1 |
6 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
// Engineer: Agner Fog
|
3 |
|
|
//
|
4 |
|
|
// Create Date: 2021-06-06
|
5 |
|
|
// Last modified: 2021-06-06
|
6 |
|
|
// Module Name: mul_div
|
7 |
|
|
// Project Name: ForwardCom soft core
|
8 |
|
|
// Target Devices: Artix 7
|
9 |
|
|
// Tool Versions: Vivado v. 2020.1
|
10 |
|
|
// License: CERN-OHL-W v. 2 or later
|
11 |
|
|
// Description: Arithmetic-logic unit for multiplication and division
|
12 |
|
|
// of general purpose registers.
|
13 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
14 |
|
|
|
15 |
|
|
`include "defines.vh"
|
16 |
|
|
|
17 |
|
|
module mul_div (
|
18 |
|
|
input clock, // system clock (100 MHz)
|
19 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
20 |
|
|
input reset, // system reset
|
21 |
|
|
input valid_in, // data from previous stage ready
|
22 |
|
|
input stall_in, // pipeline is stalled
|
23 |
|
|
input [31:0] instruction_in, // current instruction, up to 3 words long. Only first word used here
|
24 |
|
|
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
|
25 |
|
|
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
|
26 |
|
|
input mask_alternative_in, // mask register and fallback register used for alternative purposes
|
27 |
|
|
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
28 |
|
|
input vector_in, // vector registers used
|
29 |
|
|
input [6:0] opx_in, // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
30 |
|
|
input [2:0] ot_in, // operand type
|
31 |
|
|
input [5:0] option_bits_in, // option bits from IM3 or mask
|
32 |
|
|
|
33 |
|
|
// monitor result buses:
|
34 |
|
|
input write_en1, // a result is written to writeport1
|
35 |
|
|
input [`TAG_WIDTH-1:0] write_tag1_in, // tag of result inwriteport1
|
36 |
|
|
input [`RB1:0] writeport1_in, // result bus 1
|
37 |
|
|
input write_en2, // a result is written to writeport2
|
38 |
|
|
input [`TAG_WIDTH-1:0] write_tag2_in, // tag of result inwriteport2
|
39 |
|
|
input [`RB1:0] writeport2_in, // result bus 2
|
40 |
|
|
input [`TAG_WIDTH-1:0] predict_tag1_in, // result tag value on writeport1 in next clock cycle
|
41 |
|
|
input [`TAG_WIDTH-1:0] predict_tag2_in, // result tag value on writeport2 in next clock cycle
|
42 |
|
|
|
43 |
|
|
// Register values sampled from result bus in previous stages
|
44 |
|
|
input [`RB:0] operand1_in, // first register operand or fallback
|
45 |
|
|
input [`RB:0] operand2_in, // second register operand RS
|
46 |
|
|
input [`RB:0] operand3_in, // last register operand RT
|
47 |
|
|
input [`MASKSZ:0] regmask_val_in, // mask register
|
48 |
|
|
input [`RB1:0] ram_data_in, // memory operand from data ram
|
49 |
|
|
input opr2_from_ram_in, // value of operand 2 comes from data ram
|
50 |
|
|
input opr3_from_ram_in, // value of last operand comes from data ram
|
51 |
|
|
input opr1_used_in, // operand1_in is needed
|
52 |
|
|
input opr2_used_in, // operand2_in is needed
|
53 |
|
|
input opr3_used_in, // operand3_in is needed
|
54 |
|
|
input regmask_used_in, // regmask_val_in is needed
|
55 |
|
|
|
56 |
|
|
output reg valid_out, // for debug display: alu is active
|
57 |
|
|
output reg register_write_out,
|
58 |
|
|
