| 1 |
9 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
| 2 |
|
|
// Engineer: Agner Fog
|
| 3 |
|
|
//
|
| 4 |
|
|
// Create Date: 2020-06-13
|
| 5 |
|
|
// Last modified: 2021-08-03
|
| 6 |
|
|
// Module Name: subfunctions
|
| 7 |
|
|
// Project Name: ForwardCom soft core
|
| 8 |
|
|
// Target Devices: Artix 7
|
| 9 |
|
|
// Tool Versions: Vivado v. 2020.1
|
| 10 |
|
|
// License: CERN-OHL-W v. 2 or later
|
| 11 |
|
|
// Description: Subfunctions for calculations:
|
| 12 |
|
|
// bitscan: find highest set bit
|
| 13 |
|
|
// popcount: count number of 1-bits
|
| 14 |
|
|
// reversebits: reverse order of bits
|
| 15 |
|
|
// truth_table_lookup: 3-input truth table
|
| 16 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
| 17 |
|
|
`include "defines.vh"
|
| 18 |
|
|
|
| 19 |
|
|
// 6-input popcount, fits into 6-input LUT.
|
| 20 |
|
|
function [2:0] popcount6;
|
| 21 |
|
|
input [5:0] inp;
|
| 22 |
|
|
integer sum;
|
| 23 |
|
|
sum = 0;
|
| 24 |
|
|
for (integer k = 0; k < 6; k ++) begin
|
| 25 |
|
|
sum += {2'b00, inp[k]};
|
| 26 |
|
|
end
|
| 27 |
|
|
return sum;
|
| 28 |
|
|
endfunction
|
| 29 |
|
|
|
| 30 |
|
|
// 32 input popcount
|
| 31 |
|
|
function [5:0] popcount32;
|
| 32 |
|
|
input [31:0] inp;
|
| 33 |
|
|
logic[5:0] sum;
|
| 34 |
|
|
sum = 0;
|
| 35 |
|
|
for (integer j = 0; j < 5; j++) begin
|
| 36 |
|
|
sum += popcount6(inp[(j*6)+:6]);
|
| 37 |
|
|
end
|
| 38 |
|
|
sum += popcount6({4'b0,inp[31:30]});
|
| 39 |
|
|
return sum;
|
| 40 |
|
|
endfunction
|
| 41 |
|
|
|
| 42 |
|
|
// 64 input popcount
|
| 43 |
|
|
function [6:0] popcount64;
|
| 44 |
|
|
input [63:0] inp;
|
| 45 |
|
|
logic[6:0] sum;
|
| 46 |
|
|
sum = 0;
|
| 47 |
|
|
for (integer j = 0; j < 10; j++) begin
|
| 48 |
|
|
sum += popcount6(inp[(j*6)+:6]);
|
| 49 |
|
|
end
|
| 50 |
|
|
sum += popcount6({2'b0,inp[63:60]});
|
| 51 |
|
|
return sum;
|
| 52 |
|
|
endfunction
|
| 53 |
|
|
|
| 54 |
|
|
// 64 input bit scan
|
| 55 |
|
|
// (also known as leading zero counter or priority encoder)
|
| 56 |
|
|
// return value:
|
| 57 |
|
|
// bitscan64[6:1] is an index to the highest 1-bit in the input
|
| 58 |
|
|
// bitscan64[0] is 1 if all input bits are zero
|
| 59 |
|
|
function [6:0] bitscan64A;
|
| 60 |
|
|
input [63:0] m0; // 64 bits input
|
| 61 |
|
|
logic [5:0] r; // index to highest 1-bit
|
| 62 |
|
|
logic iszero; // indicates that input is zero
|
| 63 |
|
|
|
| 64 |
|
|
logic [15:0] m1; // subdivision
|
| 65 |
|
|
logic [3:0] m2; // subdivision
|
| 66 |
|
|
r = 0;
|
| 67 |
|
|
|
| 68 |
|
|
// divide into four blocks of 16 bits each
|
| 69 |
|
|
if (|m0[63:48]) begin
|
| 70 |
|
|
r[5:4] = 3; // r[5:4] indicates which 16-bit block contains the highest 1-bit
|
| 71 |
|
|
