|
|
register_a_out <= {1'b0,instruction_in[`RD]};
|
| 291 |
|
|
tag_val_out <= tag_val_in;
|
| 292 |
|
|
|
| 293 |
|
|
end else begin
|
| 294 |
|
|
// normal register output
|
| 295 |
|
|
case (otout)
|
| 296 |
|
|
0: result_out <= result[7:0];
|
| 297 |
|
|
1: result_out <= result[15:0];
|
| 298 |
|
|
2: result_out <= result[31:0];
|
| 299 |
|
|
3: result_out <= result[`RB1:0];
|
| 300 |
|
|
endcase
|
| 301 |
|
|
register_write_out <= ~reset;
|
| 302 |
|
|
register_a_out <= {1'b0,instruction_in[`RD]};
|
| 303 |
|
|
tag_val_out <= tag_val_in;
|
| 304 |
|
|
end
|
| 305 |
|
|
|
| 306 |
|
|
valid_out <= !stall & valid_in & !reset;
|
| 307 |
|
|
stall_out <= stall & valid_in & !reset;
|
| 308 |
|
|
stall_next_out <= stall_next & valid_in & !reset;
|
| 309 |
|
|
error_out <= error & valid_in & !reset; // unknown instruction
|
| 310 |
|
|
error_parm_out <= error_parm & valid_in & !reset; // wrong parameter
|
| 311 |
|
|
|
| 312 |
|
|
// outputs for debugger:
|
| 313 |
|
|
debug1_out <= 0;
|
| 314 |
|
|
|
| 315 |
|
|
debug1_out[6:0] <= opx;
|
| 316 |
|
|
|
| 317 |
|
|
debug1_out[21:20] <= category_in;
|
| 318 |
|
|
|
| 319 |
|
|
debug1_out[24] <= stall;
|
| 320 |
|
|
debug1_out[25] <= stall_next;
|
| 321 |
|
|
debug1_out[27] <= error;
|
| 322 |
|
|
|
| 323 |
|
|
|
| 324 |
|
|
debug2_out <= temp_debug;
|
| 325 |
|
|
|
| 326 |
|
|
debug2_out[16] <= opr1_used_in;
|
| 327 |
|
|
debug2_out[17] <= opr2_used_in;
|
| 328 |
|
|
debug2_out[18] <= opr3_used_in;
|
| 329 |
|
|
debug2_out[19] <= regmask_used_in;
|
| 330 |
|
|
|
| 331 |
|
|
debug2_out[20] <= mask_alternative_in;
|
| 332 |
|
|
debug2_out[21] <= mask_off;
|
| 333 |
|
|
debug2_out[22] <= regmask_val_in[0];
|
| 334 |
|
|
debug2_out[23] <= regmask_val_in[`MASKSZ];
|
| 335 |
|
|
|
| 336 |
|
|
debug2_out[27:24] <= regmask_val[3:0];
|
| 337 |
|
|
debug2_out[28] <= regmask_val[`MASKSZ];
|
| 338 |
|
|
|
| 339 |
|
|
end
|
| 340 |
|
|
|
| 341 |
|
|
endmodule
|