| 1 |
2 |
peteralieb |
//-----------------------------------------------------------------------------
|
| 2 |
|
|
// Title : 8-bit Client to Local-link Receiver FIFO
|
| 3 |
|
|
// Project : Virtex-5 Ethernet MAC Wrappers
|
| 4 |
|
|
//-----------------------------------------------------------------------------
|
| 5 |
|
|
// File : rx_client_fifo_8.v
|
| 6 |
|
|
// Author : Xilinx
|
| 7 |
|
|
//-----------------------------------------------------------------------------
|
| 8 |
|
|
// Copyright (c) 2004-2008 by Xilinx, Inc. All rights reserved.
|
| 9 |
|
|
// This text/file contains proprietary, confidential
|
| 10 |
|
|
// information of Xilinx, Inc., is distributed under license
|
| 11 |
|
|
// from Xilinx, Inc., and may be used, copied and/or
|
| 12 |
|
|
// disclosed only pursuant to the terms of a valid license
|
| 13 |
|
|
// agreement with Xilinx, Inc. Xilinx hereby grants you
|
| 14 |
|
|
// a license to use this text/file solely for design, simulation,
|
| 15 |
|
|
// implementation and creation of design files limited
|
| 16 |
|
|
// to Xilinx devices or technologies. Use with non-Xilinx
|
| 17 |
|
|
// devices or technologies is expressly prohibited and
|
| 18 |
|
|
// immediately terminates your license unless covered by
|
| 19 |
|
|
// a separate agreement.
|
| 20 |
|
|
//
|
| 21 |
|
|
// Xilinx is providing this design, code, or information
|
| 22 |
|
|
// "as is" solely for use in developing programs and
|
| 23 |
|
|
// solutions for Xilinx devices. By providing this design,
|
| 24 |
|
|
// code, or information as one possible implementation of
|
| 25 |
|
|
// this feature, application or standard, Xilinx is making no
|
| 26 |
|
|
// representation that this implementation is free from any
|
| 27 |
|
|
// claims of infringement. You are responsible for
|
| 28 |
|
|
// obtaining any rights you may require for your implementation.
|
| 29 |
|
|
// Xilinx expressly disclaims any warranty whatsoever with
|
| 30 |
|
|
// respect to the adequacy of the implementation, including
|
| 31 |
|
|
// but not limited to any warranties or representations that this
|
| 32 |
|
|
// implementation is free from claims of infringement, implied
|
| 33 |
|
|
// warranties of merchantability or fitness for a particular
|
| 34 |
|
|
// purpose.
|
| 35 |
|
|
//
|
| 36 |
|
|
// Xilinx products are not intended for use in life support
|
| 37 |
|
|
// appliances, devices, or systems. Use in such applications are
|
| 38 |
|
|
// expressly prohibited.
|
| 39 |
|
|
//
|
| 40 |
|
|
// This copyright and support notice must be retained as part
|
| 41 |
|
|
// of this text at all times. (c) Copyright 2004-2008 Xilinx, Inc.
|
| 42 |
|
|
// All rights reserved.
|
| 43 |
|
|
//-----------------------------------------------------------------------------
|
| 44 |
|
|
// Description: This is the receiver side local link fifo for the design example
|
| 45 |
|
|
// of the Virtex-5 Ethernet MAC Wrapper core.
|
| 46 |
|
|
//
|
| 47 |
|
|
// The FIFO is created from 2 Block RAMs of size 2048
|
| 48 |
|
|
// words of 8-bits per word, giving a total frame memory capacity
|
| 49 |
|
|
// of 4096 bytes.
|
| 50 |
|
|
//
|
| 51 |
|
|
// Frame data received from the MAC receiver is written into the
|
| 52 |
|
|
// FIFO on the wr_clk. An End Of Frame marker is written to the
|
| 53 |
|
|
// BRAM parity bit on the last byte of data stored for a frame.
|
| 54 |
|
|
// This acts as frame deliniation.
|
| 55 |
|
|
//
|
| 56 |
|
|
// The rx_good_frame and rx_bad_frame signals are used to
|
| 57 |
|
|
// qualify the frame. A frame for which rx_bad_frame was
|
| 58 |
|
|
// asserted will cause the FIFO write address pointer to be
|
| 59 |
|
|
// reset to the base address of that frame. In this way
|
| 60 |
|
|
// the bad frame will be overwritten with the next received
|
| 61 |
|
|
// frame and is therefore dropped from the FIFO.
|
| 62 |
|
|
//
|
| 63 |
|
|
// Frames will also be dropped from the FIFO if an overflow occurs.
|
| 64 |
|
|
// If there is not enough memory capacity in the FIFO to store the
|
| 65 |
|
|
// whole of an incoming frame, the write address pointer will be
|
| 66 |
|
|
// reset and the overflow signal asserted.
|
| 67 |
|
|
//
|
| 68 |
|
|
// When there is at least one complete frame in the FIFO,
|
| 69 |
|
|
// the 8 bit Local-link read interface will be enabled allowing
|
| 70 |
|
|
// data to be read from the fifo.
|
| 71 |
|
|
//
|
| 72 |
|
|
// The FIFO has been designed to operate with different clocks
|
| 73 |
|
|
// on the write and read sides. The read clock (locallink clock)
|
| 74 |
|
|
// should always operate at an equal or faster frequency
|
| 75 |
|
|
// than the write clock (client clock).
|
| 76 |
|
|
//
|
| 77 |
|
|
// The FIFO is designed to work with a minimum frame length of 8 bytes.
|
| 78 |
|
|
//
|
| 79 |
|
|
// The FIFO memory size can be increased by expanding the rd_addr
|
| 80 |
|
|
// and wr_addr signal widths, to address further BRAMs.