m1 = m0[63:48]; // m1 is the 16-bit block that contains the highest 1-bit
|
| 72 |
|
|
end else if (|m0[47:32]) begin
|
| 73 |
|
|
r[5:4] = 2;
|
| 74 |
|
|
m1 = m0[47:32];
|
| 75 |
|
|
end else if (|m0[31:16]) begin
|
| 76 |
|
|
r[5:4] = 1;
|
| 77 |
|
|
m1 = m0[31:16];
|
| 78 |
|
|
end else begin
|
| 79 |
|
|
r[5:4] = 0;
|
| 80 |
|
|
m1 = m0[15:0];
|
| 81 |
|
|
end
|
| 82 |
|
|
|
| 83 |
|
|
// now subdivide m1 into four blocks of 4 bits each
|
| 84 |
|
|
if (|m1[15:12]) begin
|
| 85 |
|
|
r[3:2] = 3; // r[3:2] indicates which 4-bit block of m1 contains the highest 1-bit
|
| 86 |
|
|
m2 = m1[15:12]; // m2 is the 4-bit block that contains the highest 1-bit
|
| 87 |
|
|
end else if (|m1[11:8]) begin
|
| 88 |
|
|
m2 = m1[11:8];
|
| 89 |
|
|
r[3:2] = 2;
|
| 90 |
|
|
end else if (|m1[7:4]) begin
|
| 91 |
|
|
m2 = m1[7:4];
|
| 92 |
|
|
r[3:2] = 1;
|
| 93 |
|
|
end else begin
|
| 94 |
|
|
m2 = m1[3:0];
|
| 95 |
|
|
r[3:2] = 0;
|
| 96 |
|
|
end
|
| 97 |
|
|
|
| 98 |
|
|
// finally, test each of the four bits in m2
|
| 99 |
|
|
if (m2[3]) r[1:0] = 3; // r[1:0] indicates which of the 4 bit bits in m2 contains the highest 1-bit
|
| 100 |
|
|
else if (m2[2]) r[1:0] = 2;
|
| 101 |
|
|
else if (m2[1]) r[1:0] = 1;
|
| 102 |
|
|
else r[1:0] = 0;
|
| 103 |
|
|
|
| 104 |
|
|
// test if everything is zero
|
| 105 |
|
|
iszero = ~|m2;
|
| 106 |
|
|
|
| 107 |
|
|
// return two values
|
| 108 |
|
|
return {r, iszero};
|
| 109 |
|
|
endfunction
|
| 110 |
|
|
|
| 111 |
|
|
|
| 112 |
|
|
// 64 input bit scan, alternative implementation
|
| 113 |
|
|
// (this one is slightly slower)
|
| 114 |
|
|
// return value:
|
| 115 |
|
|
// bitscan64[6:1] is an index to the highest 1-bit in the input
|
| 116 |
|
|
// bitscan64[0] is 1 if all input bits are zero
|
| 117 |
|
|
function [6:0] bitscan64B;
|
| 118 |
|
|
input [63:0] m0; // 64 bits input
|
| 119 |
|
|
logic [5:0] r; // index to highest 1-bit
|
| 120 |
|
|
logic iszero; // indicates that input is zero
|
| 121 |
|
|
logic [3:0] m1; // subdivision flags
|
| 122 |
|
|
logic [3:0] m2; // subdivision
|
| 123 |
|
|
r = 0;
|
| 124 |
|
|
|
| 125 |
|
|
if (|m0[63:48]) begin
|
| 126 |
|
|
r[5:4] = 3;
|
| 127 |
|
|
m1[3] = |m0[63:60];
|
| 128 |
|
|
m1[2] = |m0[59:56];
|
| 129 |
|
|
m1[1] = |m0[55:52];
|
| 130 |
|
|
m1[0] = |m0[51:48];
|
| 131 |
|
|
|
| 132 |
|
|
end else if (|m0[47:32]) begin
|
| 133 |
|
|
r[5:4] = 2;
|
| 134 |
|
|
m1[3] = |m0[47:44];
|
| 135 |
|
|
m1[2] = |m0[43:40];
|
| 136 |
|
|
m1[1] = |m0[39:36];
|
| 137 |
|
|
m1[0] = |m0[35:32];
|
| 138 |
|
|
|
| 139 |
|
|
end else if (|m0[31:16]) begin
|
| 140 |
|
|
r[5:4] = 1;
|
| 141 |
|
|
m1[3] = |m0[31:28];
|
| 142 |
|
|
m1[2] = |m0[27:24];
|
| 143 |
|
|
m1[1] = |m0[23:20];
|
| 144 |
|
|
m1[0] = |m0[19:16];
|
| 145 |
|
|
|
| 146 |
