1 |
11 |
Agner |
//////////////////////////////////////////////////////////////////////////////////
|
2 |
|
|
// Engineer: Agner Fog
|
3 |
|
|
//
|
4 |
|
|
// Create date: 2020-11-01
|
5 |
|
|
// Last modified: 2021-07-02
|
6 |
|
|
// Module name: uart_and_fifo
|
7 |
|
|
// Project name: ForwardCom soft core
|
8 |
|
|
// Tool versions: Vivado 2020.1
|
9 |
|
|
// License: CERN-OHL-W v. 2 or later
|
10 |
|
|
// Description: UART: RS232 serial interface
|
11 |
|
|
// 8 data bits, 1 stop bit, no parity
|
12 |
|
|
// Description: fifo_buffer: First-in-first-out byte queue.
|
13 |
|
|
//
|
14 |
|
|
//////////////////////////////////////////////////////////////////////////////////
|
15 |
|
|
|
16 |
|
|
// CLOCK_FREQUENCY and BAUD_RATE defined in defines.vh:
|
17 |
|
|
`include "defines.vh"
|
18 |
|
|
|
19 |
|
|
// UART receiver
|
20 |
|
|
module UART_RX (
|
21 |
|
|
input reset, // clear buffer, reset everything
|
22 |
|
|
input clock, // clock at `CLOCK_RATE
|
23 |
|
|
input rx_in, // RX input
|
24 |
|
|
output reg receive_complete_out, // byte received. Will be high for 1 clock cycle after the middle of the stop bit
|
25 |
|
|
output reg error_out, // transmission error. Remains high until reset in case of error
|
26 |
|
|
output reg [7:0] byte_out // byte output
|
27 |
|
|
);
|
28 |
|
|
|
29 |
|
|
// clock count per bit
|
30 |
|
|
localparam CLKS_PER_BIT = `CLOCK_FREQUENCY / `BAUD_RATE;
|
31 |
|
|
|
32 |
|
|
// state names
|
33 |
|
|
localparam STATE_IDLE = 4'b0000; // wait for start bit
|
34 |
|
|
localparam STATE_START_BIT = 4'b0001; // start bit detected
|
35 |
|
|
localparam STATE_DATA_0 = 4'b1000; // read first data bit
|
36 |
|
|
localparam STATE_DATA_7 = 4'b1111; // read last data bit
|
37 |
|
|
localparam STATE_STOP_BIT = 4'b0010; // read stop bit
|
38 |
|
|
|
39 |
|
|
reg [$clog2(CLKS_PER_BIT)-1:0] clock_counter; // clock counter for length of one bit
|
40 |
|
|
reg [3:0] state; // state
|
41 |
|
|
|
42 |
|
|
|
43 |
|
|
// state machine for UART receiver
|
44 |
|
|
always_ff @(posedge clock) begin
|
45 |
|
|
|
46 |
|
|
if (reset) begin
|
47 |
|
|
// reset everything
|
48 |
|
|
state <= STATE_IDLE;
|
49 |
|
|
receive_complete_out <= 0;
|
50 |
|
|
error_out <= 0;
|
51 |
|
|
clock_counter <= 0;
|
52 |
|
|
byte_out <= 0;
|
53 |
|
|
|
54 |
|
|
end else if (state == STATE_IDLE) begin
|
55 |
|
|
// wait for start bit
|
56 |
|
|
receive_complete_out <= 0;
|
57 |
|
|
clock_counter <= 0;
|
58 |
|
|
if (rx_in == 0) begin // Start bit detected
|
59 |
|
|
state <= STATE_START_BIT;
|
60 |
|
|
end
|
61 |
|
|
|
62 |
|
|
end else if (state == STATE_START_BIT) begin
|
63 |
|
|
// start bit detected. wait until middle of start bit
|
64 |
|
|
if (clock_counter == CLKS_PER_BIT / 2) begin // middle of start bit
|
65 |
|
|
if (rx_in == 0) begin
|
66 |
|
|
clock_counter <= 0; // reset counter to the middle of the start bit
|
67 |
|
|
state <= STATE_DATA_0;
|
68 |
|
|
end else begin
|
69 |
|
|
error_out <= 1; // error. start bit shorter than a half period. possibly wrong BAUD rate
|
70 |
|
|
state <= STATE_IDLE;
|
71 |
|
|
end
|
72 |
|
|
end else begin
|
73 |
|
|
clock_counter <= clock_counter + 1; // count time until next bit
|
74 |
|
|
end
|
75 |
|
|
|
76 |
|
|
end else if (state[3]) begin // this covers STATE_DATA_0 ... STATE_DATA_7
|
77 |
|
|
