1 |
7 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
// Engineer: Agner Fog
|
3 |
|
|
//
|
4 |
|
|
// Create Date: 2020-06-01
|
5 |
|
|
// Last modified: 2021-02-16
|
6 |
|
|
// Module Name: Register read
|
7 |
|
|
// Project Name: ForwardCom soft core
|
8 |
|
|
// Target Devices: Artix 7
|
9 |
|
|
// Tool Versions: Vivado v. 2019.2
|
10 |
|
|
// License: CERN-OHL-W
|
11 |
|
|
// Description: This pipeline stage comes after the decoder.
|
12 |
|
|
// It contains the integer register file. Register read requests come from the
|
13 |
|
|
// decoder stage and nowhere else. Register write commands come from the result buses.
|
14 |
|
|
// Tags are written to the register entries for values in flight in the pipeline.
|
15 |
|
|
//
|
16 |
|
|
// Putting the register file into this pipeline stage rather than in a separate module
|
17 |
|
|
// saves a lot of synchronization problems when results from a separate register file
|
18 |
|
|
// may come at a wrong clock cycle due to pipeline stall.
|
19 |
|
|
// This does not make this module excessively big.
|
20 |
|
|
//
|
21 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
22 |
|
|
`include "defines.vh"
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
module register_read (
|
26 |
|
|
input clock, // system clock (100 MHz)
|
27 |
|
|
input clock_enable, // clock enable. Used when single-stepping
|
28 |
|
|
input reset, // system reset.
|
29 |
|
|
input valid_in, // data from fetch module ready
|
30 |
|
|
input stall_in, // a later stage in pipeline is stalled
|
31 |
|
|
input [`CODE_ADDR_WIDTH-1:0] instruction_pointer_in, // address of current instruction
|
32 |
|
|
input [95:0] instruction_in, // current instruction, up to 3 words long
|
33 |
|
|
input tag_write_in, // write tag
|
34 |
|
|
input [`TAG_WIDTH-1:0] tag_val_in, // instruction tag value
|
35 |
|
|
input vector_in, // this is a vector instruction
|
36 |
|
|
input [1:0] category_in, // 00: multiformat, 01: single format, 10: jump
|
37 |
|
|
input [1:0] format_in, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
38 |
|
|
input [2:0] rs_status_in, // use of RS
|
39 |
|
|
input [2:0] rt_status_in, // Use of RT
|
40 |
|
|
input [1:0] ru_status_in, // Use of RU
|
41 |
|
|
input [1:0] rd_status_in, // Use of RD as input
|
42 |
|
|
input [1:0] mask_status_in, // Use of mask register
|
43 |
|
|
input mask_options_in, // mask register may contain options
|
44 |
|
|
input mask_alternative_in, // mask register and fallback register used for alternative purposes
|
45 |
|
|
input [2:0] fallback_use_in, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
|
46 |
|
|
input [1:0] num_operands_in, // number of source operands
|
47 |
|
|
input [1:0] result_type_in, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
48 |
|
|
input [1:0] offset_field_in, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
49 |
|
|
input [1:0] immediate_field_in, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
50 |
|
|
input [1:0] scale_factor_in, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
51 |
|
|
input index_limit_in, // IM2 or IM3 contains a limit to the index