|
|
end else begin
|
| 147 |
|
|
r[5:4] = 0;
|
| 148 |
|
|
m1[3] = |m0[15:12];
|
| 149 |
|
|
m1[2] = |m0[11:8];
|
| 150 |
|
|
m1[1] = |m0[7:4];
|
| 151 |
|
|
m1[0] = |m0[3:0];
|
| 152 |
|
|
end
|
| 153 |
|
|
|
| 154 |
|
|
if (m1[3]) begin
|
| 155 |
|
|
r[3:2] = 3;
|
| 156 |
|
|
end else if (m1[2]) begin
|
| 157 |
|
|
r[3:2] = 2;
|
| 158 |
|
|
end else if (m1[1]) begin
|
| 159 |
|
|
r[3:2] = 1;
|
| 160 |
|
|
end else begin
|
| 161 |
|
|
r[3:2] = 0;
|
| 162 |
|
|
end
|
| 163 |
|
|
|
| 164 |
|
|
// extract the 4-bit block that contains the highest 1-bit
|
| 165 |
|
|
m2 = m0[{r[5:2],2'b0}+: 4];
|
| 166 |
|
|
|
| 167 |
|
|
if (m2[3]) r[1:0] = 3;
|
| 168 |
|
|
else if (m2[2]) r[1:0] = 2;
|
| 169 |
|
|
else if (m2[1]) r[1:0] = 1;
|
| 170 |
|
|
else r[1:0] = 0;
|
| 171 |
|
|
|
| 172 |
|
|
// test if everything is zero
|
| 173 |
|
|
iszero = ~|m2;
|
| 174 |
|
|
|
| 175 |
|
|
// return two values
|
| 176 |
|
|
return {r, iszero};
|
| 177 |
|
|
endfunction
|
| 178 |
|
|
|
| 179 |
|
|
|
| 180 |
|
|
// 64 input bit scan, alternative implementation
|
| 181 |
|
|
// (this one appears to be the fastest)
|
| 182 |
|
|
// return value:
|
| 183 |
|
|
// bitscan64[6:1] is an index to the highest 1-bit in the input
|
| 184 |
|
|
// bitscan64[0] is 1 if all input bits are zero
|
| 185 |
|
|
function [6:0] bitscan64C;
|
| 186 |
|
|
input [63:0] m0; // 64 bits input
|
| 187 |
|
|
logic [5:0] r; // index to highest 1-bit
|
| 188 |
|
|
logic iszero; // indicates that input is zero
|
| 189 |
|
|
logic [15:0] m1; // subdivision flags
|
| 190 |
|
|
logic [3:0] m2; // subdivision
|
| 191 |
|
|
logic [3:0] m3; // subdivision
|
| 192 |
|
|
r = 0;
|
| 193 |
|
|
|
| 194 |
|
|
m1[15] = |m0[63:60];
|
| 195 |
|
|
m1[14] = |m0[59:56];
|
| 196 |
|
|
m1[13] = |m0[55:52];
|
| 197 |
|
|
m1[12] = |m0[51:48];
|
| 198 |
|
|
m1[11] = |m0[47:44];
|
| 199 |
|
|
m1[10] = |m0[43:40];
|
| 200 |
|
|
m1[9] = |m0[39:36];
|
| 201 |
|
|
m1[8] = |m0[35:32];
|
| 202 |
|
|
m1[7] = |m0[31:28];
|
| 203 |
|
|
m1[6] = |m0[27:24];
|
| 204 |
|
|
m1[5] = |m0[23:20];
|
| 205 |
|
|
m1[4] = |m0[19:16];
|
| 206 |
|
|
m1[3] = |m0[15:12];
|
| 207 |
|
|
m1[2] = |m0[11:8];
|
| 208 |
|
|
m1[1] = |m0[7:4];
|
| 209 |
|
|
m1[0] = |m0[3:0];
|
| 210 |
|
|
|
| 211 |
|
|
m2[3] = |m1[15:12];
|
| 212 |
|
|
m2[2] = |m1[11:8];
|
| 213 |
|
|
m2[1] = |m1[7:4];
|
| 214 |
|
|
m2[1] = |m1[3:0];
|
| 215 |
|
|
|
| 216 |
|
|
if (m2[3]) begin
|
| 217 |
|
|
r[5:4] = 3;
|
| 218 |
|
|
if (m1[15]) r[3:2] = 3;
|
| 219 |
|
|
else if (m1[14]) r[3:2] = 2;
|
| 220 |
|
|
else if (m1[13]) r[3:2] = 1;
|
| 221 |
|
|
else r[3:2] = 0;
|
| 222 |
|
|
|
| 223 |
|
|
end else if (m2[2]) begin
|
| 224 |
|
|
r[5:4] = 2;
|
| 225 |
|
|
if (m1[11]) r[3:2] = 3;
|
| 226 |
|
|
else if (m1[10]) r[3:2] = 2;
