1 |
6 |
jidan |
|
2 |
|
|
/*============================================================================
|
3 |
|
|
|
4 |
|
|
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
5 |
|
|
Arithmetic Package, Release 2b.
|
6 |
|
|
|
7 |
|
|
Written by John R. Hauser. This work was made possible in part by the
|
8 |
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
9 |
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
10 |
|
|
National Science Foundation under grant MIP-9311980. The original version
|
11 |
|
|
of this code was written as part of a project to build a fixed-point vector
|
12 |
|
|
processor in collaboration with the University of California at Berkeley,
|
13 |
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
14 |
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
15 |
|
|
arithmetic/SoftFloat.html'.
|
16 |
|
|
|
17 |
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
18 |
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
19 |
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
20 |
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
21 |
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
22 |
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
23 |
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
24 |
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
25 |
|
|
|
26 |
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
27 |
|
|
(1) the source code for the derivative work includes prominent notice that
|
28 |
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
29 |
|
|
these four paragraphs for those parts of this code that are retained.
|
30 |
|
|
|
31 |
|
|
=============================================================================*/
|
32 |
|
|
|
33 |
|
|
/*----------------------------------------------------------------------------
|
34 |
|
|
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
35 |
|
|
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
36 |
|
|
| the result by setting the least significant bit to 1. The value of `count'
|
37 |
|
|
| can be arbitrarily large; in particular, if `count' is greater than 32, the
|
38 |
|
|
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
39 |
|
|
| The result is stored in the location pointed to by `zPtr'.
|
40 |
|
|
*----------------------------------------------------------------------------*/
|
41 |
|
|
|
42 |
|
|
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
43 |
|
|
{
|
44 |
|
|
bits32 z;
|
45 |
|
|
|
46 |
|
|
if ( count == 0 ) {
|
47 |
|
|
z = a;
|
48 |
|
|
}
|
49 |
|
|
else if ( count < 32 ) {
|
50 |
|
|
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
51 |
|
|
}
|
52 |
|
|
else {
|
53 |
|
|
z = ( a != 0 );
|
54 |
|
|
}
|
55 |
|
|
*zPtr = z;
|
56 |
|
|
|
57 |
|
|
}
|
58 |
|
|
|
59 |
|
|
/*----------------------------------------------------------------------------
|
60 |
|
|
| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
|
61 |
|
|
| number of bits given in `count'. Any bits shifted off are lost. The value
|
62 |
|
|
| of `count' can be arbitrarily large; in particular, if `count' is greater
|
63 |
|
|
| than 64, the result will be 0. The result is broken into two 32-bit pieces
|
64 |
|
|
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
65 |
|
|
*----------------------------------------------------------------------------*/
|
66 |
|
|
|
67 |
|
|
INLINE void
|
68 |
|
|
shift64Right(
|
69 |
|
|
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
70 |
|
|
{
|
71 |
|
|
bits32 z0, z1;
|
72 |
|
|
int8 negCount = ( - count ) & 31;
|
73 |
|
|
|
74 |
|
|
if ( count == 0 ) {
|
75 |
|
|
z1 = a1;
|
76 |
|
|
z0 = a0;
|
77 |
|
|
}
|
78 |
|
|
else if ( count < 32 ) {
|
79 |
|
|
z1 = ( a0<>count );
|
80 |
|
|
z0 = a0>>count;
|
81 |
|
|
}
|
82 |
|
|
else {
|
83 |
|
|
z1 = ( count < 64 ) ? ( a0>>( count & 31 ) ) : 0;
|
84 |
|
|
z0 = 0;
|
85 |
|
|
}
|
86 |
|
|
*z1Ptr = z1;
|
87 |
|
|
*z0Ptr = z0;
|
88 |
|
|
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
/*----------------------------------------------------------------------------
|
92 |
|
|
| Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
|
93 |
|
|
| number of bits given in `count'. If any nonzero bits are shifted off, they
|
94 |
|
|
| are ``jammed'' into the least significant bit of the result by setting the
|
95 |
|
|
| least significant bit to 1. The value of `count' can be arbitrarily large;
|
96 |
|
|
| in particular, if `count' is greater than 64, the result will be either 0
|
97 |
|
|
| or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
98 |
|
|
| nonzero. The result is broken into two 32-bit pieces which are stored at
|
99 |
|
|
| the locations pointed to by `z0Ptr' and `z1Ptr'.