|
| 81 |
|
|
//
|
| 82 |
|
|
// Requirements :
|
| 83 |
|
|
// * Minimum frame size of 8 bytes
|
| 84 |
|
|
// * Spacing between good/bad frame flags is at least 64 clock cycles
|
| 85 |
|
|
// * Wr clock is 125MHz downto 1.25MHz
|
| 86 |
|
|
// * Rd clock is downto 20MHz
|
| 87 |
|
|
//
|
| 88 |
|
|
//-------------------------------------------------------------------------------
|
| 89 |
|
|
|
| 90 |
|
|
`timescale 1ps / 1ps
|
| 91 |
|
|
|
| 92 |
|
|
module rx_client_fifo_8
|
| 93 |
|
|
(
|
| 94 |
|
|
// Local-link Interface
|
| 95 |
|
|
rd_clk,
|
| 96 |
|
|
rd_sreset,
|
| 97 |
|
|
rd_data_out,
|
| 98 |
|
|
rd_sof_n,
|
| 99 |
|
|
rd_eof_n,
|
| 100 |
|
|
rd_src_rdy_n,
|
| 101 |
|
|
rd_dst_rdy_n,
|
| 102 |
|
|
rx_fifo_status,
|
| 103 |
|
|
|
| 104 |
|
|
// Client Interface
|
| 105 |
|
|
wr_sreset,
|
| 106 |
|
|
wr_clk,
|
| 107 |
|
|
wr_enable,
|
| 108 |
|
|
rx_data,
|
| 109 |
|
|
rx_data_valid,
|
| 110 |
|
|
rx_good_frame,
|
| 111 |
|
|
rx_bad_frame,
|
| 112 |
|
|
overflow
|
| 113 |
|
|
);
|
| 114 |
|
|
|
| 115 |
|
|
|
| 116 |
|
|
//---------------------------------------------------------------------------
|
| 117 |
|
|
// Define Interface Signals
|
| 118 |
|
|
//--------------------------------------------------------------------------
|
| 119 |
|
|
|
| 120 |
|
|
// Local-link Interface
|
| 121 |
|
|
input rd_clk;
|
| 122 |
|
|
input rd_sreset;
|
| 123 |
|
|
output [7:0] rd_data_out;
|
| 124 |
|
|
output rd_sof_n;
|
| 125 |
|
|
output rd_eof_n;
|
| 126 |
|
|
output rd_src_rdy_n;
|
| 127 |
|
|
input rd_dst_rdy_n;
|
| 128 |
|
|
output [3:0] rx_fifo_status;
|
| 129 |
|
|
|
| 130 |
|
|
// Client Interface
|
| 131 |
|
|
input wr_sreset;
|
| 132 |
|
|
input wr_clk;
|
| 133 |
|
|
input wr_enable;
|
| 134 |
|
|
input [7:0] rx_data;
|
| 135 |
|
|
input rx_data_valid;
|
| 136 |
|
|
input rx_good_frame;
|
| 137 |
|
|
input rx_bad_frame;
|
| 138 |
|
|
output overflow;
|
| 139 |
|
|
|
| 140 |
|
|
reg rd_sof_n;
|
| 141 |
|
|
reg rd_src_rdy_n;
|
| 142 |
|
|
reg [7:0] rd_data_out;
|
| 143 |
|
|
|
| 144 |
|
|
|
| 145 |
|
|
//---------------------------------------------------------------------------
|
| 146 |
|
|
// Define Internal Signals
|
| 147 |
|
|
//---------------------------------------------------------------------------
|
| 148 |
|
|
|
| 149 |
|
|
wire GND;
|
| 150 |
|
|
wire VCC;
|
| 151 |
|
|
wire [7:0] GND_BUS;
|
| 152 |
|
|
|
| 153 |
|
|
// Encode rd_state_machine states
|
| 154 |
|
|
parameter WAIT_s = 3'b000; parameter QUEUE1_s = 3'b001;
|
| 155 |
|
|
parameter QUEUE2_s = 3'b010; parameter QUEUE3_s = 3'b011;
|
| 156 |
|
|
parameter QUEUE_SOF_s = 3'b100; parameter SOF_s = 3'b101;
|
| 157 |
|
|
parameter DATA_s = 3'b110; parameter EOF_s = 3'b111;
|
| 158 |
|
|
|
| 159 |
|
|
reg [2:0] rd_state;
|
| 160 |
|
|
reg [2:0] rd_nxt_state;
|
| 161 |
|
|
|
| 162 |
|
|
// Encode wr_state_machine states
|
| 163 |
|
|
parameter IDLE_s = 3'b000; parameter FRAME_s = 3'b001;
|
| 164 |
|
|
parameter END_s= 3'b010; parameter GF_s = 3'b011;
|
| 165 |
|
|
parameter BF_s = 3'b100; parameter OVFLOW_s = 3'b101;
|
| 166 |
|
|
|
| 167 |
|
|
reg [2:0] wr_state;
|
| 168 |
|
|
reg [2:0] wr_nxt_state;
|
| 169 |
|
|
|
| 170 |
|
|
|
| 171 |
|
|
wire wr_en;
|
| 172 |
|
|
wire wr_en_u;
|
| 173 |
|
|
wire wr_en_l;
|
| 174 |
|
|
reg [11:0] wr_addr;
|
| 175 |
|
|
wire wr_addr_inc;
|
| 176 |
|
|
wire wr_start_addr_load;
|
| 177 |
|
|
wire wr_addr_reload;
|
| 178 |
|
|
reg [11:0] wr_start_addr;
|
| 179 |
|
|
reg [7:0] wr_data_bram;
|
| 180 |
|
|
reg [7:0] wr_data_pipe[0:1];
|
| 181 |
|
|
reg [0:0] wr_eof_bram;
|
| 182 |
|
|
reg wr_dv_pipe[0:1];
|
| 183 |
|
|
reg wr_gf_pipe[0:1];
|
| 184 |
|
|
reg wr_bf_pipe[0:1];
|
| 185 |
|
|
reg frame_in_fifo;
|
| 186 |
|
|
|
| 187 |
|
|
reg [11:0] rd_addr;
|
| 188 |
|
|
wire rd_addr_inc;
|
| 189 |
|
|
wire rd_addr_reload;
|
| 190 |
|
|
wire [7:0] rd_data_bram_u;
|
| 191 |
|
|
wire [7:0] rd_data_bram_l;
|
| 192 |
|
|
reg [7:0] rd_data_pipe_u;
|
| 193 |
|
|
reg [7:0] rd_data_pipe_l;
|
| 194 |
|
|
reg [7:0] rd_data_pipe;
|
| 195 |
|
|
wire [0:0] rd_eof_bram_u;
|
| 196 |
|
|
wire [0:0] rd_eof_bram_l;
|
| 197 |
|
|
reg rd_en;
|
| 198 |
|
|
reg rd_bram_u;
|
| 199 |
|
|
reg rd_bram_u_reg;
|
| 200 |
|
|
wire rd_pull_frame;
|
| 201 |
|
|
reg rd_eof;
|
| 202 |
|
|
|
| 203 |
|
|
reg wr_store_frame_tog;
|
| 204 |
|
|
reg rd_store_frame_tog;
|
| 205 |
|
|
reg rd_store_frame_delay;
|
| 206 |
|
|
reg rd_store_frame_sync;
|
| 207 |
|
|
reg rd_store_frame;
|
| 208 |
|
|
reg [8:0] rd_frames;
|
| 209 |
|
|
reg wr_fifo_full;
|
| 210 |
|
|
|
| 211 |
|
|
reg [11:0] rd_addr_gray;
|
| 212 |
|
|
reg [11:0] wr_rd_addr_gray_sync;
|
| 213 |
|
|
reg [11:0] wr_rd_addr_gray;
|
| 214 |
|
|
wire [11:0] wr_rd_addr;
|
| 215 |
|
|
reg [11:0] wr_addr_diff;
|
| 216 |
|
|
|
| 217 |
|
|
reg [3:0] wr_fifo_status;
|
| 218 |
|
|
|
| 219 |
|
|
reg rd_eof_n_int;
|
| 220 |
|
|
|
| 221 |
|
|
reg [2:0] rd_valid_pipe;
|
| 222 |
|
|
|
| 223 |
|
|
//---------------------------------------------------------------------------
|
| 224 |
|
|
// Attributes for FIFO simulation and synthesis
|
| 225 |
|
|
//---------------------------------------------------------------------------
|
| 226 |
|
|
// ASYNC_REG attributes added to simulate actual behaviour under
|
| 227 |
|
|
// asynchronous operating conditions.