|
| 227 |
|
|
else if (m1[9]) r[3:2] = 1;
|
| 228 |
|
|
else r[3:2] = 0;
|
| 229 |
|
|
|
| 230 |
|
|
end else if (m2[1]) begin
|
| 231 |
|
|
r[5:4] = 1;
|
| 232 |
|
|
if (m1[7]) r[3:2] = 3;
|
| 233 |
|
|
else if (m1[6]) r[3:2] = 2;
|
| 234 |
|
|
else if (m1[5]) r[3:2] = 1;
|
| 235 |
|
|
else r[3:2] = 0;
|
| 236 |
|
|
|
| 237 |
|
|
end else begin
|
| 238 |
|
|
r[5:4] = 0;
|
| 239 |
|
|
if (m1[3]) r[3:2] = 3;
|
| 240 |
|
|
else if (m1[2]) r[3:2] = 2;
|
| 241 |
|
|
else if (m1[1]) r[3:2] = 1;
|
| 242 |
|
|
else r[3:2] = 0;
|
| 243 |
|
|
|
| 244 |
|
|
end
|
| 245 |
|
|
|
| 246 |
|
|
// extract the 4-bit block that contains the highest 1-bit
|
| 247 |
|
|
m3 = m0[{r[5:2],2'b0}+: 4];
|
| 248 |
|
|
|
| 249 |
|
|
if (m3[3]) r[1:0] = 3;
|
| 250 |
|
|
else if (m3[2]) r[1:0] = 2;
|
| 251 |
|
|
else if (m3[1]) r[1:0] = 1;
|
| 252 |
|
|
else r[1:0] = 0;
|
| 253 |
|
|
|
| 254 |
|
|
// test if everything is zero
|
| 255 |
|
|
iszero = ~|m2;
|
| 256 |
|
|
|
| 257 |
|
|
// return two values
|
| 258 |
|
|
return {r, iszero};
|
| 259 |
|
|
endfunction
|
| 260 |
|
|
|
| 261 |
|
|
|
| 262 |
|
|
// This function finds the index to a single bit in a 64-bit input
|
| 263 |
|
|
// where only one bit is set. Used when bitscan relies on the output of roundp2
|
| 264 |
|
|
// Use the formula b = a & ~(a-1) to isolate the lowest set bit before
|
| 265 |
|
|
// calling bitindex. Reverse the order of the bits to find the highest set bit.
|
| 266 |
|
|
// The return value is {r, iszero} where r is the position of the single 1-bit,
|
| 267 |
|
|
// iszero is 1 if all input bits are zero.
|
| 268 |
|
|
// Note that this function does not work if more than one input bit is 1.
|
| 269 |
|
|
function [6:0] bitindex;
|
| 270 |
|
|
input [63:0] m0; // 64 bits input
|
| 271 |
|
|
logic [5:0] r; // index to highest 1-bit
|
| 272 |
|
|
logic iszero; // indicates that input is zero
|
| 273 |
|
|
|
| 274 |
|
|
logic [15:0] m2; // OR combination of groups of four bits
|
| 275 |
|
|
|
| 276 |
|
|
m2[15] = |m0[63:60];
|
| 277 |
|
|
m2[14] = |m0[59:56];
|
| 278 |
|
|
m2[13] = |m0[55:52];
|
| 279 |
|
|
m2[12] = |m0[51:48];
|
| 280 |
|
|
|
| 281 |
|
|
m2[11] = |m0[47:44];
|
| 282 |
|
|
m2[10] = |m0[43:40];
|
| 283 |
|
|
m2[9] = |m0[39:36];
|
| 284 |
|
|
m2[8] = |m0[35:32];
|
| 285 |
|
|
|
| 286 |
|
|
m2[7] = |m0[31:28];
|
| 287 |
|
|
m2[6] = |m0[27:24];
|
| 288 |
|
|
m2[5] = |m0[23:20];
|
| 289 |
|
|
m2[4] = |m0[19:16];
|
| 290 |
|
|
|
| 291 |
|
|
m2[3] = |m0[15:12];
|
| 292 |
|
|
m2[2] = |m0[11:8];
|
| 293 |
|
|
m2[1] = |m0[7:4];
|
| 294 |
|
|
m2[0] = 0;//|m0[3:0]; // not used
|
| 295 |
|
|
|
| 296 |
|
|
r[5] = m2[8]|m2[9]|m2[10]|m2[11]|m2[12]|m2[13]|m2[14]|m2[15];
|
| 297 |
|
|
r[4] = m2[4]|m2[5]|m2[6]|m2[7]|m2[12]|m2[13]|m2[14]|m2[15];