|
100 |
|
|
*----------------------------------------------------------------------------*/
|
101 |
|
|
|
102 |
|
|
INLINE void
|
103 |
|
|
shift64RightJamming(
|
104 |
|
|
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
105 |
|
|
{
|
106 |
|
|
bits32 z0, z1;
|
107 |
|
|
int8 negCount = ( - count ) & 31;
|
108 |
|
|
|
109 |
|
|
if ( count == 0 ) {
|
110 |
|
|
z1 = a1;
|
111 |
|
|
z0 = a0;
|
112 |
|
|
}
|
113 |
|
|
else if ( count < 32 ) {
|
114 |
|
|
z1 = ( a0<>count ) | ( ( a1<
|
115 |
|
|
z0 = a0>>count;
|
116 |
|
|
}
|
117 |
|
|
else {
|
118 |
|
|
if ( count == 32 ) {
|
119 |
|
|
z1 = a0 | ( a1 != 0 );
|
120 |
|
|
}
|
121 |
|
|
else if ( count < 64 ) {
|
122 |
|
|
z1 = ( a0>>( count & 31 ) ) | ( ( ( a0<
|
123 |
|
|
}
|
124 |
|
|
else {
|
125 |
|
|
z1 = ( ( a0 | a1 ) != 0 );
|
126 |
|
|
}
|
127 |
|
|
z0 = 0;
|
128 |
|
|
}
|
129 |
|
|
*z1Ptr = z1;
|
130 |
|
|
*z0Ptr = z0;
|
131 |
|
|
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
/*----------------------------------------------------------------------------
|
135 |
|
|
| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
|
136 |
|
|
| by 32 _plus_ the number of bits given in `count'. The shifted result is
|
137 |
|
|
| at most 64 nonzero bits; these are broken into two 32-bit pieces which are
|
138 |
|
|
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
139 |
|
|
| off form a third 32-bit result as follows: The _last_ bit shifted off is
|
140 |
|
|
| the most-significant bit of the extra result, and the other 31 bits of the
|
141 |
|
|
| extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
142 |
|
|
| were all zero. This extra result is stored in the location pointed to by
|
143 |
|
|
| `z2Ptr'. The value of `count' can be arbitrarily large.
|
144 |
|
|
| (This routine makes more sense if `a0', `a1', and `a2' are considered
|
145 |
|
|
| to form a fixed-point value with binary point between `a1' and `a2'. This
|
146 |
|
|
| fixed-point value is shifted right by the number of bits given in `count',
|
147 |
|
|
| and the integer part of the result is returned at the locations pointed to
|
148 |
|
|
| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
149 |
|
|
| corrupted as described above, and is returned at the location pointed to by
|
150 |
|
|
| `z2Ptr'.)
|
151 |
|
|
*----------------------------------------------------------------------------*/
|
152 |
|
|
|
153 |
|
|
INLINE void
|
154 |
|
|
shift64ExtraRightJamming(
|
155 |
|
|
bits32 a0,
|
156 |
|
|
bits32 a1,
|
157 |
|
|
bits32 a2,
|
158 |
|
|
int16 count,
|
159 |
|
|
bits32 *z0Ptr,
|
160 |
|
|
bits32 *z1Ptr,
|
161 |
|
|
bits32 *z2Ptr
|
162 |
|
|
)
|
163 |
|
|
{
|
164 |
|
|
bits32 z0, z1, z2;
|
165 |
|
|
int8 negCount = ( - count ) & 31;
|
166 |
|
|
|
167 |
|
|
if ( count == 0 ) {
|
168 |
|
|
z2 = a2;
|
169 |
|
|
z1 = a1;
|
170 |
|
|
z0 = a0;
|
171 |
|
|
}
|
172 |
|
|
else {
|
173 |
|
|
if ( count < 32 ) {
|
174 |
|
|
z2 = a1<
|
175 |
|
|
z1 = ( a0<>count );
|
176 |
|
|
z0 = a0>>count;
|
177 |
|
|
}
|
178 |
|
|
else {
|
179 |
|
|
if ( count == 32 ) {
|
180 |
|
|
z2 = a1;
|
181 |
|
|
z1 = a0;
|
182 |
|
|
}
|
183 |
|
|
else {
|
184 |
|
|
a2 |= a1;
|
185 |
|
|
if ( count < 64 ) {
|
186 |
|
|
z2 = a0<
|
187 |
|
|
z1 = a0>>( count & 31 );
|
188 |
|
|
}
|
189 |
|
|
else {
|
190 |
|
|
z2 = ( count == 64 ) ? a0 : ( a0 != 0 );
|
191 |
|
|
z1 = 0;
|
192 |
|
|
}
|
193 |
|
|
}
|
194 |
|
|
z0 = 0;
|