|
| 228 |
|
|
// synthesis attribute ASYNC_REG of rd_store_frame_tog is "TRUE";
|
| 229 |
|
|
// synthesis attribute ASYNC_REG of wr_rd_addr_gray_sync is "TRUE";
|
| 230 |
|
|
|
| 231 |
|
|
// WRITE_MODE attributes added to Block RAM to mitigate port contention
|
| 232 |
|
|
// synthesis attribute WRITE_MODE_A of ramgen_u is "READ_FIRST";
|
| 233 |
|
|
// synthesis attribute WRITE_MODE_B of ramgen_u is "READ_FIRST";
|
| 234 |
|
|
// synthesis attribute WRITE_MODE_A of ramgen_l is "READ_FIRST";
|
| 235 |
|
|
// synthesis attribute WRITE_MODE_B of ramgen_l is "READ_FIRST";
|
| 236 |
|
|
|
| 237 |
|
|
//---------------------------------------------------------------------------
|
| 238 |
|
|
// Functions for gray code conversion
|
| 239 |
|
|
//---------------------------------------------------------------------------
|
| 240 |
|
|
function [11:0] bin_to_gray;
|
| 241 |
|
|
input [11:0] bin;
|
| 242 |
|
|
integer i;
|
| 243 |
|
|
begin
|
| 244 |
|
|
for (i=0;i<12;i=i+1)
|
| 245 |
|
|
begin
|
| 246 |
|
|
if (i == 11)
|
| 247 |
|
|
bin_to_gray[i] = bin[i];
|
| 248 |
|
|
else
|
| 249 |
|
|
bin_to_gray[i] = bin[i+1] ^ bin[i];
|
| 250 |
|
|
end
|
| 251 |
|
|
end
|
| 252 |
|
|
endfunction
|
| 253 |
|
|
|
| 254 |
|
|
function [11:0] gray_to_bin;
|
| 255 |
|
|
input [11:0] gray;
|
| 256 |
|
|
integer i;
|
| 257 |
|
|
begin
|
| 258 |
|
|
for (i=11;i>=0;i=i-1)
|
| 259 |
|
|
begin
|
| 260 |
|
|
if (i == 11)
|
| 261 |
|
|
gray_to_bin[i] = gray[i];
|
| 262 |
|
|
else
|
| 263 |
|
|
gray_to_bin[i] = gray_to_bin[i+1] ^ gray[i];
|
| 264 |
|
|
end
|
| 265 |
|
|
end
|
| 266 |
|
|
endfunction // gray_to_bin
|
| 267 |
|
|
|
| 268 |
|
|
|
| 269 |
|
|
//---------------------------------------------------------------------------
|
| 270 |
|
|
// Begin FIFO architecture
|
| 271 |
|
|
//---------------------------------------------------------------------------
|
| 272 |
|
|
|
| 273 |
|
|
assign GND = 1'b0;
|
| 274 |
|
|
assign VCC = 1'b1;
|
| 275 |
|
|
assign GND_BUS = 8'b0;
|
| 276 |
|
|
|
| 277 |
|
|
|
| 278 |
|
|
//---------------------------------------------------------------------------
|
| 279 |
|
|
// Read State machines and control
|
| 280 |
|
|
//---------------------------------------------------------------------------
|
| 281 |
|
|
// local link state machine
|
| 282 |
|
|
// states are WAIT, QUEUE1, QUEUE2, QUEUE3, SOF, DATA, EOF
|
| 283 |
|
|
// clock state to next state
|
| 284 |
|
|
always @(posedge rd_clk)
|
| 285 |
|
|
begin
|
| 286 |
|
|
if (rd_sreset == 1'b1)
|
| 287 |
|
|
rd_state <= WAIT_s;
|
| 288 |
|
|
else
|
| 289 |
|
|
rd_state <= rd_nxt_state;
|
| 290 |
|
|
end
|
| 291 |
|
|
|
| 292 |
|
|
assign rd_eof_n = rd_eof_n_int;
|
| 293 |
|
|
|
| 294 |
|
|
// decode next state, combinatorial
|
| 295 |
|
|
always @(rd_state or frame_in_fifo or rd_eof or rd_dst_rdy_n or rd_eof_n_int)
|
| 296 |
|
|
begin
|
| 297 |
|
|
case (rd_state)
|
| 298 |
|
|
WAIT_s : begin
|
| 299 |
|
|
// wait till there is a full frame in the fifo
|
| 300 |
|
|
// then start to load the pipeline
|
| 301 |
|
|
if (frame_in_fifo == 1'b1 && rd_eof_n_int == 1'b1)
|
| 302 |
|
|
rd_nxt_state <= QUEUE1_s;
|
| 303 |
|
|
else
|
| 304 |
|
|
rd_nxt_state <= WAIT_s;
|
| 305 |
|
|
end
|
| 306 |
|
|
QUEUE1_s : begin
|
| 307 |
|
|
// load the output pipeline
|
| 308 |
|
|
// this takes three clocks
|
| 309 |
|
|
rd_nxt_state <= QUEUE2_s;
|
| 310 |
|
|
end
|
| 311 |
|
|
QUEUE2_s : begin
|
| 312 |
|
|
rd_nxt_state <= QUEUE3_s;
|
| 313 |
|
|
end
|
| 314 |
|
|
QUEUE3_s : begin
|
| 315 |
|
|
rd_nxt_state <= QUEUE_SOF_s;
|
| 316 |
|
|
end
|
| 317 |
|
|
QUEUE_SOF_s : begin
|
| 318 |
|
|
// used mark sof at end of queue
|
| 319 |
|
|
rd_nxt_state <= DATA_s; // move straight to frame.
|
| 320 |
|
|
end
|
| 321 |
|
|
SOF_s : begin
|
| 322 |
|
|
// used to mark sof when following straight from eof
|
| 323 |
|
|
if (rd_dst_rdy_n == 1'b0)
|
| 324 |
|
|
rd_nxt_state <= DATA_s;
|
| 325 |
|
|
else
|
| 326 |
|
|
rd_nxt_state <= SOF_s;
|
| 327 |
|
|
end
|
| 328 |
|
|
DATA_s : begin
|
| 329 |
|
|
// When the eof marker is detected from the BRAM output
|
| 330 |
|
|
// move to EOF state
|
| 331 |
|
|
if (rd_dst_rdy_n == 1'b0 && rd_eof == 1'b1)
|
| 332 |
|
|
rd_nxt_state <= EOF_s;
|
| 333 |
|
|
else
|
| 334 |
|
|
rd_nxt_state <= DATA_s;
|
| 335 |
|
|
end
|
| 336 |
|
|
EOF_s : begin
|
| 337 |
|
|
// hold in this state until dst rdy is low
|
| 338 |
|
|
// and eof bit is accepted on interface
|
| 339 |
|
|
// If there is a frame in the fifo, then the next frame
|
| 340 |
|
|
// will already be queued into the pipe line so move straight
|
| 341 |
|
|
// to sof state.