|
52 |
|
|
|
53 |
|
|
// ports for register write
|
54 |
|
|
input [`RB1:0] writeport1, // write port 1
|
55 |
|
|
input [5:0] writea1, // address input for writeport1 (extra bit is 1 for system registers)
|
56 |
|
|
input write_en1, // write enable for writeport1
|
57 |
|
|
input [`TAG_WIDTH-1:0] write_tag1, // tag must match to enable writing
|
58 |
|
|
input [`RB1:0] writeport2,
|
59 |
|
|
input [4:0] writea2,
|
60 |
|
|
input write_en2,
|
61 |
|
|
input [`TAG_WIDTH-1:0] write_tag2,
|
62 |
|
|
input [5:0] debug_reada, // read port for debugger
|
63 |
|
|
|
64 |
|
|
output reg valid_out, // An instruction is ready for output to next stage
|
65 |
|
|
output reg [`CODE_ADDR_WIDTH-1:0] instruction_pointer_out, // address of current instruction
|
66 |
|
|
output reg [95:0] instruction_out, // first word of instruction
|
67 |
|
|
output reg stall_predict_out, // predict next stage will stall
|
68 |
|
|
|
69 |
|
|
output reg [`TAG_WIDTH-1:0] tag_val_out,// instruction tag value
|
70 |
|
|
output reg vector_out, // this is a vector instruction
|
71 |
|
|
output reg [1:0] category_out, // 00: multiformat, 01: single format, 10: jump
|
72 |
|
|
output reg [1:0] format_out, // 00: format A, 01: format E, 10: format B, 11: format C (format D never goes through decoder)
|
73 |
|
|
output reg [1:0] num_operands_out, // number of source operands
|
74 |
|
|
output reg [1:0] result_type_out, // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
75 |
|
|
output reg [1:0] offset_field_out, // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
76 |
|
|
output reg [1:0] immediate_field_out, // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
77 |
|
|
output reg [1:0] scale_factor_out, // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
78 |
|
|
output reg index_limit_out, // IM2 or IM3 contains a limit to the index
|
79 |
|
|
|
80 |
|
|
output reg [`RB:0] rd_val_out, // value of register operand RD, bit `RB indicates missing
|
81 |
|
|
output reg [`RB:0] rs_val_out, // value of register operand RS, bit `RB indicates missing
|
82 |
|
|
output reg [`RB:0] rt_val_out, // value of register operand RT, bit `RB indicates missing
|
83 |
|
|
output reg [`RB:0] ru_val_out, // value of register operand RU, bit `RB indicates missing
|
84 |
|
|
output reg [`MASKSZ:0] regmask_val_out,// value of mask register, bit 32 indicates missing
|
85 |
|
|
|
86 |
|
|
output reg [1:0] rd_status_out, // uas of RD as input
|
87 |
|
|
output reg [2:0] rs_status_out, // use of RS
|
88 |
|
|
output reg [2:0] rt_status_out, // use of RT
|
89 |
|
|
output reg [1:0] ru_status_out, // use of RU
|
90 |
|
|
output reg [1:0] mask_status_out, // 1: mask register is used
|
91 |
|
|
output reg mask_alternative_out,// mask register and fallback register used for alternative purposes
|
92 |
|
|
output reg [2:0] fallback_use_out, // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
|
93 |
|
|
output reg [32:0] debugport_out // read for debugging purpose
|
94 |
|
|
);
|
95 |
|
|
|
96 |
|
|
// components of instruction
|
97 |
|
|
logic [1:0] il; // instruction length
|
98 |
|
|
logic [2:0] ot; // operand type