195 |
|
|
}
|
196 |
|
|
z2 |= ( a2 != 0 );
|
197 |
|
|
}
|
198 |
|
|
*z2Ptr = z2;
|
199 |
|
|
*z1Ptr = z1;
|
200 |
|
|
*z0Ptr = z0;
|
201 |
|
|
|
202 |
|
|
}
|
203 |
|
|
|
204 |
|
|
/*----------------------------------------------------------------------------
|
205 |
|
|
| Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
|
206 |
|
|
| number of bits given in `count'. Any bits shifted off are lost. The value
|
207 |
|
|
| of `count' must be less than 32. The result is broken into two 32-bit
|
208 |
|
|
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
209 |
|
|
*----------------------------------------------------------------------------*/
|
210 |
|
|
|
211 |
|
|
INLINE void
|
212 |
|
|
shortShift64Left(
|
213 |
|
|
bits32 a0, bits32 a1, int16 count, bits32 *z0Ptr, bits32 *z1Ptr )
|
214 |
|
|
{
|
215 |
|
|
|
216 |
|
|
*z1Ptr = a1<
|
217 |
|
|
*z0Ptr =
|
218 |
|
|
( count == 0 ) ? a0 : ( a0<>( ( - count ) & 31 ) );
|
219 |
|
|
|
220 |
|
|
}
|
221 |
|
|
|
222 |
|
|
/*----------------------------------------------------------------------------
|
223 |
|
|
| Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' left
|
224 |
|
|
| by the number of bits given in `count'. Any bits shifted off are lost.
|
225 |
|
|
| The value of `count' must be less than 32. The result is broken into three
|
226 |
|
|
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
227 |
|
|
| `z1Ptr', and `z2Ptr'.
|
228 |
|
|
*----------------------------------------------------------------------------*/
|
229 |
|
|
|
230 |
|
|
INLINE void
|
231 |
|
|
shortShift96Left(
|
232 |
|
|
bits32 a0,
|
233 |
|
|
bits32 a1,
|
234 |
|
|
bits32 a2,
|
235 |
|
|
int16 count,
|
236 |
|
|
bits32 *z0Ptr,
|
237 |
|
|
bits32 *z1Ptr,
|
238 |
|
|
bits32 *z2Ptr
|
239 |
|
|
)
|
240 |
|
|
{
|
241 |
|
|
bits32 z0, z1, z2;
|
242 |
|
|
int8 negCount;
|
243 |
|
|
|
244 |
|
|
z2 = a2<
|
245 |
|
|
z1 = a1<
|
246 |
|
|
z0 = a0<
|
247 |
|
|
if ( 0 < count ) {
|
248 |
|
|
negCount = ( ( - count ) & 31 );
|
249 |
|
|
z1 |= a2>>negCount;
|
250 |
|
|
z0 |= a1>>negCount;
|
251 |
|
|
}
|
252 |
|
|
*z2Ptr = z2;
|
253 |
|
|
*z1Ptr = z1;
|
254 |
|
|
*z0Ptr = z0;
|
255 |
|
|
|
256 |
|
|
}
|
257 |
|
|
|
258 |
|
|
/*----------------------------------------------------------------------------
|
259 |
|
|
| Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
|
260 |
|
|
| value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
|
261 |
|
|
| any carry out is lost. The result is broken into two 32-bit pieces which
|
262 |
|
|
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
263 |
|
|
*----------------------------------------------------------------------------*/
|
264 |
|
|
|
265 |
|
|
INLINE void
|
266 |
|
|
add64(
|
267 |
|
|
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
|
268 |
|
|
{
|
269 |
|
|
bits32 z1;
|
270 |
|
|
|
271 |
|
|
z1 = a1 + b1;
|
272 |
|
|
*z1Ptr = z1;
|
273 |
|
|
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
274 |
|
|
|
275 |
|
|
}
|
276 |
|
|
|
277 |
|
|
/*----------------------------------------------------------------------------
|
278 |
|
|
| Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
|
279 |
|
|
| 96-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
280 |
|
|
| modulo 2^96, so any carry out is lost. The result is broken into three
|
281 |
|
|
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
282 |
|
|
| `z1Ptr', and `z2Ptr'.