|
| 342 |
|
|
if (rd_dst_rdy_n == 1'b0)
|
| 343 |
|
|
if (rd_valid_pipe[1] == 1'b1)
|
| 344 |
|
|
rd_nxt_state <= SOF_s;
|
| 345 |
|
|
else
|
| 346 |
|
|
rd_nxt_state <= WAIT_s;
|
| 347 |
|
|
else
|
| 348 |
|
|
rd_nxt_state <= EOF_s;
|
| 349 |
|
|
end
|
| 350 |
|
|
default : begin
|
| 351 |
|
|
rd_nxt_state <= WAIT_s;
|
| 352 |
|
|
end
|
| 353 |
|
|
endcase
|
| 354 |
|
|
end
|
| 355 |
|
|
|
| 356 |
|
|
// detect if frame in fifo was high 3 reads ago
|
| 357 |
|
|
// this is used to ensure we only treat data in the pipeline as valid if
|
| 358 |
|
|
// frame in fifo goes high at or before the eof of the current frame
|
| 359 |
|
|
// It may be that there is valid data (i.e a partial packet has been written)
|
| 360 |
|
|
// but until the end of that packet we do not know if it is a good packet
|
| 361 |
|
|
always @(posedge rd_clk)
|
| 362 |
|
|
begin
|
| 363 |
|
|
if (rd_dst_rdy_n == 1'b0)
|
| 364 |
|
|
rd_valid_pipe <= {rd_valid_pipe[1], rd_valid_pipe[0], frame_in_fifo};
|
| 365 |
|
|
end
|
| 366 |
|
|
|
| 367 |
|
|
// decode the output signals depending on current state.
|
| 368 |
|
|
// decode sof signal.
|
| 369 |
|
|
always @(posedge rd_clk)
|
| 370 |
|
|
begin
|
| 371 |
|
|
if (rd_sreset == 1'b1)
|
| 372 |
|
|
rd_sof_n <= 1'b1;
|
| 373 |
|
|
else
|
| 374 |
|
|
case (rd_state)
|
| 375 |
|
|
QUEUE_SOF_s :
|
| 376 |
|
|
// no need to wait for dst rdy to be low, as there is valid data
|
| 377 |
|
|
rd_sof_n <= 1'b0;
|
| 378 |
|
|
SOF_s :
|
| 379 |
|
|
// needed to wait till rd_dst_rdy is low to ensure eof signal has
|
| 380 |
|
|
// been accepted onto the interface before asserting sof.
|
| 381 |
|
|
if (rd_dst_rdy_n == 1'b0)
|
| 382 |
|
|
rd_sof_n <= 1'b0;
|
| 383 |
|
|
default :
|
| 384 |
|
|
// needed to wait till rd_dst_rdy is low to ensure sof signal has
|
| 385 |
|
|
// been accepted onto the interface.
|
| 386 |
|
|
if (rd_dst_rdy_n == 1'b0)
|
| 387 |
|
|
rd_sof_n <= 1'b1;
|
| 388 |
|
|
endcase
|
| 389 |
|
|
end
|
| 390 |
|
|
|
| 391 |
|
|
// decode eof signal
|
| 392 |
|
|
// check init value of this reg is 1.
|
| 393 |
|
|
always @(posedge rd_clk)
|
| 394 |
|
|
begin
|
| 395 |
|
|
if (rd_sreset == 1'b1)
|
| 396 |
|
|
rd_eof_n_int <= 1'b1;
|
| 397 |
|
|
else if (rd_dst_rdy_n == 1'b0)
|
| 398 |
|
|
// needed to wait till rd_dst_rdy is low to ensure penultimate byte of frame has
|
| 399 |
|
|
// been accepted onto the interface before asserting eof and that
|
| 400 |
|
|
// eof is accepted before moving on
|
| 401 |
|
|
case (rd_state)
|
| 402 |
|
|
EOF_s :
|
| 403 |
|
|
rd_eof_n_int <= 1'b0;
|
| 404 |
|
|
default :
|
| 405 |
|
|
rd_eof_n_int <= 1'b1;
|
| 406 |
|
|
endcase
|
| 407 |
|
|
// queue sof is not needed if init value is 1
|
| 408 |
|
|
end
|
| 409 |
|
|
|
| 410 |
|
|
// decode data output
|
| 411 |
|
|
always @(posedge rd_clk)
|
| 412 |
|
|
begin
|
| 413 |
|
|
if (rd_en == 1'b1)
|
| 414 |
|
|
rd_data_out <= rd_data_pipe;
|
| 415 |
|
|
end
|
| 416 |
|
|
|
| 417 |
|
|
// decode the output scr_rdy signal
|
| 418 |
|
|
// want to remove the dependancy of src_rdy from dst rdy
|
| 419 |
|
|
// check init value of this reg is 1'b1
|
| 420 |
|
|
always @(posedge rd_clk)
|
| 421 |
|
|
begin
|
| 422 |
|
|
if (rd_sreset == 1'b1)
|
| 423 |
|
|
rd_src_rdy_n <= 1'b1;
|
| 424 |
|
|
else
|
| 425 |
|
|
case (rd_state)
|
| 426 |
|
|
QUEUE_SOF_s :
|
| 427 |
|
|
rd_src_rdy_n <= 1'b0;
|
| 428 |
|
|
SOF_s :
|
| 429 |
|
|
rd_src_rdy_n <= 1'b0;
|
| 430 |
|
|
DATA_s :
|
| 431 |
|
|
rd_src_rdy_n <= 1'b0;
|
| 432 |
|
|
EOF_s :
|
| 433 |
|
|
rd_src_rdy_n <= 1'b0;
|
| 434 |
|
|
default :
|
| 435 |
|
|
if (rd_dst_rdy_n == 1'b0)
|
| 436 |
|
|
rd_src_rdy_n <= 1'b1;
|
| 437 |
|
|
endcase
|
| 438 |
|
|
end
|
| 439 |
|
|
|
| 440 |
|
|
|
| 441 |
|
|
// decode internal control signals
|
| 442 |
|
|
// rd_en is used to enable the BRAM read and load the output pipe
|
| 443 |
|
|
always @(rd_state or rd_dst_rdy_n)
|
| 444 |
|
|
begin
|
| 445 |
|
|
case (rd_state)
|
| 446 |
|
|
WAIT_s :
|
| 447 |
|
|
rd_en <= 1'b0;
|
| 448 |
|
|
QUEUE1_s :
|
| 449 |
|
|
rd_en <= 1'b1;
|
| 450 |
|
|
QUEUE2_s :
|
| 451 |
|
|
rd_en <= 1'b1;
|
| 452 |
|
|
QUEUE3_s :
|
| 453 |
|
|
rd_en <= 1'b1;
|
| 454 |
|
|
QUEUE_SOF_s :
|
| 455 |
|
|
rd_en <= 1'b1;
|
| 456 |
|
|
default :
|
| 457 |
|
|
rd_en <= !rd_dst_rdy_n;
|
| 458 |
|
|
endcase
|
| 459 |
|
|
end
|
| 460 |
|
|
|
| 461 |
|
|
// rd_addr_inc is used to enable the BRAM read address to increment
|
| 462 |
|
|
assign rd_addr_inc = rd_en;
|
| 463 |
|
|
|
| 464 |
|
|
|
| 465 |
|
|
// When the current frame is output, if there is no frame in the fifo, then
|
| 466 |
|
|
// the fifo must wait until a new frame is written in. This requires the read
|
| 467 |
|
|
// address to be moved back to where the new frame will be written. The pipe
|
| 468 |
|
|
// is then reloaded using the QUEUE states
|
| 469 |
|
|
assign rd_addr_reload = (rd_state == EOF_s && rd_nxt_state == WAIT_s) ? 1'b1 : 1'b0;
|
| 470 |
|
|
|
| 471 |
|
|
// Data is available if there is at leat one frame stored in the FIFO.
