OpenCores
URL https://opencores.org/ocsvn/fpu100/fpu100/trunk

Subversion Repositories fpu100

[/] [fpu100/] [tags/] [arelease/] [test_bench/] [SoftFloat/] [softfloat/] [bits64/] [SPARC-Solaris-GCC/] [softfloat-specialize] - Blame information for rev 21

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 6 jidan
 
2
/*============================================================================
3
 
4
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
5
Arithmetic Package, Release 2b.
6
 
7
Written by John R. Hauser.  This work was made possible in part by the
8
International Computer Science Institute, located at Suite 600, 1947 Center
9
Street, Berkeley, California 94704.  Funding was partially provided by the
10
National Science Foundation under grant MIP-9311980.  The original version
11
of this code was written as part of a project to build a fixed-point vector
12
processor in collaboration with the University of California at Berkeley,
13
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
14
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
15
arithmetic/SoftFloat.html'.
16
 
17
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
18
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
19
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
20
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
21
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
22
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
23
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
24
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
25
 
26
Derivative works are acceptable, even for commercial purposes, so long as
27
(1) the source code for the derivative work includes prominent notice that
28
the work is derivative, and (2) the source code includes prominent notice with
29
these four paragraphs for those parts of this code that are retained.
30
 
31
=============================================================================*/
32
 
33
/*----------------------------------------------------------------------------
34
| Underflow tininess-detection mode, statically initialized to default value.
35
| (The declaration in `softfloat.h' must match the `int8' type here.)
36
*----------------------------------------------------------------------------*/
37
int8 float_detect_tininess = float_tininess_before_rounding;
38
 
39
/*----------------------------------------------------------------------------
40
| Raises the exceptions specified by `flags'.  Floating-point traps can be
41
| defined here if desired.  It is currently not possible for such a trap
42
| to substitute a result value.  If traps are not implemented, this routine
43
| should be simply `float_exception_flags |= flags;'.
44
*----------------------------------------------------------------------------*/
45
 
46
void float_raise( int8 flags )
47
{
48
 
49
    float_exception_flags |= flags;
50
 
51
}
52
 
53
/*----------------------------------------------------------------------------
54
| Internal canonical NaN format.
55
*----------------------------------------------------------------------------*/
56
typedef struct {
57
    flag sign;
58
    bits64 high, low;
59
} commonNaNT;
60
 
61
/*----------------------------------------------------------------------------
62
| The pattern for a default generated single-precision NaN.
63
*----------------------------------------------------------------------------*/
64
#define float32_default_nan 0x7FFFFFFF
65
 
66
/*----------------------------------------------------------------------------
67
| Returns 1 if the single-precision floating-point value `a' is a NaN;
68
| otherwise returns 0.
69
*----------------------------------------------------------------------------*/
70
 
71
flag float32_is_nan( float32 a )
72
{
73
 
74
    return ( 0xFF000000 < (bits32) ( a<<1 ) );
75
 
76
}
77
 
78
/*----------------------------------------------------------------------------
79
| Returns 1 if the single-precision floating-point value `a' is a signaling
80
| NaN; otherwise returns 0.
81
*----------------------------------------------------------------------------*/
82
 
83
flag float32_is_signaling_nan( float32 a )
84
{
85
 
86
    return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
87
 
88
}
89
 
90
/*----------------------------------------------------------------------------
91
| Returns the result of converting the single-precision floating-point NaN
92
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
93
| exception is raised.
94
*----------------------------------------------------------------------------*/
95
 
96
static commonNaNT float32ToCommonNaN( float32 a )
97
{
98
    commonNaNT z;
99
 
100
    if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
101
    z.sign = a>>31;
102
    z.low = 0;
103
    z.high = ( (bits64) a )<<41;
104
    return z;
105
 
106
}
107
 
108
/*----------------------------------------------------------------------------
109
| Returns the result of converting the canonical NaN `a' to the single-
110
| precision floating-point format.
111
*----------------------------------------------------------------------------*/
112
 
113
static float32 commonNaNToFloat32( commonNaNT a )
114
{
115
 
116
    return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
117
 
118
}
119
 
120
/*----------------------------------------------------------------------------
121
| Takes two single-precision floating-point values `a' and `b', one of which
122
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
123
| signaling NaN, the invalid exception is raised.
124
*----------------------------------------------------------------------------*/
125
 
126
static float32 propagateFloat32NaN( float32 a, float32 b )
127
{
128
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
129
 