output reg [4:0] register_a_out, // register to write
|
59 |
|
|
output reg [`RB1:0] result_out, //
|
60 |
|
|
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
|
61 |
|
|
output reg stall_out, // alu is waiting for an operand or not ready to receive a new instruction
|
62 |
|
|
output reg stall_next_out, // alu will be waiting in next clock cycle
|
63 |
|
|
output reg error_out, // unknown instruction
|
64 |
|
|
output reg error_parm_out, // wrong parameter for instruction
|
65 |
|
|
|
66 |
|
|
// outputs for debugger:
|
67 |
|
|
output reg [31:0] debug1_out, // debug information
|
68 |
|
|
output reg [31:0] debug2_out // temporary debug information
|
69 |
|
|
);
|
70 |
|
|
|
71 |
|
|
logic [`RB1:0] operand1; // first register operand RD or RU. bit `RB is 1 if invalid
|
72 |
|
|
logic [`RB1:0] operand2; // second register operand RS. bit `RB is 1 if invalid
|
73 |
|
|
logic [`RB1:0] operand3; // last register operand RT. bit `RB is 1 if invalid
|
74 |
|
|
logic [`MASKSZ:0] regmask_val; // mask register
|
75 |
|
|
logic [1:0] otout; // operand type for output
|
76 |
|
|
logic [5:0] msb; // index to most significant bit
|
77 |
|
|
logic signbit2, signbit3; // sign bits of three operands
|
78 |
|
|
logic [`RB1:0] sbit; // position of sign bit
|
79 |
|
|
logic [`RB1:0] result; // result for output
|
80 |
|
|
logic [1:0] result_type; // type of result
|
81 |
|
|
logic [6:0] opx; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
82 |
|
|
logic mask_off; // result is masked off
|
83 |
|
|
logic stall; // waiting for operands
|
84 |
|
|
logic stall_next; // will be waiting for operands in next clock cycle
|
85 |
|
|
logic error; // unknown instruction
|
86 |
|
|
logic error_parm; // wrong parameter for instruction
|
87 |
|
|
|
88 |
|
|
// It seems to be more efficient to truncate operands locally by ANDing with sizemask than to
|
89 |
|
|
// make separate wires for the truncated operands, because wiring is more expensive than logic:
|
90 |
|
|
logic [`RB1:0] sizemask; // mask for operand type
|
91 |
|
|
|
92 |
|
|
logic [31:0] temp_debug; // temporary debug signals
|
93 |
|
|
|
94 |
|
|
always_comb begin
|
95 |
|
|
// get all inputs
|
96 |
|
|
stall = 0;
|
97 |
|
|
stall_next = 0;
|
98 |
|
|
regmask_val = 0;
|
99 |
|
|
temp_debug = 0; // temporary debug signals
|
100 |
|
|
|
101 |
|
|
if (regmask_val_in[`MASKSZ]) begin // value missing
|
102 |
|
|
if (write_en1 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
103 |
|
|
regmask_val = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
104 |
|
|
end else if (write_en2 && regmask_val_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
105 |
|
|
regmask_val = writeport2_in[(`MASKSZ-1):0]; // obtained from result bus 2
|
106 |
|
|
end else begin
|
107 |
|
|
if (regmask_used_in) begin
|
108 |
|
|
stall = 1; // operand not ready
|
109 |
|
|
temp_debug[0] = 1; // debug info about cause of stall
|
110 |
|
|
if (regmask_val_in[`TAG_WIDTH-1:0] != predict_tag1_in && regmask_val_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
111 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
112 |
|
|
end
|
113 |
|
|
end
|
114 |
|
|
end
|
115 |
|
|
end else begin // value available