|
283 |
|
|
*----------------------------------------------------------------------------*/
|
284 |
|
|
|
285 |
|
|
INLINE void
|
286 |
|
|
add96(
|
287 |
|
|
bits32 a0,
|
288 |
|
|
bits32 a1,
|
289 |
|
|
bits32 a2,
|
290 |
|
|
bits32 b0,
|
291 |
|
|
bits32 b1,
|
292 |
|
|
bits32 b2,
|
293 |
|
|
bits32 *z0Ptr,
|
294 |
|
|
bits32 *z1Ptr,
|
295 |
|
|
bits32 *z2Ptr
|
296 |
|
|
)
|
297 |
|
|
{
|
298 |
|
|
bits32 z0, z1, z2;
|
299 |
|
|
int8 carry0, carry1;
|
300 |
|
|
|
301 |
|
|
z2 = a2 + b2;
|
302 |
|
|
carry1 = ( z2 < a2 );
|
303 |
|
|
z1 = a1 + b1;
|
304 |
|
|
carry0 = ( z1 < a1 );
|
305 |
|
|
z0 = a0 + b0;
|
306 |
|
|
z1 += carry1;
|
307 |
|
|
z0 += ( z1 < carry1 );
|
308 |
|
|
z0 += carry0;
|
309 |
|
|
*z2Ptr = z2;
|
310 |
|
|
*z1Ptr = z1;
|
311 |
|
|
*z0Ptr = z0;
|
312 |
|
|
|
313 |
|
|
}
|
314 |
|
|
|
315 |
|
|
/*----------------------------------------------------------------------------
|
316 |
|
|
| Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
|
317 |
|
|
| 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
318 |
|
|
| 2^64, so any borrow out (carry out) is lost. The result is broken into two
|
319 |
|
|
| 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
320 |
|
|
| `z1Ptr'.
|
321 |
|
|
*----------------------------------------------------------------------------*/
|
322 |
|
|
|
323 |
|
|
INLINE void
|
324 |
|
|
sub64(
|
325 |
|
|
bits32 a0, bits32 a1, bits32 b0, bits32 b1, bits32 *z0Ptr, bits32 *z1Ptr )
|
326 |
|
|
{
|
327 |
|
|
|
328 |
|
|
*z1Ptr = a1 - b1;
|
329 |
|
|
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
330 |
|
|
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
/*----------------------------------------------------------------------------
|
334 |
|
|
| Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
|
335 |
|
|
| the 96-bit value formed by concatenating `a0', `a1', and `a2'. Subtraction
|
336 |
|
|
| is modulo 2^96, so any borrow out (carry out) is lost. The result is broken
|
337 |
|
|
| into three 32-bit pieces which are stored at the locations pointed to by
|
338 |
|
|
| `z0Ptr', `z1Ptr', and `z2Ptr'.
|
339 |
|
|
*----------------------------------------------------------------------------*/
|
340 |
|
|
|
341 |
|
|
INLINE void
|
342 |
|
|
sub96(
|
343 |
|
|
bits32 a0,
|
344 |
|
|
bits32 a1,
|
345 |
|
|
bits32 a2,
|
346 |
|
|
bits32 b0,
|
347 |
|
|
bits32 b1,
|
348 |
|
|
bits32 b2,
|
349 |
|
|
bits32 *z0Ptr,
|
350 |
|
|
bits32 *z1Ptr,
|
351 |
|
|
bits32 *z2Ptr
|
352 |
|
|
)
|
353 |
|
|
{
|
354 |
|
|
bits32 z0, z1, z2;
|
355 |
|
|
int8 borrow0, borrow1;
|
356 |
|
|
|
357 |
|
|
z2 = a2 - b2;
|
358 |
|
|
borrow1 = ( a2 < b2 );
|
359 |
|
|
z1 = a1 - b1;
|
360 |
|
|
borrow0 = ( a1 < b1 );
|
361 |
|
|
z0 = a0 - b0;
|
362 |
|
|
z0 -= ( z1 < borrow1 );
|
363 |
|
|
z1 -= borrow1;
|
364 |
|
|
z0 -= borrow0;
|
365 |
|
|
*z2Ptr = z2;
|
366 |
|
|
*z1Ptr = z1;
|
367 |
|
|
*z0Ptr = z0;
|
368 |
|
|
|
369 |
|
|
}
|
370 |
|
|
|
371 |
|
|
/*----------------------------------------------------------------------------
|
372 |
|
|
| Multiplies `a' by `b' to obtain a 64-bit product. The product is broken
|
373 |
|
|
| into two 32-bit pieces which are stored at the locations pointed to by
|
374 |
|
|
| `z0Ptr' and `z1Ptr'.