|
| 472 |
|
|
always @(posedge rd_clk)
|
| 473 |
|
|
begin
|
| 474 |
|
|
if (rd_sreset == 1'b1)
|
| 475 |
|
|
frame_in_fifo <= 1'b0;
|
| 476 |
|
|
else
|
| 477 |
|
|
if (rd_frames != 9'b0)
|
| 478 |
|
|
frame_in_fifo <= 1'b1;
|
| 479 |
|
|
else
|
| 480 |
|
|
frame_in_fifo <= 1'b0;
|
| 481 |
|
|
end
|
| 482 |
|
|
|
| 483 |
|
|
// when a frame has been stored need to convert to rd clock domain for frame
|
| 484 |
|
|
// count store.
|
| 485 |
|
|
always @(posedge rd_clk)
|
| 486 |
|
|
begin
|
| 487 |
|
|
if (rd_sreset == 1'b1)
|
| 488 |
|
|
begin
|
| 489 |
|
|
rd_store_frame_tog <= 1'b0;
|
| 490 |
|
|
rd_store_frame_sync <= 1'b0;
|
| 491 |
|
|
rd_store_frame_delay <= 1'b0;
|
| 492 |
|
|
rd_store_frame <= 1'b0;
|
| 493 |
|
|
end
|
| 494 |
|
|
else
|
| 495 |
|
|
begin
|
| 496 |
|
|
rd_store_frame_tog <= wr_store_frame_tog;
|
| 497 |
|
|
rd_store_frame_sync <= rd_store_frame_tog;
|
| 498 |
|
|
rd_store_frame_delay <= rd_store_frame_sync;
|
| 499 |
|
|
// edge detector
|
| 500 |
|
|
if ((rd_store_frame_delay ^ rd_store_frame_sync) == 1'b1)
|
| 501 |
|
|
rd_store_frame <= 1'b1;
|
| 502 |
|
|
else
|
| 503 |
|
|
rd_store_frame <= 1'b0;
|
| 504 |
|
|
end
|
| 505 |
|
|
end
|
| 506 |
|
|
|
| 507 |
|
|
assign rd_pull_frame = (rd_state == SOF_s && rd_nxt_state != SOF_s) ? 1'b1 :
|
| 508 |
|
|
(rd_state == QUEUE_SOF_s && rd_nxt_state != QUEUE_SOF_s) ? 1'b1 : 1'b0;
|
| 509 |
|
|
|
| 510 |
|
|
// Up/Down counter to monitor the number of frames stored within the
|
| 511 |
|
|
// the FIFO. Note:
|
| 512 |
|
|
// * decrements at the beginning of a frame read cycle
|
| 513 |
|
|
// * increments at the end of a frame write cycle
|
| 514 |
|
|
always @(posedge rd_clk)
|
| 515 |
|
|
begin
|
| 516 |
|
|
if (rd_sreset == 1'b1)
|
| 517 |
|
|
rd_frames <= 9'b0;
|
| 518 |
|
|
else
|
| 519 |
|
|
// A frame is written to the fifo in this cycle, and no frame is being
|
| 520 |
|
|
// read out on the same cycle
|
| 521 |
|
|
if (rd_store_frame == 1'b1 && rd_pull_frame == 1'b0)
|
| 522 |
|
|
rd_frames <= rd_frames + 1;
|
| 523 |
|
|
// A frame is being read out on this cycle and no frame is being
|
| 524 |
|
|
// written on the same cycle
|
| 525 |
|
|
else if (rd_store_frame == 1'b0 && rd_pull_frame == 1'b1)
|
| 526 |
|
|
rd_frames <= rd_frames - 1;
|
| 527 |
|
|
end
|
| 528 |
|
|
|
| 529 |
|
|
|
| 530 |
|
|
//---------------------------------------------------------------------------
|
| 531 |
|
|
// Write State machines and control
|
| 532 |
|
|
//---------------------------------------------------------------------------
|
| 533 |
|
|
// write state machine
|
| 534 |
|
|
// states are IDLE, FRAME, EOF, GF, BF, OVFLOW
|
| 535 |
|
|
// clock state to next state
|
| 536 |
|
|
always @(posedge wr_clk)
|
| 537 |
|
|
begin
|
| 538 |
|
|
if (wr_sreset == 1'b1)
|
| 539 |
|
|
wr_state <= IDLE_s;
|
| 540 |
|
|
else if (wr_enable == 1'b1)
|
| 541 |
|
|
wr_state <= wr_nxt_state;
|
| 542 |
|
|
end
|
| 543 |
|
|
|
| 544 |
|
|
// decode next state, combinatorial
|
| 545 |
|
|
always @(wr_state or wr_dv_pipe[1] or wr_gf_pipe[1] or wr_bf_pipe[1] or wr_eof_bram[0] or wr_fifo_full)
|
| 546 |
|
|
begin
|
| 547 |
|
|
case (wr_state)
|
| 548 |
|
|
IDLE_s : begin
|
| 549 |
|
|
// there is data in the incoming pipeline when dv_pipe(1) goes high
|
| 550 |
|
|
if (wr_dv_pipe[1] == 1'b1)
|
| 551 |
|
|
wr_nxt_state <= FRAME_s;
|
| 552 |
|
|
else
|
| 553 |
|
|
wr_nxt_state <= IDLE_s;
|
| 554 |
|
|
end
|
| 555 |
|
|
FRAME_s : begin
|
| 556 |
|
|
// if fifo is full then go to overflow state.
|
| 557 |
|
|
// if the good or bad flag is detected the end
|
| 558 |
|
|
// of the frame has been reached!