130
    aIsNaN = float32_is_nan( a );
131
    aIsSignalingNaN = float32_is_signaling_nan( a );
132
    bIsNaN = float32_is_nan( b );
133
    bIsSignalingNaN = float32_is_signaling_nan( b );
134
    a |= 0x00400000;
135
    b |= 0x00400000;
136
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
137
    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
138
 
139
}
140
 
141
/*----------------------------------------------------------------------------
142
| The pattern for a default generated double-precision NaN.
143
*----------------------------------------------------------------------------*/
144
#define float64_default_nan LIT64( 0x7FFFFFFFFFFFFFFF )
145
 
146
/*----------------------------------------------------------------------------
147
| Returns 1 if the double-precision floating-point value `a' is a NaN;
148
| otherwise returns 0.
149
*----------------------------------------------------------------------------*/
150
 
151
flag float64_is_nan( float64 a )
152
{
153
 
154
    return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
155
 
156
}
157
 
158
/*----------------------------------------------------------------------------
159
| Returns 1 if the double-precision floating-point value `a' is a signaling
160
| NaN; otherwise returns 0.
161
*----------------------------------------------------------------------------*/
162
 
163
flag float64_is_signaling_nan( float64 a )
164
{
165
 
166
    return
167
           ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
168
        && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
169
 
170
}
171
 
172
/*----------------------------------------------------------------------------
173
| Returns the result of converting the double-precision floating-point NaN
174
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
175
| exception is raised.
176
*----------------------------------------------------------------------------*/
177
 
178
static commonNaNT float64ToCommonNaN( float64 a )
179
{
180
    commonNaNT z;
181
 
182
    if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
183
    z.sign = a>>63;
184
    z.low = 0;
185
    z.high = a<<12;
186
    return z;
187
 
188
}
189
 
190
/*----------------------------------------------------------------------------
191
| Returns the result of converting the canonical NaN `a' to the double-
192
| precision floating-point format.
193
*----------------------------------------------------------------------------*/
194
 
195
static float64 commonNaNToFloat64( commonNaNT a )
196
{
197
 
198
    return
199
          ( ( (bits64) a.sign )<<63 )
200
        | LIT64( 0x7FF8000000000000 )
201
        | ( a.high>>12 );
202
 
203
}
204
 
205
/*----------------------------------------------------------------------------
206
| Takes two double-precision floating-point values `a' and `b', one of which
207
| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
208
| signaling NaN, the invalid exception is raised.
209
*----------------------------------------------------------------------------*/
210
 
211
static float64 propagateFloat64NaN( float64 a, float64 b )
212
{
213
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
214
 
215
    aIsNaN = float64_is_nan( a );
216
    aIsSignalingNaN = float64_is_signaling_nan( a );
217
    bIsNaN = float64_is_nan( b );
218
    bIsSignalingNaN = float64_is_signaling_nan( b );
219
    a |= LIT64( 0x0008000000000000 );
220
    b |= LIT64( 0x0008000000000000 );
221
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
222
    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
223
 
224
}
225
 
226
#ifdef FLOATX80
227
 
228
/*----------------------------------------------------------------------------
229
| The pattern for a default generated extended double-precision NaN.  The
230
| `high' and `low' values hold the most- and least-significant bits,
231
| respectively.
232
*----------------------------------------------------------------------------*/
233
#define floatx80_default_nan_high 0x7FFF
234
#define floatx80_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
235
 
236
/*----------------------------------------------------------------------------
237
| Returns 1 if the extended double-precision floating-point value `a' is a
238
| NaN; otherwise returns 0.
239
*----------------------------------------------------------------------------*/
240
 
241
flag floatx80_is_nan( floatx80 a )
242
{
243
 
244
    return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
245
 
246
}
247
 
248
/*----------------------------------------------------------------------------
249
| Returns 1 if the extended double-precision floating-point value `a' is a
250
| signaling NaN; otherwise returns 0.
251
*----------------------------------------------------------------------------*/
252
 
253
flag floatx80_is_signaling_nan( floatx80 a )
254
{
255
    bits64 aLow;
256
 
257
    aLow = a.low & ~ LIT64( 0x4000000000000000 );
258
    return
259
           ( ( a.high & 0x7FFF ) == 0x7FFF )
260
        && (bits64) ( aLow<<1 )
261
        && ( a.low == aLow );
262
 
263
}
264
 
265
/*----------------------------------------------------------------------------
266
| Returns the result of converting the extended double-precision floating-
267
| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
268
| invalid exception is raised.
269
*----------------------------------------------------------------------------*/
270
 