|
116 |
|
|
regmask_val = regmask_val_in;
|
117 |
|
|
end
|
118 |
|
|
|
119 |
|
|
mask_off = regmask_used_in && regmask_val[`MASKSZ] == 0 && regmask_val[0] == 0 && !mask_alternative_in;
|
120 |
|
|
|
121 |
|
|
operand1 = 0;
|
122 |
|
|
if (operand1_in[`RB]) begin // value missing
|
123 |
|
|
if (write_en1 && operand1_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
124 |
|
|
operand1 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
125 |
|
|
end else if (write_en2 && operand1_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
126 |
|
|
operand1 = writeport2_in; // obtained from result bus 2
|
127 |
|
|
end else begin
|
128 |
|
|
if (opr1_used_in) begin
|
129 |
|
|
stall = 1; // operand not ready
|
130 |
|
|
temp_debug[1] = 1; // debug info about cause of stall
|
131 |
|
|
if (operand1_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand1_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
132 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
133 |
|
|
end
|
134 |
|
|
end
|
135 |
|
|
end
|
136 |
|
|
end else begin
|
137 |
|
|
operand1 = operand1_in[`RB1:0];
|
138 |
|
|
end
|
139 |
|
|
|
140 |
|
|
operand2 = 0;
|
141 |
|
|
if (opr2_from_ram_in) begin
|
142 |
|
|
operand2 = ram_data_in;
|
143 |
|
|
end else if (operand2_in[`RB]) begin // value missing
|
144 |
|
|
if (write_en1 && operand2_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
145 |
|
|
operand2 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
146 |
|
|
end else if (write_en2 && operand2_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
147 |
|
|
operand2 = writeport2_in; // obtained from result bus 2
|
148 |
|
|
end else begin
|
149 |
|
|
if (opr2_used_in && !mask_off) begin
|
150 |
|
|
stall = 1; // operand not ready
|
151 |
|
|
temp_debug[2] = 1; // debug info about cause of stall
|
152 |
|
|
if (operand2_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand2_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
153 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
154 |
|
|
end
|
155 |
|
|
end
|
156 |
|
|
end
|
157 |
|
|
end else begin // value available
|
158 |
|
|
operand2 = operand2_in[`RB1:0];
|
159 |
|
|
end
|
160 |
|
|
|
161 |
|
|
operand3 = 0;
|
162 |
|
|
if (opr3_from_ram_in) begin
|
163 |
|
|
operand3 = ram_data_in;
|
164 |
|
|
end else if (operand3_in[`RB]) begin // value missing
|
165 |
|
|
if (write_en1 && operand3_in[`TAG_WIDTH-1:0] == write_tag1_in) begin
|
166 |
|
|
operand3 = writeport1_in; // obtained from result bus 1 (which may be my own output)
|
167 |
|
|
end else if (write_en2 && operand3_in[`TAG_WIDTH-1:0] == write_tag2_in) begin
|
168 |
|
|
operand3 = writeport2_in; // obtained from result bus 2
|
169 |
|
|
end else begin
|
170 |
|
|
if (opr3_used_in && !mask_off) begin
|
171 |
|
|
stall = 1; // operand not ready
|
172 |
|
|
temp_debug[3] = 1; // debug info about cause of stall
|
173 |
|
|
if (operand3_in[`TAG_WIDTH-1:0] != predict_tag1_in && operand3_in[`TAG_WIDTH-1:0] != predict_tag2_in) begin
|
174 |
|
|
stall_next = 1; // operand not ready in next clock cycle
|
175 |
|
|
end
|
176 |
|
|
end
|
177 |
|
|
end
|
178 |
|
|
end else begin // value available
|
179 |
|
|
operand3 = operand3_in[`RB1:0];