// read eight data bits
|
78 |
|
|
|
79 |
|
|
if (clock_counter < CLKS_PER_BIT-1) begin
|
80 |
|
|
clock_counter <= clock_counter + 1; // count time until next bit
|
81 |
|
|
end else begin // middle of data bit. sample bit and go to next state
|
82 |
|
|
clock_counter <= 0;
|
83 |
|
|
byte_out[state[2:0]] <= rx_in; // save data bit
|
84 |
|
|
if (state == STATE_DATA_7) state <= STATE_STOP_BIT; // next state is stop bit
|
85 |
|
|
else state <= state + 1; // next data bit
|
86 |
|
|
end
|
87 |
|
|
|
88 |
|
|
end else if (state == STATE_STOP_BIT) begin
|
89 |
|
|
// expecting stop bit
|
90 |
|
|
if (clock_counter < CLKS_PER_BIT-1) begin
|
91 |
|
|
clock_counter <= clock_counter + 1; // count time until stop bit
|
92 |
|
|
end else begin // middle of stop bit
|
93 |
|
|
if (rx_in == 0) begin // error: stop bit missing
|
94 |
|
|
error_out <= 1;
|
95 |
|
|
state <= STATE_IDLE;
|
96 |
|
|
end else begin
|
97 |
|
|
receive_complete_out <= 1; // byte received successfully
|
98 |
|
|
clock_counter <= 0;
|
99 |
|
|
// We are in the middle of the stop bit.
|
100 |
|
|
// Go to state IDLE while waiting for a possible next start bit.
|
101 |
|
|
// This is expected to last a half period
|
102 |
|
|
state <= STATE_IDLE;
|
103 |
|
|
end
|
104 |
|
|
end
|
105 |
|
|
end else begin
|
106 |
|
|
// Error. undefined state
|
107 |
|
|
error_out <= 1;
|
108 |
|
|
state <= STATE_IDLE;
|
109 |
|
|
end
|
110 |
|
|
end
|
111 |
|
|
endmodule // UART_RX
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
// UART transmitter
|
115 |
|
|
module UART_TX (
|
116 |
|
|
input reset, // reset
|
117 |
|
|
input clock, // clock at `CLOCK_RATE
|
118 |
|
|
input start_in, // command to send one byte
|
119 |
|
|
input [7:0] byte_in, // byte input
|
120 |
|
|
output reg active_out, // is busy
|
121 |
|
|
output reg tx_out, // TX output
|
122 |
|
|
output reg done_out // will be high for one clock cycle shortly before the end of the stop bit
|
123 |
|
|
); // You may use done_out as a signal to prepare the next byte
|
124 |
|
|
|
125 |
|
|
// clock count per bit
|
126 |
|
|
localparam CLKS_PER_BIT = `CLOCK_FREQUENCY / `BAUD_RATE;
|
127 |
|
|
|
128 |
|
|
// state names
|
129 |
|
|
localparam STATE_IDLE = 4'b0000; // wait for start bit
|
130 |
|
|
localparam STATE_START_BIT = 4'b0001; // start bit detected
|
131 |
|
|
localparam STATE_DATA_0 = 4'b1000; // read first data bit
|
132 |
|
|
localparam STATE_DATA_7 = 4'b1111; // read last data bit
|
133 |
|
|
localparam STATE_STOP_BIT = 4'b0010; // read stop bit
|
134 |
|
|
|
135 |
|
|
reg [3:0] state; // state
|
136 |
|
|
reg [$clog2(CLKS_PER_BIT)-1:0] clock_counter; // clock counter for length of one bit
|
137 |
|
|
reg [7:0] byte_data; // copy of byte to transmit
|
138 |
|
|
|
139 |
|
|
|
140 |
|
|
// state machine
|
141 |
|
|
always_ff @(posedge clock) begin
|
142 |
|
|
if (reset) begin
|
143 |
|
|
// reset everything
|
144 |
|
|
state <= STATE_IDLE;
|
145 |
|
|
clock_counter <= 0;
|
146 |
|
|
active_out <= 0;
|
147 |
|
|
done_out <= 0;
|
148 |
|
|
tx_out <= 1; // output must be high when idle
|
149 |
|
|
|
150 |
|
|
end else if (state == STATE_IDLE) begin
|
151 |
|
|
clock_counter <= 0;
|
152 |
|
|
done_out <= 0;
|
153 |
|
|
tx_out <= 1; // output must be high when idle
|
154 |
|
|
if (start_in) begin // start sending a byte