271
static commonNaNT floatx80ToCommonNaN( floatx80 a )
272
{
273
    commonNaNT z;
274
 
275
    if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
276
    z.sign = a.high>>15;
277
    z.low = 0;
278
    z.high = a.low<<1;
279
    return z;
280
 
281
}
282
 
283
/*----------------------------------------------------------------------------
284
| Returns the result of converting the canonical NaN `a' to the extended
285
| double-precision floating-point format.
286
*----------------------------------------------------------------------------*/
287
 
288
static floatx80 commonNaNToFloatx80( commonNaNT a )
289
{
290
    floatx80 z;
291
 
292
    z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
293
    z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
294
    return z;
295
 
296
}
297
 
298
/*----------------------------------------------------------------------------
299
| Takes two extended double-precision floating-point values `a' and `b', one
300
| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
301
| `b' is a signaling NaN, the invalid exception is raised.
302
*----------------------------------------------------------------------------*/
303
 
304
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
305
{
306
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
307
 
308
    aIsNaN = floatx80_is_nan( a );
309
    aIsSignalingNaN = floatx80_is_signaling_nan( a );
310
    bIsNaN = floatx80_is_nan( b );
311
    bIsSignalingNaN = floatx80_is_signaling_nan( b );
312
    a.low |= LIT64( 0xC000000000000000 );
313
    b.low |= LIT64( 0xC000000000000000 );
314
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
315
    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
316
 
317
}
318
 
319
#endif
320
 
321
#ifdef FLOAT128
322
 
323
/*----------------------------------------------------------------------------
324
| The pattern for a default generated quadruple-precision NaN.  The `high' and
325
| `low' values hold the most- and least-significant bits, respectively.
326
*----------------------------------------------------------------------------*/
327
#define float128_default_nan_high LIT64( 0x7FFFFFFFFFFFFFFF )
328
#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
329
 
330
/*----------------------------------------------------------------------------
331
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
332
| otherwise returns 0.
333
*----------------------------------------------------------------------------*/
334
 
335
flag float128_is_nan( float128 a )
336
{
337
 
338
    return
339
           ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
340
        && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
341
 
342
}
343
 
344
/*----------------------------------------------------------------------------
345
| Returns 1 if the quadruple-precision floating-point value `a' is a
346
| signaling NaN; otherwise returns 0.
347
*----------------------------------------------------------------------------*/
348
 
349
flag float128_is_signaling_nan( float128 a )
350
{
351
 
352
    return
353
           ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
354
        && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
355
 
356
}
357
 
358
/*----------------------------------------------------------------------------
359
| Returns the result of converting the quadruple-precision floating-point NaN
360
| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
361
| exception is raised.
362
*----------------------------------------------------------------------------*/
363
 
364
static commonNaNT float128ToCommonNaN( float128 a )
365
{
366
    commonNaNT z;
367
 
368
    if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
369
    z.sign = a.high>>63;
370
    shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
371
    return z;
372
 
373
}
374
 
375
/*----------------------------------------------------------------------------
376
| Returns the result of converting the canonical NaN `a' to the quadruple-
377
| precision floating-point format.
378
*----------------------------------------------------------------------------*/
379
 
380
static float128 commonNaNToFloat128( commonNaNT a )
381
{
382
    float128 z;
383
 
384
    shift128Right( a.high, a.low, 16, &z.high, &z.low );
385
    z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
386
    return z;
387
 
388
}
389
 
390
/*----------------------------------------------------------------------------
391
| Takes two quadruple-precision floating-point values `a' and `b', one of
392
| which is a NaN, and returns the appropriate NaN result.  If either `a' or
393
| `b' is a signaling NaN, the invalid exception is raised.
394
*----------------------------------------------------------------------------*/
395
 
396
static float128 propagateFloat128NaN( float128 a, float128 b )
397
{
398
    flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
399
 
400
    aIsNaN = float128_is_nan( a );
401
    aIsSignalingNaN = float128_is_signaling_nan( a );
402
    bIsNaN = float128_is_nan( b );
403
    bIsSignalingNaN = float128_is_signaling_nan( b );
404
    a.high |= LIT64( 0x0000800000000000 );
405
    b.high |= LIT64( 0x0000800000000000 );
406
    if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
407
    return bIsSignalingNaN ? b : aIsSignalingNaN ? a : bIsNaN ? b : a;
408
 
409
}
410
 
411
#endif
412
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.