|
180 |
|
|
end
|
181 |
|
|
|
182 |
|
|
opx = opx_in; // operation ID in execution unit. This is mostly equal to op1 for multiformat instructions
|
183 |
|
|
result = 0;
|
184 |
|
|
otout = ot_in[1:0]; // operand type for output
|
185 |
|
|
result_type = result_type_in;
|
186 |
|
|
error = 0;
|
187 |
|
|
error_parm = 0;
|
188 |
|
|
|
189 |
|
|
case (ot_in[1:0])
|
190 |
|
|
0: begin
|
191 |
|
|
msb = 7; // 8 bit
|
192 |
|
|
sbit = 8'H80;
|
193 |
|
|
sizemask = 8'HFF;
|
194 |
|
|
//signbit1 = operand1[7];
|
195 |
|
|
signbit2 = operand2[7];
|
196 |
|
|
signbit3 = operand3[7];
|
197 |
|
|
end
|
198 |
|
|
1: begin
|
199 |
|
|
msb = 15; // 16 bit
|
200 |
|
|
sbit = 16'H8000;
|
201 |
|
|
sizemask = 16'HFFFF;
|
202 |
|
|
//signbit1 = operand1[15];
|
203 |
|
|
signbit2 = operand2[15];
|
204 |
|
|
signbit3 = operand3[15];
|
205 |
|
|
end
|
206 |
|
|
2: begin
|
207 |
|
|
msb = 31; // 32 bit
|
208 |
|
|
sbit = 32'H80000000;
|
209 |
|
|
sizemask = 32'HFFFFFFFF;
|
210 |
|
|
//signbit1 = operand1[31];
|
211 |
|
|
signbit2 = operand2[31];
|
212 |
|
|
signbit3 = operand3[31];
|
213 |
|
|
end
|
214 |
|
|
3: begin
|
215 |
|
|
msb = `RB1; // 64 bit
|
216 |
|
|
sbit = {1'b1,{(`RB-1){1'b0}}};
|
217 |
|
|
sizemask = ~(`RB'b0);
|
218 |
|
|
//signbit1 = operand1[`RB1];
|
219 |
|
|
signbit2 = operand2[`RB1];
|
220 |
|
|
signbit3 = operand3[`RB1];
|
221 |
|
|
end
|
222 |
|
|
endcase
|
223 |
|
|
|
224 |
|
|
|
225 |
|
|
////////////////////////////////////////////////
|
226 |
|
|
// Select ALU operation
|
227 |
|
|
////////////////////////////////////////////////
|
228 |
|
|
|
229 |
|
|
result = 0;
|
230 |
|
|
|
231 |
|
|
if (opx == `II_MUL) begin
|
232 |
|
|
|
233 |
|
|
error = 1; // instruction not supported yet
|
234 |
|
|
|
235 |
|
|
end else if (opx == `II_MUL_HI || opx == `II_MUL_HI_U) begin
|
236 |
|
|
|
237 |
|
|
error = 1; // instruction not supported yet
|
238 |
|
|
|
239 |
|
|
end else if (opx == `II_DIV || opx == `II_DIV_U) begin
|
240 |
|
|
|
241 |
|
|
error = 1; // instruction not supported yet
|
242 |
|
|
|
243 |
|
|
end else if (opx == `II_REM || opx == `II_REM_U) begin
|
244 |
|
|
|
245 |
|
|
error = 1; // instruction not supported yet
|
246 |
|
|
|
247 |
|
|
end else begin
|
248 |
|
|
|
249 |
|
|
error = 1; // unknown instruction
|
250 |
|
|
|
251 |
|
|
end
|
252 |
|
|
|
253 |
|
|
if (vector_in) error = 1; // Vector instructions not supported yet
|
254 |
|
|
|
255 |
|
|
end
|
256 |
|
|
|
257 |
|
|
|
258 |
|
|
// output
|
259 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
260 |
|
|
if (!valid_in) begin
|
261 |
|
|
register_write_out <= 0;
|
262 |
|
|
// note: the FPGA has no internal tri-state buffers. We need to simulate result bus by or'ing outputs
|
263 |
|
|
result_out <= 0;
|
264 |
|
|
register_a_out <= 0;
|
265 |
|
|
tag_val_out <= 0;
|
266 |
|
|
|
267 |
|
|
// stall_in must disable the output to avoid executing the same instruction twice)
|
268 |
|
|
end else if (stall || stall_in) begin
|
269 |
|
|
register_write_out <= 0;
|
270 |
|
|
result_out <= 0;
|
271 |
|
|
register_a_out <= 0;
|
272 |
|
|
tag_val_out <= 0;
|
273 |
|
|
|
274 |
|
|
end else if (result_type != `RESULT_REG) begin
|
275 |
|
|
// no output?