|
99 |
|
|
logic [4:0] mask; // mask register number
|
100 |
|
|
logic [4:0] rd; // rd register number
|
101 |
|
|
logic [5:0] rs; // rs register number
|
102 |
|
|
logic [5:0] rt; // rt register number
|
103 |
|
|
logic [4:0] ru; // ru register number
|
104 |
|
|
logic [5:0] tag_a; // tag address
|
105 |
|
|
|
106 |
|
|
// register values. Extra bit is 1 if not found
|
107 |
|
|
logic [`RB:0] rd_val; // value of register RD
|
108 |
|
|
logic [`RB:0] rs_val; // value of register RS
|
109 |
|
|
logic [`RB:0] rt_val; // value of register RT
|
110 |
|
|
logic [`RB:0] ru_val; // value of register RU
|
111 |
|
|
logic [`MASKSZ:0] mask_val; // value of mask register
|
112 |
|
|
logic mask_used; // a mask register is used
|
113 |
|
|
logic mask_off; // mask is known to be 0. input operands are not used. fallback may be used
|
114 |
|
|
logic stall_predict; // predict that address generator will stall in next clock cycle
|
115 |
|
|
logic [`COMMON_ADDR_WIDTH:0] instr_end; // address at end of instruction (word based)
|
116 |
|
|
|
117 |
|
|
logic [`TAG_WIDTH:0] rd_tag; // tag to look for if rd not available
|
118 |
|
|
logic [`TAG_WIDTH:0] rs_tag; // tag to look for if rs not available
|
119 |
|
|
logic [`TAG_WIDTH:0] rt_tag; // tag to look for if rt not available
|
120 |
|
|
logic [`TAG_WIDTH:0] ru_tag; // tag to look for if ru not available
|
121 |
|
|
logic [`TAG_WIDTH:0] mask_tag; // tag to look for if mask not available
|
122 |
|
|
|
123 |
|
|
// temporary debug info
|
124 |
|
|
logic [31:0] debug_bits;
|
125 |
|
|
logic [31:0] debug_bits_tag;
|
126 |
|
|
|
127 |
|
|
// temporary storage of register values during stall. Extra bit is 1 if not found
|
128 |
|
|
reg [`RB:0] rd_val_temp; // temporary value of register RD
|
129 |
|
|
reg [`RB:0] rs_val_temp; // temporary value of register RS
|
130 |
|
|
reg [`RB:0] rt_val_temp; // temporary value of register RT
|
131 |
|
|
reg [`RB:0] ru_val_temp; // temporary value of register RU
|
132 |
|
|
reg [`MASKSZ:0] mask_val_temp; // temporary value of mask mask register
|
133 |
|
|
reg last_stall; // was stalled in last clock cycle. May obtain values from the temporary registers
|
134 |
|
|
|
135 |
|
|
always_comb begin
|
136 |
|
|
// extract instruction fields, etc
|
137 |
|
|
il = instruction_in[`IL];
|
138 |
|
|
ot = instruction_in[`OT];
|
139 |
|
|
mask = instruction_in[`MASK];
|
140 |
|
|
rd = instruction_in[`RD];
|
141 |
|
|
rs = {(rs_status_in == `REG_SYSTEM), instruction_in[`RS]};
|
142 |
|
|
rt = instruction_in[`RT];
|
143 |
|
|
ru = instruction_in[`RU];
|
144 |
|
|
if (mask_status_in != `REG_UNUSED && instruction_in[`MASK] == 7) mask = `NUMCONTR;
|
145 |
|
|
if (rs_status_in == `REG_POINTER && offset_field_in >= `OFFSET_2) begin
|
146 |
|
|
if (instruction_in[`RS] == 28) rs = `THREADP;
|
147 |
|
|
if (instruction_in[`RS] == 29) rs = `DATAP;
|
148 |
|
|
end
|
149 |
|
|
/*
|
150 |
|
|
if (rt_status_in == `REG_POINTER && offset_field_in >= `OFFSET_2) begin
|
151 |
|
|
if (instruction_in[`RT] == 28) rt = `THREADP;
|
152 |
|
|
if (instruction_in[`RT] == 29) rt = `DATAP;
|
153 |
|
|
end */
|
154 |
|
|