|
| 559 |
|
|
// this transistion occurs when the gb flag
|
| 560 |
|
|
// is on the clock edge immediately following
|
| 561 |
|
|
// the end of the frame.
|
| 562 |
|
|
// if the eof_bram signal is detected then data valid has
|
| 563 |
|
|
// fallen low and the end of frame has been detected.
|
| 564 |
|
|
if (wr_fifo_full == 1'b1)
|
| 565 |
|
|
wr_nxt_state <= OVFLOW_s;
|
| 566 |
|
|
else if (wr_gf_pipe[1] == 1'b1)
|
| 567 |
|
|
wr_nxt_state <= GF_s;
|
| 568 |
|
|
else if (wr_bf_pipe[1] == 1'b1)
|
| 569 |
|
|
wr_nxt_state <= BF_s;
|
| 570 |
|
|
else if (wr_eof_bram[0] == 1'b1)
|
| 571 |
|
|
wr_nxt_state <= END_s;
|
| 572 |
|
|
else
|
| 573 |
|
|
wr_nxt_state <= FRAME_s;
|
| 574 |
|
|
end
|
| 575 |
|
|
END_s : begin
|
| 576 |
|
|
// if frame is full then go to overflow state
|
| 577 |
|
|
// else wait until the good or bad flag has been received.
|
| 578 |
|
|
if (wr_gf_pipe[1] == 1'b1)
|
| 579 |
|
|
wr_nxt_state <= GF_s;
|
| 580 |
|
|
else if (wr_bf_pipe[1] == 1'b1)
|
| 581 |
|
|
wr_nxt_state <= BF_s;
|
| 582 |
|
|
else
|
| 583 |
|
|
wr_nxt_state <= END_s;
|
| 584 |
|
|
end
|
| 585 |
|
|
GF_s : begin
|
| 586 |
|
|
// wait for next frame
|
| 587 |
|
|
wr_nxt_state <= IDLE_s;
|
| 588 |
|
|
end
|
| 589 |
|
|
BF_s : begin
|
| 590 |
|
|
// wait for next frame
|
| 591 |
|
|
wr_nxt_state <= IDLE_s;
|
| 592 |
|
|
end
|
| 593 |
|
|
OVFLOW_s : begin
|
| 594 |
|
|
// wait until the good or bad flag received.
|
| 595 |
|
|
if (wr_gf_pipe[1] == 1'b1 || wr_bf_pipe[1] == 1'b1)
|
| 596 |
|
|
wr_nxt_state <= IDLE_s;
|
| 597 |
|
|
else
|
| 598 |
|
|
wr_nxt_state <= OVFLOW_s;
|
| 599 |
|
|
end
|
| 600 |
|
|
default : begin
|
| 601 |
|
|
wr_nxt_state <= IDLE_s;
|
| 602 |
|
|
end
|
| 603 |
|
|
endcase
|
| 604 |
|
|
end
|
| 605 |
|
|
|
| 606 |
|
|
|
| 607 |
|
|
// decode control signals
|
| 608 |
|
|
// wr_en is used to enable the BRAM write and loading of the input pipeline
|
| 609 |
|
|
assign wr_en = (wr_state == FRAME_s) ? 1'b1 : 1'b0;
|
| 610 |
|
|
|
| 611 |
|
|
// the upper and lower signals are used to distinguish between the upper and
|
| 612 |
|
|
// lower BRAM
|
| 613 |
|
|
assign wr_en_l = wr_en & !wr_addr[11];
|
| 614 |
|
|
assign wr_en_u = wr_en & wr_addr[11];
|
| 615 |
|
|
|
| 616 |
|
|
// increment the write address when we are receiving a frame
|
| 617 |
|
|
assign wr_addr_inc = (wr_state == FRAME_s) ? 1'b1 : 1'b0;
|
| 618 |
|
|
|
| 619 |
|
|
// if the fifo overflows or a frame is to be dropped, we need to move the
|
| 620 |
|
|
// write address back to the start of the frame. This allows the data to be
|
| 621 |
|
|
// overwritten.
|
| 622 |
|
|
assign wr_addr_reload = (wr_state == BF_s || wr_state == OVFLOW_s) ? 1'b1 : 1'b0;
|
| 623 |
|
|
|
| 624 |
|
|
// the start address is saved when in the WAIT state
|
| 625 |
|
|
assign wr_start_addr_load = (wr_state == IDLE_s) ? 1'b1 : 1'b0;
|
| 626 |
|
|
|
| 627 |
|
|
// we need to know when a frame is stored, in order to increment the count of
|
| 628 |
|
|
// frames stored in the fifo.
|
| 629 |
|
|
always @(posedge wr_clk)
|
| 630 |
|
|
begin // process
|
| 631 |
|
|
if (wr_sreset == 1'b1)
|
| 632 |
|
|
wr_store_frame_tog <= 1'b0;
|
| 633 |
|
|
else if (wr_enable == 1'b1)
|
| 634 |
|
|
if (wr_state == GF_s)
|
| 635 |
|
|
wr_store_frame_tog <= ! wr_store_frame_tog;
|
| 636 |
|
|
end
|
| 637 |
|
|
|
| 638 |
|
|
|
| 639 |
|
|
//---------------------------------------------------------------------------
|
| 640 |
|
|
// Address counters
|
| 641 |
|
|
//---------------------------------------------------------------------------
|
| 642 |
|
|
// write address is incremented when write enable signal has been asserted
|
| 643 |
|
|
always @(posedge wr_clk)
|
| 644 |
|
|
begin
|
| 645 |
|
|
if (wr_sreset == 1'b1)
|
| 646 |
|
|
wr_addr <= 12'b0;
|
| 647 |
|
|
else if (wr_enable == 1'b1)
|
| 648 |
|
|
if (wr_addr_reload == 1'b1)
|
| 649 |
|
|
wr_addr <= wr_start_addr;
|
| 650 |
|
|
else if (wr_addr_inc == 1'b1)
|
| 651 |
|
|
wr_addr <= wr_addr + 1;
|
| 652 |
|
|
end
|
| 653 |
|
|
|
| 654 |
|
|
// store the start address
|
| 655 |
|
|
always @(posedge wr_clk)
|
| 656 |
|
|
begin
|
| 657 |
|
|
if (wr_sreset == 1'b1)
|
| 658 |
|
|
wr_start_addr <= 12'b0;
|
| 659 |
|
|
else if (wr_enable == 1'b1)
|
| 660 |
|
|
if (wr_start_addr_load == 1'b1)
|
| 661 |
|
|
wr_start_addr <= wr_addr;
|
| 662 |
|
|
end
|
| 663 |
|
|
|
| 664 |
|
|
// read address is incremented when read enable signal has been asserted
|
| 665 |
|
|
always @(posedge rd_clk)
|
| 666 |
|
|
begin
|
| 667 |
|
|
if (rd_sreset == 1'b1)
|
| 668 |
|
|
rd_addr <= 12'b0;
|
| 669 |
|
|
else
|
| 670 |
|
|
if (rd_addr_reload == 1'b1)
|
| 671 |
|
|
rd_addr <= rd_addr - 2;
|
| 672 |
|
|
else if (rd_addr_inc == 1'b1)
|
| 673 |
|
|
rd_addr <= rd_addr + 1;
|
| 674 |
|
|
end
|
| 675 |
|
|
|
| 676 |
|
|
// which BRAM is read from is dependant on the upper bit of the address
|
| 677 |
|
|
// space. this needs to be registered to give the correct timing.