|
155 |
|
|
active_out <= 1;
|
156 |
|
|
byte_data <= byte_in; // copy input byte
|
157 |
|
|
state <= STATE_START_BIT;
|
158 |
|
|
end
|
159 |
|
|
|
160 |
|
|
end else if (state == STATE_START_BIT) begin
|
161 |
|
|
// start bit must be 0
|
162 |
|
|
tx_out <= 0;
|
163 |
|
|
|
164 |
|
|
// Wait for start bit to finish
|
165 |
|
|
if (clock_counter < CLKS_PER_BIT-1) begin
|
166 |
|
|
clock_counter <= clock_counter + 1;
|
167 |
|
|
end else begin
|
168 |
|
|
clock_counter <= 0;
|
169 |
|
|
state <= STATE_DATA_0; // go to first data bit
|
170 |
|
|
end
|
171 |
|
|
|
172 |
|
|
end else if (state[3]) begin // this covers STATE_DATA_0 ... STATE_DATA_7
|
173 |
|
|
// write eight data bits
|
174 |
|
|
tx_out <= byte_data[state[2:0]]; // send one data bit
|
175 |
|
|
|
176 |
|
|
// Wait for data bit to finish
|
177 |
|
|
if (clock_counter < CLKS_PER_BIT-1) begin
|
178 |
|
|
clock_counter <= clock_counter + 1;
|
179 |
|
|
end else begin
|
180 |
|
|
clock_counter <= 0;
|
181 |
|
|
if (state == STATE_DATA_7) state <= STATE_STOP_BIT; // next bit is stop bit
|
182 |
|
|
else state <= state + 1; // next bit is data bit
|
183 |
|
|
end
|
184 |
|
|
|
185 |
|
|
end else if (state == STATE_STOP_BIT) begin
|
186 |
|
|
// send stop bit
|
187 |
|
|
tx_out <= 1; // stop bit must be 1
|
188 |
|
|
|
189 |
|
|
// send request for next byte shortly before finished with this byte
|
190 |
|
|
if (clock_counter == CLKS_PER_BIT-4) begin
|
191 |
|
|
done_out <= 1; // set done_out high for one clock cycle to request next byte from buffer
|
192 |
|
|
end else begin
|
193 |
|
|
done_out <= 0;
|
194 |
|
|
end
|
195 |
|
|
|
196 |
|
|
// Wait for stop bit to finish
|
197 |
|
|
if (clock_counter < CLKS_PER_BIT-1) begin
|
198 |
|
|
clock_counter <= clock_counter + 1;
|
199 |
|
|
end else begin
|
200 |
|
|
clock_counter <= 0;
|
201 |
|
|
begin
|
202 |
|
|
active_out <= 0;
|
203 |
|
|
state <= STATE_IDLE; // wait at least one clock for next start_in signal
|
204 |
|
|
end
|
205 |
|
|
end
|
206 |
|
|
|
207 |
|
|
end else begin
|
208 |
|
|
// illegal state. reset
|
209 |
|
|
state <= STATE_IDLE;
|
210 |
|
|
clock_counter <= 0;
|
211 |
|
|
active_out <= 0;
|
212 |
|
|
done_out <= 0;
|
213 |
|
|
tx_out <= 1;
|
214 |
|
|
end
|
215 |
|
|
end
|
216 |
|
|
|
217 |
|
|
|
218 |
|
|
endmodule
|
219 |
|
|
|
220 |
|
|
|
221 |
|
|
/******************************************************************************
|
222 |
|
|
* First-in-first-out byte queue.
|
223 |
|
|
*
|
224 |
|
|
* This queue is implemented as a circular buffer.
|
225 |
|
|
* The size can be any power of 2.
|
226 |
|
|
* It may be implemented as distributed RAM or block RAM if the size is large.
|
227 |
|
|
* (Vivado does this automatically)
|
228 |
|
|
* It is possible to read and write simultaneously as long as the queue is not
|
229 |
|
|
* empty. It is not possible to pass a byte directly from input to output without
|
230 |
|
|
* a delay of two clocks if the buffer is empty.
|
231 |
|
|
* The input, byte_in, is placed at the tail of the queue at the rising edge of clock.
|
232 |
|
|
* The output, byte_out, is prefetched so that it is ready to read before the
|
233 |
|
|
* clock edge. The read_next input signal will remove one byte from the head of
|
234 |
|
|
* the queue and put the next byte into byte_out.