tag_a = {result_type_in == `RESULT_SYS, rd}; // tag address
|
155 |
|
|
instr_end = instruction_pointer_in + (il[1] ? il : 2'b01) + {1'b1,{(`CODE_ADDR_START-2){1'b0}}}; // address at end of instruction
|
156 |
|
|
end
|
157 |
|
|
|
158 |
|
|
/************************************************************
|
159 |
|
|
general purpose and system register file
|
160 |
|
|
*************************************************************
|
161 |
|
|
Values of read addresses:
|
162 |
|
|
0-30: register r0 - r30
|
163 |
|
|
31: data stack pointer
|
164 |
|
|
32: numeric control register
|
165 |
|
|
33: thread pointer
|
166 |
|
|
34: data section pointer
|
167 |
|
|
35: currently unused
|
168 |
|
|
************************************************************/
|
169 |
|
|
|
170 |
|
|
parameter num_reg = 32 + `NUM_SYS_REGISTERS; // 32 general purpose registers and 3 system registers
|
171 |
|
|
reg [`RB:0] registers [num_reg];
|
172 |
|
|
|
173 |
|
|
// writing to registers through write ports
|
174 |
|
|
// generation loop for all general purpose and system registers
|
175 |
|
|
genvar i;
|
176 |
|
|
for (i=0; i < num_reg; i++) begin
|
177 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
178 |
|
|
if (reset)
|
179 |
|
|
registers[i] <= 0; // reset general purpose registers, but not system registers
|
180 |
|
|
else if (tag_write_in && valid_in && i == tag_a)
|
181 |
|
|
registers[i] <= {1'b1, {(`RB-`TAG_WIDTH){1'b0}}, tag_val_in};
|
182 |
|
|
else if (write_en1 && i == writea1 && write_tag1 == registers[i][`TAG_WIDTH-1:0])
|
183 |
|
|
registers[i] <= {1'b0,writeport1};
|
184 |
|
|
else if (write_en2 && i == writea2 && write_tag2 == registers[i][`TAG_WIDTH-1:0])
|
185 |
|
|
registers[i] <= {1'b0,writeport2};
|
186 |
|
|
end
|
187 |
|
|
end
|
188 |
|
|
|
189 |
|
|
// get general purpose and system register values
|
190 |
|
|
always_comb begin
|
191 |
|
|
// tags to look for if registers are not available
|
192 |
|
|
if (last_stall) begin
|
193 |
|
|
// the tags to look for must be sampled in the first clock cycle of a stall
|
194 |
|
|
rd_tag = {rd_val_temp[`RB],rd_val_temp[`TAG_WIDTH-1:0]};
|
195 |
|
|
rs_tag = {rs_val_temp[`RB],rs_val_temp[`TAG_WIDTH-1:0]};
|
196 |
|
|
rt_tag = {rt_val_temp[`RB],rt_val_temp[`TAG_WIDTH-1:0]};
|
197 |
|
|
ru_tag = {ru_val_temp[`RB],ru_val_temp[`TAG_WIDTH-1:0]};
|
198 |
|
|
mask_tag = {mask_val_temp[`MASKSZ],mask_val_temp[`TAG_WIDTH-1:0]};
|
199 |
|
|
end else begin
|
200 |
|
|
// the tags to look for are found in the register file
|
201 |
|
|
rd_tag = {registers[rd][`RB],registers[rd][`TAG_WIDTH-1:0]};
|
202 |
|
|
rs_tag = {registers[rs][`RB],registers[rs][`TAG_WIDTH-1:0]};
|
203 |
|
|
rt_tag = {registers[rt][`RB],registers[rt][`TAG_WIDTH-1:0]};
|
204 |
|
|
ru_tag = {registers[ru][`RB],registers[ru][`TAG_WIDTH-1:0]};
|
205 |
|
|
mask_tag = {registers[mask][`RB],registers[mask][`TAG_WIDTH-1:0]};
|
206 |
|
|
end
|
207 |
|
|
|
208 |
|
|
if (rd_status_in == `REG_UNUSED) begin
|
209 |
|
|
rd_val = 0;
|
210 |
|
|
end else if (write_en1 && rd == writea1 && rd_tag[`TAG_WIDTH] && write_tag1 == rd_tag[`TAG_WIDTH-1:0]) begin
|
211 |
|
|