|
| 298 |
|
|
r[3] = m2[2]|m2[3]|m2[6]|m2[7]|m2[10]|m2[11]|m2[14]|m2[15];
|
| 299 |
|
|
r[2] = m2[1]|m2[3]|m2[5]|m2[7]|m2[9]|m2[11]|m2[13]|m2[15];
|
| 300 |
|
|
r[1] = m0[2]|m0[3]|m0[6]|m0[7]|m0[10]|m0[11]|m0[14]|m0[15]|
|
| 301 |
|
|
m0[18]|m0[19]|m0[22]|m0[23]|m0[26]|m0[27]|m0[30]|m0[31]|
|
| 302 |
|
|
m0[34]|m0[35]|m0[38]|m0[39]|m0[42]|m0[43]|m0[46]|m0[47]|
|
| 303 |
|
|
m0[50]|m0[51]|m0[54]|m0[55]|m0[58]|m0[59]|m0[62]|m0[63];
|
| 304 |
|
|
r[0] = m0[1]|m0[3]|m0[5]|m0[7]|m0[9]|m0[11]|m0[13]|m0[15]|
|
| 305 |
|
|
m0[17]|m0[19]|m0[21]|m0[23]|m0[25]|m0[27]|m0[29]|m0[31]|
|
| 306 |
|
|
m0[33]|m0[35]|m0[37]|m0[39]|m0[41]|m0[43]|m0[45]|m0[47]|
|
| 307 |
|
|
m0[49]|m0[51]|m0[53]|m0[55]|m0[57]|m0[59]|m0[61]|m0[63];
|
| 308 |
|
|
|
| 309 |
|
|
iszero = (~|r) && ~(m0[0]);
|
| 310 |
|
|
|
| 311 |
|
|
// return two values
|
| 312 |
|
|
return {r, iszero};
|
| 313 |
|
|
endfunction
|
| 314 |
|
|
|
| 315 |
|
|
|
| 316 |
|
|
// reverse order of bits
|
| 317 |
|
|
function [7:0] reversebits8;
|
| 318 |
|
|
input [7:0] in; // 8 bits input
|
| 319 |
|
|
return {in[0],in[1],in[2],in[3],in[4],in[5],in[6],in[7]};
|
| 320 |
|
|
endfunction
|
| 321 |
|
|
|
| 322 |
|
|
// reverse order of bits
|
| 323 |
|
|
function [15:0] reversebits16;
|
| 324 |
|
|
input [15:0] in; // 16 bits input
|
| 325 |
|
|
return {reversebits8(in[7:0]),reversebits8(in[15:8])};
|
| 326 |
|
|
endfunction
|
| 327 |
|
|
|
| 328 |
|
|
// reverse order of bits
|
| 329 |
|
|
function [31:0] reversebits32;
|
| 330 |
|
|
input [31:0] in; // 32 bits input
|
| 331 |
|
|
return {reversebits8(in[7:0]),reversebits8(in[15:8]),reversebits8(in[23:16]),reversebits8(in[31:24])};
|
| 332 |
|
|
endfunction
|
| 333 |
|
|
|
| 334 |
|
|
// reverse order of bits
|
| 335 |
|
|
function [63:0] reversebits64;
|
| 336 |
|
|
input [63:0] in; // 32 bits input
|
| 337 |
|
|
return {reversebits8(in[7:0]),reversebits8(in[15:8]),reversebits8(in[23:16]),reversebits8(in[31:24]),
|
| 338 |
|
|
reversebits8(in[39:32]),reversebits8(in[47:40]),reversebits8(in[55:48]),reversebits8(in[63:56])};
|
| 339 |
|
|
endfunction
|
| 340 |
|
|
|
| 341 |
|
|
// Truth table lookup with three inputs for truth_tab3 instruction
|
| 342 |
|
|
function [`RB1:0] truth_table_lookup;
|
| 343 |
|
|
input [`RB1:0] in1; // input 1
|
| 344 |
|
|
input [`RB1:0] in2; // input 2
|
| 345 |
|
|
input [`RB1:0] in3; // input 3
|
| 346 |
|
|
input [7:0] ttable; // 8 bit truth table
|
| 347 |
|
|
logic [`RB1:0] res; // result
|
| 348 |
|
|
for (integer k = 0; k < `RB; k++) begin // loop through bits
|
| 349 |
|
|
res[k] = ttable[{in3[k],in2[k],in1[k]}]; // lookup with 3 bits index
|
| 350 |
|
|
end
|
| 351 |
|
|
truth_table_lookup = res;// result
|
| 352 |
|
|
endfunction
|