|
235 |
|
|
* The data_ready_out output tells if it is possible to read a byte
|
236 |
|
|
******************************************************************************/
|
237 |
|
|
|
238 |
|
|
module fifo_buffer
|
239 |
|
|
#(parameter size_log2 = 10) // buffer size = 2**size_log2 bytes
|
240 |
|
|
(
|
241 |
|
|
input reset, // clear buffer and reset error condition
|
242 |
|
|
input reset_error, // reset error condition
|
243 |
|
|
input clock, // clock at `CLOCK_RATE
|
244 |
|
|
input read_next, // read next byte from buffer
|
245 |
|
|
input write, // write one byte to buffer
|
246 |
|
|
input [7:0] byte_in, // serial byte input
|
247 |
|
|
output reg [7:0] byte_out, // serial byte output prefetched
|
248 |
|
|
output reg data_ready_out, // the buffer contains at least one byte
|
249 |
|
|
output reg overflow, // attempt to write to full buffer
|
250 |
|
|
output reg underflow, // attempt to read from empty buffer
|
251 |
|
|
output reg [size_log2-1:0] num // number of bytes currently in buffer
|
252 |
|
|
);
|
253 |
|
|
|
254 |
|
|
reg [7:0] buffer[0 : (2**size_log2)-1]; // circular buffer
|
255 |
|
|
reg [size_log2-1:0] head; // pointer to head position where bytes are extracted
|
256 |
|
|
reg [size_log2-1:0] tail; // pointer to tail position where bytes are inserted
|
257 |
|
|
|
258 |
|
|
logic [size_log2-1:0] head_plus_1; // (head + 1) modulo 2**(size_log2)
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
always_ff @(posedge clock) begin
|
262 |
|
|
|
263 |
|
|
if (reset) begin
|
264 |
|
|
// clear buffer, reset everything
|
265 |
|
|
head <= 0;
|
266 |
|
|
tail <= 0;
|
267 |
|
|
byte_out <= 0;
|
268 |
|
|
num <= 0;
|
269 |
|
|
data_ready_out <= 0;
|
270 |
|
|
overflow <= 0;
|
271 |
|
|
underflow <= 0;
|
272 |
|
|
end else if (reset_error) begin
|
273 |
|
|
// reset error flags
|
274 |
|
|
overflow <= 0;
|
275 |
|
|
underflow <= 0;
|
276 |
|
|
end else begin
|
277 |
|
|
if (write) begin
|
278 |
|
|
// insert a byte in buffer
|
279 |
|
|
if (&num) begin
|
280 |
|
|
// buffer is full
|
281 |
|
|
overflow <= 1;
|
282 |
|
|
end else begin
|
283 |
|
|
// buffer is not full
|
284 |
|
|
buffer[tail] <= byte_in; // insert at tail position
|
285 |
|
|
|
286 |
|
|
// advance tail
|
287 |
|
|
tail <= tail + 1; // this will wrap around because size is a power of 2
|
288 |
|
|
// count bytes in buffer
|
289 |
|
|
if (!read_next) begin
|
290 |
|
|
num <= num + 1;
|
291 |
|
|
end
|
292 |
|
|
end
|
293 |
|
|
end
|
294 |
|
|
|
295 |
|
|
// make output ready
|
296 |
|
|
if (num == 0 || read_next && num == 1) begin
|
297 |
|
|
byte_out <= 0;
|
298 |
|
|
data_ready_out <= 0;
|
299 |
|
|
end else if (read_next) begin
|
300 |
|
|
byte_out <= buffer[head_plus_1]; // read byte and make next byte ready from head position
|
301 |
|
|
data_ready_out <= 1;
|
302 |
|
|
end else begin
|
303 |
|
|
byte_out <= buffer[head]; // make byte read ready from head position
|
304 |
|
|
data_ready_out <= 1;
|
305 |
|
|
end
|
306 |
|
|
|
307 |
|
|
if (read_next) begin
|
308 |
|
|
// read a byte from buffer
|
309 |
|
|
if (~data_ready_out) begin // reading from empty buffer
|
310 |
|
|
underflow <= 1;
|
311 |
|
|
end else begin
|
312 |
|
|
// advance head
|
313 |
|
|
head <= head_plus_1; // this will wrap around because size is a power of 2
|
314 |
|
|
// count bytes in buffer
|
315 |
|
|
if (!write) begin
|
316 |
|
|
num <= num - 1;
|
317 |
|
|
end
|
318 |
|
|
end
|
319 |
|
|
end
|
320 |
|
|
end
|
321 |
|
|
end
|
322 |
|
|
|
323 |
|
|
|
324 |
|
|
always_comb begin
|
325 |
|
|
head_plus_1 = head + 1; // (head + 1) with size_log2 bits
|
326 |
|
|
end
|
327 |
|
|
|
328 |
|
|
endmodule
|