rd_val = {1'b0,writeport1}; // forwarding from write port 1
|
212 |
|
|
end else if (write_en2 && rd == writea2 && rd_tag[`TAG_WIDTH] && write_tag2 == rd_tag[`TAG_WIDTH-1:0]) begin
|
213 |
|
|
rd_val = {1'b0,writeport2}; // forwarding from write port 2
|
214 |
|
|
end else if (last_stall) begin
|
215 |
|
|
rd_val = rd_val_temp;
|
216 |
|
|
end else begin
|
217 |
|
|
rd_val = registers[rd]; // read value or tag from register file
|
218 |
|
|
end
|
219 |
|
|
|
220 |
|
|
if (rs_status_in == `REG_UNUSED) begin
|
221 |
|
|
rs_val = 0;
|
222 |
|
|
end else if (rs_status_in == `REG_POINTER && offset_field_in >= `OFFSET_2 && instruction_in[`RS] == 30) begin
|
223 |
|
|
rs_val = {instr_end,2'b0}; // instruction pointer as base pointer
|
224 |
|
|
end else if (write_en1 && rs == writea1 && rs_tag[`TAG_WIDTH] && write_tag1 == rs_tag[`TAG_WIDTH-1:0]) begin
|
225 |
|
|
rs_val = {1'b0,writeport1}; // forwarding from write port 1
|
226 |
|
|
end else if (write_en2 && rs == writea2 && rs_tag[`TAG_WIDTH] && write_tag2 == rs_tag[`TAG_WIDTH-1:0]) begin
|
227 |
|
|
rs_val = {1'b0,writeport2}; // forwarding from write port 2
|
228 |
|
|
end else if (last_stall) begin
|
229 |
|
|
rs_val = rs_val_temp;
|
230 |
|
|
end else begin
|
231 |
|
|
rs_val = registers[rs]; // read value or tag from register file
|
232 |
|
|
end
|
233 |
|
|
|
234 |
|
|
if (rt_status_in == `REG_UNUSED) begin
|
235 |
|
|
rt_val = 0;
|
236 |
|
|
//end else if (rt_status_in == `REG_POINTER && offset_field_in >= `OFFSET_2 && instruction_in[`RT] == 30) begin
|
237 |
|
|
// rt_val = {instr_end,2'b0} ; // instruction pointer as base pointer
|
238 |
|
|
end else if (write_en1 && rt == writea1 && rt_tag[`TAG_WIDTH] && write_tag1 == rt_tag[`TAG_WIDTH-1:0]) begin
|
239 |
|
|
rt_val = {1'b0,writeport1}; // forwarding from write port 1
|
240 |
|
|
end else if (write_en2 && rt == writea2 && rt_tag[`TAG_WIDTH] && write_tag2 == rt_tag[`TAG_WIDTH-1:0]) begin
|
241 |
|
|
rt_val = {1'b0,writeport2}; // forwarding from write port 2
|
242 |
|
|
end else if (last_stall) begin
|
243 |
|
|
rt_val = rt_val_temp;
|
244 |
|
|
end else begin
|
245 |
|
|
rt_val = registers[rt]; // read value or tag from register file
|
246 |
|
|
end
|
247 |
|
|
|
248 |
|
|
if (ru_status_in == `REG_UNUSED) begin
|
249 |
|
|
ru_val = 0;
|
250 |
|
|
end else if (write_en1 && ru == writea1 && ru_tag[`TAG_WIDTH] && write_tag1 == ru_tag[`TAG_WIDTH-1:0]) begin
|
251 |
|
|
ru_val = {1'b0,writeport1}; // forwarding from write port 1
|
252 |
|
|
end else if (write_en2 && ru == writea2 && ru_tag[`TAG_WIDTH] && write_tag2 == ru_tag[`TAG_WIDTH-1:0]) begin
|
253 |
|
|
ru_val = {1'b0,writeport2}; // forwarding from write port 2
|
254 |
|
|
end else if (last_stall) begin
|
255 |
|
|
ru_val = ru_val_temp;
|
256 |
|
|
end else begin
|
257 |
|
|
ru_val = registers[ru]; // read value or tag from register file
|
258 |
|
|
end
|
259 |
|
|
|
260 |
|
|
if (mask_status_in == `REG_UNUSED) begin
|
261 |
|
|
mask_val = 1;
|
262 |
|
|
end else if (write_en1 && mask == writea1 && mask_tag[`TAG_WIDTH] && write_tag1 == mask_tag[`TAG_WIDTH-1:0]) begin
|
263 |
|
|
mask_val = {1'b0,writeport1[`MASKSZ-1:0]}; // forwarding from write port 1