|
| 678 |
|
|
always @(posedge rd_clk)
|
| 679 |
|
|
begin
|
| 680 |
|
|
if (rd_sreset == 1'b1)
|
| 681 |
|
|
begin
|
| 682 |
|
|
rd_bram_u <= 1'b0;
|
| 683 |
|
|
rd_bram_u_reg <= 1'b0;
|
| 684 |
|
|
end
|
| 685 |
|
|
else if (rd_addr_inc == 1'b1)
|
| 686 |
|
|
begin
|
| 687 |
|
|
rd_bram_u <= rd_addr[11];
|
| 688 |
|
|
rd_bram_u_reg <= rd_bram_u;
|
| 689 |
|
|
end
|
| 690 |
|
|
end
|
| 691 |
|
|
|
| 692 |
|
|
//---------------------------------------------------------------------------
|
| 693 |
|
|
// Data Pipelines
|
| 694 |
|
|
//---------------------------------------------------------------------------
|
| 695 |
|
|
// register data inputs to bram
|
| 696 |
|
|
// no reset to allow srl16 target
|
| 697 |
|
|
always @(posedge wr_clk)
|
| 698 |
|
|
begin
|
| 699 |
|
|
if (wr_enable == 1'b1)
|
| 700 |
|
|
begin
|
| 701 |
|
|
wr_data_pipe[0] <= rx_data;
|
| 702 |
|
|
wr_data_pipe[1] <= wr_data_pipe[0];
|
| 703 |
|
|
wr_data_bram <= wr_data_pipe[1];
|
| 704 |
|
|
end
|
| 705 |
|
|
end
|
| 706 |
|
|
|
| 707 |
|
|
// no reset to allow srl16 target
|
| 708 |
|
|
always @(posedge wr_clk)
|
| 709 |
|
|
begin
|
| 710 |
|
|
if (wr_enable == 1'b1)
|
| 711 |
|
|
begin
|
| 712 |
|
|
wr_dv_pipe[0] <= rx_data_valid;
|
| 713 |
|
|
wr_dv_pipe[1] <= wr_dv_pipe[0];
|
| 714 |
|
|
wr_eof_bram[0] <= wr_dv_pipe[1] & !wr_dv_pipe[0];
|
| 715 |
|
|
end
|
| 716 |
|
|
end
|
| 717 |
|
|
|
| 718 |
|
|
// no reset to allow srl16 target
|
| 719 |
|
|
always @(posedge wr_clk)
|
| 720 |
|
|
begin
|
| 721 |
|
|
if (wr_enable == 1'b1)
|
| 722 |
|
|
begin
|
| 723 |
|
|
wr_gf_pipe[0] <= rx_good_frame;
|
| 724 |
|
|
wr_gf_pipe[1] <= wr_gf_pipe[0];
|
| 725 |
|
|
wr_bf_pipe[0] <= rx_bad_frame;
|
| 726 |
|
|
wr_bf_pipe[1] <= wr_bf_pipe[0];
|
| 727 |
|
|
end
|
| 728 |
|
|
end
|
| 729 |
|
|
|
| 730 |
|
|
// register data outputs from bram
|
| 731 |
|
|
// no reset to allow srl16 target
|
| 732 |
|
|
always @(posedge rd_clk)
|
| 733 |
|
|
begin
|
| 734 |
|
|
if (rd_en == 1'b1)
|
| 735 |
|
|
begin
|
| 736 |
|
|
rd_data_pipe_u <= rd_data_bram_u;
|
| 737 |
|
|
rd_data_pipe_l <= rd_data_bram_l;
|
| 738 |
|
|
if (rd_bram_u_reg == 1'b1)
|
| 739 |
|
|
rd_data_pipe <= rd_data_pipe_u;
|
| 740 |
|
|
else
|
| 741 |
|
|
rd_data_pipe <= rd_data_pipe_l;
|
| 742 |
|
|
end
|
| 743 |
|
|
end
|
| 744 |
|
|
|
| 745 |
|
|
// register data outputs from bram
|
| 746 |
|
|
always @(posedge rd_clk)
|
| 747 |
|
|
begin
|
| 748 |
|
|
if (rd_en == 1'b1)
|
| 749 |
|
|
if (rd_bram_u == 1'b1)
|
| 750 |
|
|
rd_eof <= rd_eof_bram_u[0];
|
| 751 |
|
|
else
|
| 752 |
|
|
rd_eof <= rd_eof_bram_l[0];
|
| 753 |
|
|
end
|
| 754 |
|
|
|
| 755 |
|
|
//---------------------------------------------------------------------------
|
| 756 |
|
|
// Overflow functionality
|
| 757 |
|
|
//---------------------------------------------------------------------------
|
| 758 |
|
|
// Take the Read Address Pointer and convert it into a grey code
|
| 759 |
|
|
always @(posedge rd_clk)
|
| 760 |
|
|
begin
|
| 761 |
|
|
if (rd_sreset == 1'b1)
|
| 762 |
|
|
rd_addr_gray <= 12'b0;
|
| 763 |
|
|
else
|
| 764 |
|
|
rd_addr_gray <= bin_to_gray(rd_addr);
|
| 765 |
|
|
end
|
| 766 |
|
|
|
| 767 |
|
|
// Resync the Read Address Pointer grey code onto the write clock
|
| 768 |
|
|
// NOTE: rd_addr_gray signal crosses clock domains
|
| 769 |
|
|
always @(posedge wr_clk)
|
| 770 |
|
|
begin
|
| 771 |
|
|
if (wr_sreset == 1'b1)
|
| 772 |
|
|
begin
|
| 773 |
|
|
wr_rd_addr_gray_sync <= 12'b0;
|
| 774 |
|
|
wr_rd_addr_gray <= 12'b0;
|
| 775 |
|
|
end
|
| 776 |
|
|
else if (wr_enable == 1'b1)
|
| 777 |
|
|
begin
|
| 778 |
|
|
wr_rd_addr_gray_sync <= rd_addr_gray;
|
| 779 |
|
|
wr_rd_addr_gray <= wr_rd_addr_gray_sync;
|
| 780 |
|
|
end
|
| 781 |
|
|
end
|
| 782 |
|
|
|
| 783 |
|
|
// Convert the resync'd Read Address Pointer grey code back to binary
|
| 784 |
|
|
assign wr_rd_addr = gray_to_bin(wr_rd_addr_gray);
|
| 785 |
|
|
|
| 786 |
|
|
// Obtain the difference between write and read pointers
|
| 787 |
|
|
always @(posedge wr_clk)
|
| 788 |
|
|
begin
|
| 789 |
|
|
if (wr_sreset == 1'b1)
|
| 790 |
|
|
wr_addr_diff <= 12'b0;
|
| 791 |
|
|
else if (wr_enable == 1'b1)
|
| 792 |
|
|
wr_addr_diff <= wr_rd_addr - wr_addr;
|
| 793 |
|
|
end
|
| 794 |
|
|
|
| 795 |
|
|
// Detect when the FIFO is full
|
| 796 |
|
|
// The FIFO is considered to be full if the write address
|
| 797 |
|
|
// pointer is within 4 to 15 of the read address pointer.