|
276 |
|
|
register_write_out <= 0;
|
277 |
|
|
result_out <= 0;
|
278 |
|
|
register_a_out <= 0;
|
279 |
|
|
tag_val_out <= 0;
|
280 |
|
|
|
281 |
|
|
end else if (regmask_used_in && !regmask_val[0] & !vector_in) begin
|
282 |
|
|
// mask is zero. output is fallback
|
283 |
|
|
case (otout)
|
284 |
|
|
0: result_out <= operand1[7:0];
|
285 |
|
|
1: result_out <= operand1[15:0];
|
286 |
|
|
2: result_out <= operand1[31:0];
|
287 |
|
|
3: result_out <= operand1[`RB1:0];
|
288 |
|
|
endcase
|
289 |
|
|
register_write_out <= ~reset;
|
290 |
|
|
register_a_out <= {1'b0,instruction_in[`RD]};
|
291 |
|
|
tag_val_out <= tag_val_in;
|
292 |
|
|
|
293 |
|
|
end else begin
|
294 |
|
|
// normal register output
|
295 |
|
|
case (otout)
|
296 |
|
|
0: result_out <= result[7:0];
|
297 |
|
|
1: result_out <= result[15:0];
|
298 |
|
|
2: result_out <= result[31:0];
|
299 |
|
|
3: result_out <= result[`RB1:0];
|
300 |
|
|
endcase
|
301 |
|
|
register_write_out <= ~reset;
|
302 |
|
|
register_a_out <= {1'b0,instruction_in[`RD]};
|
303 |
|
|
tag_val_out <= tag_val_in;
|
304 |
|
|
end
|
305 |
|
|
|
306 |
|
|
valid_out <= !stall & valid_in & !reset;
|
307 |
|
|
stall_out <= stall & valid_in & !reset;
|
308 |
|
|
stall_next_out <= stall_next & valid_in & !reset;
|
309 |
|
|
error_out <= error & valid_in & !reset; // unknown instruction
|
310 |
|
|
error_parm_out <= error_parm & valid_in & !reset; // wrong parameter
|
311 |
|
|
|
312 |
|
|
// outputs for debugger:
|
313 |
|
|
debug1_out <= 0;
|
314 |
|
|
|
315 |
|
|
debug1_out[6:0] <= opx;
|
316 |
|
|
|
317 |
|
|
debug1_out[21:20] <= category_in;
|
318 |
|
|
|
319 |
|
|
debug1_out[24] <= stall;
|
320 |
|
|
debug1_out[25] <= stall_next;
|
321 |
|
|
debug1_out[27] <= error;
|
322 |
|
|
|
323 |
|
|
|
324 |
|
|
debug2_out <= temp_debug;
|
325 |
|
|
|
326 |
|
|
debug2_out[16] <= opr1_used_in;
|
327 |
|
|
debug2_out[17] <= opr2_used_in;
|
328 |
|
|
debug2_out[18] <= opr3_used_in;
|
329 |
|
|
debug2_out[19] <= regmask_used_in;
|
330 |
|
|
|
331 |
|
|
debug2_out[20] <= mask_alternative_in;
|
332 |
|
|
debug2_out[21] <= mask_off;
|
333 |
|
|
debug2_out[22] <= regmask_val_in[0];
|
334 |
|
|
debug2_out[23] <= regmask_val_in[`MASKSZ];
|
335 |
|
|
|
336 |
|
|
debug2_out[27:24] <= regmask_val[3:0];
|
337 |
|
|
debug2_out[28] <= regmask_val[`MASKSZ];
|
338 |
|
|
|
339 |
|
|
end
|
340 |
|
|
|
341 |
|
|
endmodule
|