|
264 |
|
|
end else if (write_en2 && mask == writea2 && mask_tag[`TAG_WIDTH] && write_tag2 == mask_tag[`TAG_WIDTH-1:0]) begin
|
265 |
|
|
mask_val = {1'b0,writeport2[`MASKSZ-1:0]}; // forwarding from write port 2
|
266 |
|
|
end else if (last_stall) begin
|
267 |
|
|
mask_val = mask_val_temp;
|
268 |
|
|
end else begin
|
269 |
|
|
mask_val = {registers[mask][`RB],registers[mask][`MASKSZ-1:0]}; // read value or tag from register file
|
270 |
|
|
end
|
271 |
|
|
end
|
272 |
|
|
|
273 |
|
|
// save values during stall
|
274 |
|
|
always_ff @(posedge clock) if (clock_enable && valid_in) begin
|
275 |
|
|
last_stall <= stall_in;
|
276 |
|
|
if (stall_in) begin
|
277 |
|
|
rd_val_temp <= rd_val;
|
278 |
|
|
rs_val_temp <= rs_val;
|
279 |
|
|
rt_val_temp <= rt_val;
|
280 |
|
|
ru_val_temp <= ru_val;
|
281 |
|
|
mask_val_temp <= mask_val;
|
282 |
|
|
end else begin
|
283 |
|
|
rd_val_temp <= {1'b1,`RB'b0};
|
284 |
|
|
rs_val_temp <= {1'b1,`RB'b0};
|
285 |
|
|
rt_val_temp <= {1'b1,`RB'b0};
|
286 |
|
|
ru_val_temp <= {1'b1,`RB'b0};
|
287 |
|
|
mask_val_temp <= {1'b1,`MASKSZ'b0};
|
288 |
|
|
end
|
289 |
|
|
end
|
290 |
|
|
|
291 |
|
|
|
292 |
|
|
always_comb begin
|
293 |
|
|
// (The mask must be ignored for the NOP instruction. If there are any other instructions with
|
294 |
|
|
// zero operands that can have a valid mask then the above line must be modified.)
|
295 |
|
|
mask_used = (format_in == `FORMAT_A || format_in == `FORMAT_E) && mask != 7 && num_operands_in != 0;
|
296 |
|
|
// Check if result is masked off so that we don't have to wait for operands
|
297 |
|
|
mask_off = mask_used && mask_val[`MASKSZ] == 0 && mask_val[0] == 0 && !mask_alternative_in && !vector_in;
|
298 |
|
|
|
299 |
|
|
stall_predict = 0;
|
300 |
|
|
// rs used as pointer or index or vector length and not available in next clock cycle:
|
301 |
|
|
if (rs_status_in >= `REG_POINTER && rs_val[`RB] && !mask_off) stall_predict = 1;
|
302 |
|
|
// rt used as pointer and not available in next clock cycle:
|
303 |
|
|
if (rt_status_in >= `REG_POINTER && rt_val[`RB] && !mask_off) stall_predict = 1;
|
304 |
|
|
// rd is written to memory and not available in next clock cycle:
|
305 |
|
|
if (rd_status_in != 0 && result_type_in == `RESULT_MEM && rd_val[`RB] && !mask_off) stall_predict = 1;
|
306 |
|
|
// mask value is needed for memory write
|
307 |
|
|
if (mask_used && result_type_in == `RESULT_MEM && mask_val[`MASKSZ]) stall_predict = 1;
|
308 |
|
|
|
309 |
|
|
// signals for debugging
|
310 |
|
|
debug_bits = 0;
|
311 |
|
|
debug_bits[0] = rs_status_in >= `REG_POINTER;
|
312 |
|
|
|
313 |
|
|
debug_bits[8] = rt_status_in >= `REG_POINTER;
|
314 |
|
|
|
315 |
|
|
debug_bits[16] = rd_status_in;
|
316 |
|
|
|
317 |
|
|
debug_bits[24] = stall_predict;
|
318 |
|
|
debug_bits[25] = last_stall;
|
319 |
|
|
debug_bits[26] = stall_in;
|
320 |
|
|
debug_bits[27] = valid_in;
|
321 |
|
|
|
322 |
|
|
debug_bits_tag = 0;
|
323 |
|
|
//debug_bits_tag[`TAG_WIDTH-1:0] = tag_mirror[reg1_in];
|
324 |
|
|
|
325 |
|
|
end
|
326 |
|
|
|
327 |
|
|
// get values of missing operands from result buses.