|
375 |
|
|
*----------------------------------------------------------------------------*/
|
376 |
|
|
|
377 |
|
|
INLINE void mul32To64( bits32 a, bits32 b, bits32 *z0Ptr, bits32 *z1Ptr )
|
378 |
|
|
{
|
379 |
|
|
bits16 aHigh, aLow, bHigh, bLow;
|
380 |
|
|
bits32 z0, zMiddleA, zMiddleB, z1;
|
381 |
|
|
|
382 |
|
|
aLow = a;
|
383 |
|
|
aHigh = a>>16;
|
384 |
|
|
bLow = b;
|
385 |
|
|
bHigh = b>>16;
|
386 |
|
|
z1 = ( (bits32) aLow ) * bLow;
|
387 |
|
|
zMiddleA = ( (bits32) aLow ) * bHigh;
|
388 |
|
|
zMiddleB = ( (bits32) aHigh ) * bLow;
|
389 |
|
|
z0 = ( (bits32) aHigh ) * bHigh;
|
390 |
|
|
zMiddleA += zMiddleB;
|
391 |
|
|
z0 += ( ( (bits32) ( zMiddleA < zMiddleB ) )<<16 ) + ( zMiddleA>>16 );
|
392 |
|
|
zMiddleA <<= 16;
|
393 |
|
|
z1 += zMiddleA;
|
394 |
|
|
z0 += ( z1 < zMiddleA );
|
395 |
|
|
*z1Ptr = z1;
|
396 |
|
|
*z0Ptr = z0;
|
397 |
|
|
|
398 |
|
|
}
|
399 |
|
|
|
400 |
|
|
/*----------------------------------------------------------------------------
|
401 |
|
|
| Multiplies the 64-bit value formed by concatenating `a0' and `a1' by `b'
|
402 |
|
|
| to obtain a 96-bit product. The product is broken into three 32-bit pieces
|
403 |
|
|
| which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
404 |
|
|
| `z2Ptr'.
|
405 |
|
|
*----------------------------------------------------------------------------*/
|
406 |
|
|
|
407 |
|
|
INLINE void
|
408 |
|
|
mul64By32To96(
|
409 |
|
|
bits32 a0,
|
410 |
|
|
bits32 a1,
|
411 |
|
|
bits32 b,
|
412 |
|
|
bits32 *z0Ptr,
|
413 |
|
|
bits32 *z1Ptr,
|
414 |
|
|
bits32 *z2Ptr
|
415 |
|
|
)
|
416 |
|
|
{
|
417 |
|
|
bits32 z0, z1, z2, more1;
|
418 |
|
|
|
419 |
|
|
mul32To64( a1, b, &z1, &z2 );
|
420 |
|
|
mul32To64( a0, b, &z0, &more1 );
|
421 |
|
|
add64( z0, more1, 0, z1, &z0, &z1 );
|
422 |
|
|
*z2Ptr = z2;
|
423 |
|
|
*z1Ptr = z1;
|
424 |
|
|
*z0Ptr = z0;
|
425 |
|
|
|
426 |
|
|
}
|
427 |
|
|
|
428 |
|
|
/*----------------------------------------------------------------------------
|
429 |
|
|
| Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
|
430 |
|
|
| 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
|
431 |
|
|
| product. The product is broken into four 32-bit pieces which are stored at
|
432 |
|
|
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
433 |
|
|
*----------------------------------------------------------------------------*/
|
434 |
|
|
|
435 |
|
|
INLINE void
|
436 |
|
|
mul64To128(
|
437 |
|
|
bits32 a0,
|
438 |
|
|
bits32 a1,
|
439 |
|
|
bits32 b0,
|
440 |
|
|
bits32 b1,
|
441 |
|
|
bits32 *z0Ptr,
|
442 |
|
|
bits32 *z1Ptr,
|
443 |
|
|
bits32 *z2Ptr,
|
444 |
|
|
bits32 *z3Ptr
|
445 |