|
| 798 |
|
|
always @(posedge wr_clk)
|
| 799 |
|
|
begin
|
| 800 |
|
|
if (wr_sreset == 1'b1)
|
| 801 |
|
|
wr_fifo_full <= 1'b0;
|
| 802 |
|
|
else if (wr_enable == 1'b1)
|
| 803 |
|
|
if (wr_addr_diff[11:4] == 8'b0 && wr_addr_diff[3:2] != 2'b0)
|
| 804 |
|
|
wr_fifo_full <= 1'b1;
|
| 805 |
|
|
else
|
| 806 |
|
|
wr_fifo_full <= 1'b0;
|
| 807 |
|
|
end
|
| 808 |
|
|
|
| 809 |
|
|
assign overflow = (wr_state == OVFLOW_s) ? 1'b1 : 1'b0;
|
| 810 |
|
|
|
| 811 |
|
|
//--------------------------------------------------------------------
|
| 812 |
|
|
// FIFO Status Signals
|
| 813 |
|
|
//--------------------------------------------------------------------
|
| 814 |
|
|
|
| 815 |
|
|
// The FIFO status signal is four bits which represents the occupancy
|
| 816 |
|
|
// of the FIFO in 16'ths. To generate this signal we therefore only
|
| 817 |
|
|
// need to compare the 4 most significant bits of the write address
|
| 818 |
|
|
// pointer with the 4 most significant bits of the read address
|
| 819 |
|
|
// pointer.
|
| 820 |
|
|
|
| 821 |
|
|
// already have fifo status on write side through wr_addr_diff.
|
| 822 |
|
|
// calculate fifo status here and output on the wr clock domain.
|
| 823 |
|
|
|
| 824 |
|
|
|
| 825 |
|
|
always @(posedge wr_clk)
|
| 826 |
|
|
begin
|
| 827 |
|
|
if (wr_sreset == 1'b1)
|
| 828 |
|
|
wr_fifo_status <= 4'b0;
|
| 829 |
|
|
else if (wr_enable == 1'b1)
|
| 830 |
|
|
if (wr_addr_diff == 12'b0)
|
| 831 |
|
|
wr_fifo_status <= 4'b0;
|
| 832 |
|
|
else
|
| 833 |
|
|
begin
|
| 834 |
|
|
wr_fifo_status[3] <= !wr_addr_diff[11];
|
| 835 |
|
|
wr_fifo_status[2] <= !wr_addr_diff[10];
|
| 836 |
|
|
wr_fifo_status[1] <= !wr_addr_diff[9];
|
| 837 |
|
|
wr_fifo_status[0] <= !wr_addr_diff[8];
|
| 838 |
|
|
end
|
| 839 |
|
|
end
|
| 840 |
|
|
|
| 841 |
|
|
assign rx_fifo_status = wr_fifo_status;
|
| 842 |
|
|
|
| 843 |
|
|
|
| 844 |
|
|
//---------------------------------------------------------------------------
|
| 845 |
|
|
// Memory
|
| 846 |
|
|
//---------------------------------------------------------------------------
|
| 847 |
|
|
// Block Ram for lower address space (rx_addr(11) = 1'b0)
|
| 848 |
|
|
defparam ramgen_l.WRITE_MODE_A = "READ_FIRST";
|
| 849 |
|
|
defparam ramgen_l.WRITE_MODE_B = "READ_FIRST";
|
| 850 |
|
|
RAMB16_S9_S9 ramgen_l (
|
| 851 |
|
|
.WEA (wr_en_l),
|
| 852 |
|
|
.ENA (VCC),
|
| 853 |
|
|
.SSRA (wr_sreset),
|
| 854 |
|
|
.CLKA (wr_clk),
|
| 855 |
|
|
.ADDRA (wr_addr[10:0]),
|
| 856 |
|
|
.DIA (wr_data_bram),
|
| 857 |
|
|
.DIPA (wr_eof_bram),
|
| 858 |
|
|
.WEB (GND),
|
| 859 |
|
|
.ENB (rd_en),
|
| 860 |
|
|
.SSRB (rd_sreset),
|
| 861 |
|
|
.CLKB (rd_clk),
|
| 862 |
|
|
.ADDRB (rd_addr[10:0]),
|
| 863 |
|
|
.DIB (GND_BUS[7:0]),
|
| 864 |
|
|
.DIPB (GND_BUS[0:0]),
|
| 865 |
|
|
.DOA (),
|
| 866 |
|
|
.DOPA (),
|
| 867 |
|
|
.DOB (rd_data_bram_l),
|
| 868 |
|
|
.DOPB (rd_eof_bram_l));
|
| 869 |
|
|
|
| 870 |
|
|
// Block Ram for lower address space (rx_addr(11) = 1'b0)
|
| 871 |
|
|
defparam ramgen_u.WRITE_MODE_A = "READ_FIRST";
|
| 872 |
|
|
defparam ramgen_u.WRITE_MODE_B = "READ_FIRST";
|
| 873 |
|
|
RAMB16_S9_S9 ramgen_u (
|
| 874 |
|
|
.WEA (wr_en_u),
|
| 875 |
|
|
.ENA (VCC),
|
| 876 |
|
|
.SSRA (wr_sreset),
|
| 877 |
|
|
.CLKA (wr_clk),
|
| 878 |
|
|
.ADDRA (wr_addr[10:0]),
|
| 879 |
|
|
.DIA (wr_data_bram),
|
| 880 |
|
|
.DIPA (wr_eof_bram),
|
| 881 |
|
|
.WEB (GND),
|
| 882 |
|
|
.ENB (rd_en),
|
| 883 |
|
|
.SSRB (rd_sreset),
|
| 884 |
|
|
.CLKB (rd_clk),
|
| 885 |
|
|
.ADDRB (rd_addr[10:0]),
|
| 886 |
|
|
.DIB (GND_BUS[7:0]),
|
| 887 |
|
|
.DIPB (GND_BUS[0:0]),
|
| 888 |
|
|
.DOA (),
|
| 889 |
|
|
.DOPA (),
|
| 890 |
|
|
.DOB (rd_data_bram_u),
|
| 891 |
|
|
.DOPB (rd_eof_bram_u));
|
| 892 |
|
|
|
| 893 |
|
|
|
| 894 |
|
|
|
| 895 |
|
|
endmodule
|