|
328 |
|
|
// if stalling: keep looking for results and keep the values until not stalled
|
329 |
|
|
always_ff @(posedge clock) if (clock_enable) begin
|
330 |
|
|
|
331 |
|
|
// Predict stall in next stage if RS, RT, or RD is needed in the address generator stage
|
332 |
|
|
// and not yet available and not predicted to become available in the next clock cycle.
|
333 |
|
|
// Note, that while the stall prediction is looking forward one stage in the pipeline,
|
334 |
|
|
// it should not apply if the instruction is not moving to the next stage yet, hence
|
335 |
|
|
// stall_predict_out is not applied if stall_in.
|
336 |
|
|
stall_predict_out <= stall_predict && !stall_in && !reset && valid_in;
|
337 |
|
|
|
338 |
|
|
if (reset) valid_out <= 0;
|
339 |
|
|
else if (!stall_in) valid_out <= valid_in;
|
340 |
|
|
end
|
341 |
|
|
|
342 |
|
|
// generate outputs
|
343 |
|
|
always_ff @(posedge clock) if (clock_enable && !stall_in) begin
|
344 |
|
|
// first two words of instruction
|
345 |
|
|
instruction_out <= instruction_in;
|
346 |
|
|
|
347 |
|
|
// register values out
|
348 |
|
|
rd_val_out <= rd_val; // value of register operand RD, bit `RB indicates missing
|
349 |
|
|
rs_val_out <= rs_val; // value of register operand RS, bit `RB indicates missing
|
350 |
|
|
rt_val_out <= rt_val; // value of register operand RT, bit `RB indicates missing
|
351 |
|
|
ru_val_out <= ru_val; // value of register operand RU, bit `RB indicates missing
|
352 |
|
|
regmask_val_out <= mask_val; // value of mask register, bit 32 indicates missing
|
353 |
|
|
|
354 |
|
|
// other outputs are unchanged from input
|
355 |
|
|
instruction_pointer_out <= instruction_pointer_in;
|
356 |
|
|
tag_val_out <= tag_val_in; // tag for current instruction
|
357 |
|
|
vector_out <= vector_in; // vector instruction
|
358 |
|
|
category_out <= category_in; // instruction category
|
359 |
|
|
format_out <= format_in; // instruction format
|
360 |
|
|
rs_status_out <= rs_status_in; // use of rs register
|
361 |
|
|
rt_status_out <= rt_status_in; // use of rt register
|
362 |
|
|
ru_status_out <= ru_status_in; // use of ru register
|
363 |
|
|
rd_status_out <= rd_status_in; // use of rd register
|
364 |
|
|
mask_status_out <= mask_used | mask_options_in; // use of mask register
|
365 |
|
|
mask_alternative_out <= mask_alternative_in; // mask register and fallback register used for alternative purposes
|
366 |
|
|
fallback_use_out <= fallback_use_in; // 0: no fallback, 1: same as first source operand, 2-4: RU, RS, RT
|
367 |
|
|
num_operands_out <= num_operands_in; // number of input operands
|
368 |
|
|
result_type_out <= result_type_in; // type of result: 0: register, 1: system register, 2: memory, 3: other or nothing
|
369 |
|
|
offset_field_out <= offset_field_in; // address offset. 0: none, 1: 8 bit, possibly scaled, 2: 16 bit, 3: 32 bit
|
370 |
|
|
immediate_field_out <= immediate_field_in; // immediate data field. 0: none, 1: 8 bit, 2: 16 bit, 3: 32 or 64 bit
|
371 |
|
|
scale_factor_out <= scale_factor_in; // 00: index is not scaled, 01: index is scaled by operand size, 10: index is scaled by -1
|
372 |
|
|
index_limit_out <= index_limit_in; // The field indicated by offset_field contains a limit to the index
|
373 |
|
|
end
|
374 |
|
|
|
375 |
|
|
always_ff @(posedge clock) begin
|
376 |
|
|
debugport_out <= registers[debug_reada];// read register by debugger
|
377 |
|
|
end
|
378 |
|
|
|
379 |
|
|
endmodule
|