|
|
)
|
446 |
|
|
{
|
447 |
|
|
bits32 z0, z1, z2, z3;
|
448 |
|
|
bits32 more1, more2;
|
449 |
|
|
|
450 |
|
|
mul32To64( a1, b1, &z2, &z3 );
|
451 |
|
|
mul32To64( a1, b0, &z1, &more2 );
|
452 |
|
|
add64( z1, more2, 0, z2, &z1, &z2 );
|
453 |
|
|
mul32To64( a0, b0, &z0, &more1 );
|
454 |
|
|
add64( z0, more1, 0, z1, &z0, &z1 );
|
455 |
|
|
mul32To64( a0, b1, &more1, &more2 );
|
456 |
|
|
add64( more1, more2, 0, z2, &more1, &z2 );
|
457 |
|
|
add64( z0, z1, 0, more1, &z0, &z1 );
|
458 |
|
|
*z3Ptr = z3;
|
459 |
|
|
*z2Ptr = z2;
|
460 |
|
|
*z1Ptr = z1;
|
461 |
|
|
*z0Ptr = z0;
|
462 |
|
|
|
463 |
|
|
}
|
464 |
|
|
|
465 |
|
|
/*----------------------------------------------------------------------------
|
466 |
|
|
| Returns an approximation to the 32-bit integer quotient obtained by dividing
|
467 |
|
|
| `b' into the 64-bit value formed by concatenating `a0' and `a1'. The
|
468 |
|
|
| divisor `b' must be at least 2^31. If q is the exact quotient truncated
|
469 |
|
|
| toward zero, the approximation returned lies between q and q + 2 inclusive.
|
470 |
|
|
| If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
|
471 |
|
|
| unsigned integer is returned.
|
472 |
|
|
*----------------------------------------------------------------------------*/
|
473 |
|
|
|
474 |
|
|
static bits32 estimateDiv64To32( bits32 a0, bits32 a1, bits32 b )
|
475 |
|
|
{
|
476 |
|
|
bits32 b0, b1;
|
477 |
|
|
bits32 rem0, rem1, term0, term1;
|
478 |
|
|
bits32 z;
|
479 |
|
|
|
480 |
|
|
if ( b <= a0 ) return 0xFFFFFFFF;
|
481 |
|
|
b0 = b>>16;
|
482 |
|
|
z = ( b0<<16 <= a0 ) ? 0xFFFF0000 : ( a0 / b0 )<<16;
|
483 |
|
|
mul32To64( b, z, &term0, &term1 );
|
484 |
|
|
sub64( a0, a1, term0, term1, &rem0, &rem1 );
|
485 |
|
|
while ( ( (sbits32) rem0 ) < 0 ) {
|
486 |
|
|
z -= 0x10000;
|
487 |
|
|
b1 = b<<16;
|
488 |
|
|
add64( rem0, rem1, b0, b1, &rem0, &rem1 );
|
489 |
|
|
}
|
490 |
|
|
rem0 = ( rem0<<16 ) | ( rem1>>16 );
|
491 |
|
|
z |= ( b0<<16 <= rem0 ) ? 0xFFFF : rem0 / b0;
|
492 |
|
|
return z;
|
493 |
|
|
|
494 |
|
|
}
|
495 |
|
|
|
496 |
|
|
/*----------------------------------------------------------------------------
|
497 |
|
|
| Returns an approximation to the square root of the 32-bit significand given
|
498 |
|
|
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
499 |
|
|
| `aExp' (the least significant bit) is 1, the integer returned approximates
|
500 |
|
|
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
501 |
|
|
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
502 |
|
|
| case, the approximation returned lies strictly within +/-2 of the exact
|
503 |
|
|
| value.
|
504 |
|
|
*----------------------------------------------------------------------------*/
|
505 |
|
|
|
506 |
|
|
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
507 |
|
|
{
|
508 |
|
|
static const bits16 sqrtOddAdjustments[] = {
|
509 |
|
|
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
510 |
|
|
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
511 |
|
|
};
|
512 |
|
|
static const bits16 sqrtEvenAdjustments[] = {
|
513 |
|
|
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
514 |
|
|
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
515 |
|
|
};
|
516 |
|
|
int8 index;
|
517 |
|
|
bits32 z;
|
518 |
|
|
|
519 |
|
|
index = ( a>>27 ) & 15;
|
520 |
|
|
if ( aExp & 1 ) {
|
521 |
|
|
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
522 |
|
|
z = ( ( a / z )<<14 ) + ( z<<15 );
|
523 |
|
|
a >>= 1;
|
524 |
|
|
}
|
525 |
|
|
else {
|
526 |
|
|
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
527 |
|
|
z = a / z + z;
|
528 |
|
|
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
529 |
|
|
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
530 |
|
|
}
|
531 |
|
|
return ( ( estimateDiv64To32( a, 0, z ) )>>1 ) + ( z>>1 );
|
532 |
|
|
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
/*----------------------------------------------------------------------------
|
536 |
|
|
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
537 |
|
|
| `a'. If `a' is zero, 32 is returned.
|
538 |
|
|
*----------------------------------------------------------------------------*/
|
539 |
|
|
|
540 |
|
|
static int8 countLeadingZeros32( bits32 a )
|
541 |
|
|
{
|
542 |
|
|
static const int8 countLeadingZerosHigh[] = {
|
543 |
|
|
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
544 |
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
545 |
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
546 |
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
547 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
548 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
549 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
550 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
551 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
552 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
553 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
554 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
555 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
556 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
557 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
558 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
559 |
|
|
};
|
560 |
|
|
int8 shiftCount;
|
561 |
|
|
|
562 |
|
|
shiftCount = 0;
|
563 |
|
|
if ( a < 0x10000 ) {
|
564 |
|
|
shiftCount += 16;
|
565 |
|
|
a <<= 16;
|
566 |
|
|
}
|
567 |
|
|
if ( a < 0x1000000 ) {
|
568 |
|
|
shiftCount += 8;
|
569 |
|
|
a <<= 8;
|
570 |
|
|
}
|
571 |
|
|
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
572 |
|
|
return shiftCount;
|
573 |
|
|
|
574 |
|
|
}
|
575 |
|
|
|
576 |
|
|
/*----------------------------------------------------------------------------
|
577 |
|
|
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is
|
578 |
|
|
| equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
579 |
|
|
| returns 0.
|
580 |
|
|
*----------------------------------------------------------------------------*/
|
581 |
|
|
|
582 |
|
|
INLINE flag eq64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
583 |
|
|
{
|
584 |
|
|
|
585 |
|
|
return ( a0 == b0 ) && ( a1 == b1 );
|
586 |
|
|
|
587 |
|
|
}
|
588 |
|
|
|
589 |
|
|
/*----------------------------------------------------------------------------
|
590 |
|
|
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
|
591 |
|
|
| than or equal to the 64-bit value formed by concatenating `b0' and `b1'.
|
592 |
|
|
| Otherwise, returns 0.
|
593 |
|
|
*----------------------------------------------------------------------------*/
|
594 |
|
|
|
595 |
|
|
INLINE flag le64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
596 |
|
|
{
|
597 |
|
|
|
598 |
|
|
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
599 |
|
|
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
/*----------------------------------------------------------------------------
|
603 |
|
|
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is less
|
604 |
|
|
| than the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
605 |
|
|
| returns 0.
|
606 |
|
|
*----------------------------------------------------------------------------*/
|
607 |
|
|
|
608 |
|
|
INLINE flag lt64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
609 |
|
|
{
|
610 |
|
|
|
611 |
|
|
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
612 |
|
|
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
/*----------------------------------------------------------------------------
|
616 |
|
|
| Returns 1 if the 64-bit value formed by concatenating `a0' and `a1' is not
|
617 |
|
|
| equal to the 64-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
618 |
|
|
| returns 0.
|
619 |
|
|
*----------------------------------------------------------------------------*/
|
620 |
|
|
|
621 |
|
|
INLINE flag ne64( bits32 a0, bits32 a1, bits32 b0, bits32 b1 )
|
622 |
|
|
{
|
623 |
|
|
|
624 |
|
|
return ( a0 != b0 ) || ( a1 != b1 );
|
625 |
|
|
|
626 |
|
|
}
|
627 |
|
|
|