1 |
2 |
davidklun |
---------------------------------------------------------------------
|
2 |
|
|
---- ----
|
3 |
|
|
---- FPU ----
|
4 |
|
|
---- Floating Point Unit (Double precision) ----
|
5 |
|
|
---- ----
|
6 |
|
|
---- Author: David Lundgren ----
|
7 |
|
|
---- davidklun@gmail.com ----
|
8 |
|
|
---- ----
|
9 |
|
|
---------------------------------------------------------------------
|
10 |
|
|
---- ----
|
11 |
|
|
---- Copyright (C) 2009 David Lundgren ----
|
12 |
|
|
---- davidklun@gmail.com ----
|
13 |
|
|
---- ----
|
14 |
|
|
---- This source file may be used and distributed without ----
|
15 |
|
|
---- restriction provided that this copyright statement is not ----
|
16 |
|
|
---- removed from the file and that any derivative work contains ----
|
17 |
|
|
---- the original copyright notice and the associated disclaimer.----
|
18 |
|
|
---- ----
|
19 |
|
|
---- THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ----
|
20 |
|
|
---- EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ----
|
21 |
|
|
---- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ----
|
22 |
|
|
---- FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ----
|
23 |
|
|
---- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ----
|
24 |
|
|
---- INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ----
|
25 |
|
|
---- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ----
|
26 |
|
|
---- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ----
|
27 |
|
|
---- BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ----
|
28 |
|
|
---- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ----
|
29 |
|
|
---- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ----
|
30 |
|
|
---- OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ----
|
31 |
|
|
---- POSSIBILITY OF SUCH DAMAGE. ----
|
32 |
|
|
---- ----
|
33 |
|
|
---------------------------------------------------------------------
|
34 |
|
|
|
35 |
|
|
LIBRARY ieee;
|
36 |
|
|
USE ieee.std_logic_1164.all;
|
37 |
|
|
USE ieee.std_logic_arith.all;
|
38 |
|
|
use ieee.std_logic_unsigned.all;
|
39 |
|
|
use ieee.std_logic_misc.all;
|
40 |
|
|
use IEEE.numeric_std.all;
|
41 |
|
|
library work;
|
42 |
|
|
use work.fpupack.all;
|
43 |
|
|
|
44 |
|
|
ENTITY fpu_div IS
|
45 |
|
|
|
46 |
|
|
PORT(
|
47 |
|
|
clk, rst, enable : IN std_logic;
|
48 |
|
|
opa, opb : IN std_logic_vector (63 DOWNTO 0);
|
49 |
|
|
sign : OUT std_logic;
|
50 |
|
|
mantissa_7 : OUT std_logic_vector (55 DOWNTO 0);
|
51 |
|
|
exponent_out : OUT std_logic_vector (11 DOWNTO 0)
|
52 |
|
|
);
|
53 |
|
|
|
54 |
|
|
END fpu_div;
|
55 |
|
|
|
56 |
|
|
architecture rtl of fpu_div is
|
57 |
|
|
|
58 |
|
|
signal dividend_signal : std_logic_vector(53 downto 0);
|
59 |
|
|
signal divisor_signal : std_logic_vector(53 downto 0);
|
60 |
|
|
signal enable_signal : std_logic;
|
61 |
|
|
signal enable_signal_2 : std_logic;
|
62 |
|
|
signal enable_signal_a : std_logic;
|
63 |
|
|
signal enable_signal_b : std_logic;
|
64 |
|
|
signal enable_signal_c : std_logic;
|
65 |
|
|
signal enable_signal_d : std_logic;
|
66 |
|
|
signal enable_signal_e : std_logic;
|
67 |
|
|
signal dividend_shift : std_logic_vector(5 downto 0);
|
68 |
|
|
signal dividend_shift_2 : std_logic_vector(5 downto 0);
|
69 |
|
|
signal divisor_shift : std_logic_vector(5 downto 0);
|
70 |
|
|
signal divisor_shift_2 : std_logic_vector(5 downto 0);
|
71 |
|
|
signal count_out : std_logic_vector(5 downto 0);
|
72 |
|
|
signal mantissa_a : std_logic_vector(51 downto 0);
|
73 |
|
|
signal mantissa_b : std_logic_vector(51 downto 0);
|
74 |
|
|
signal expon_a : std_logic_vector(10 downto 0);
|
75 |
|
|
signal expon_b : std_logic_vector(10 downto 0);
|
76 |
|
|
signal a_is_norm : std_logic;
|
77 |
|
|
signal b_is_norm : std_logic;
|
78 |
|
|
signal a_is_zero : std_logic;
|
79 |
|
|
signal exponent_a : std_logic_vector(11 downto 0);
|
80 |
|
|
signal exponent_b : std_logic_vector(11 downto 0);
|
81 |
|
|
signal dividend_a : std_logic_vector(51 downto 0);
|
82 |
|
|
signal dividend_a_shifted : std_logic_vector(51 downto 0);
|
83 |
|
|
signal dividend_denorm : std_logic_vector(52 downto 0);
|
84 |
|
|
signal dividend_1 : std_logic_vector(53 downto 0);
|
85 |
|
|
signal divisor_b : std_logic_vector(51 downto 0);
|
86 |
|
|
signal divisor_b_shifted : std_logic_vector(51 downto 0);
|
87 |
|
|
signal divisor_denorm : std_logic_vector(52 downto 0);
|
88 |
|
|
signal divisor_1 : std_logic_vector(53 downto 0);
|
89 |
|
|
signal count_index : std_logic_vector(5 downto 0);
|
90 |
|
|
signal count_nonzero : std_logic;
|
91 |
|
|
signal quotient : std_logic_vector(53 downto 0);
|
92 |
|
|
signal quotient_out : std_logic_vector(53 downto 0);
|
93 |
|
|
signal remainder : std_logic_vector(53 downto 0);
|
94 |
|
|
signal remainder_out : std_logic_vector(53 downto 0);
|
95 |
|
|
signal remainder_msb : std_logic;
|
96 |
|
|
signal count_nonzero_signal : std_logic;
|
97 |
|
|
signal count_nonzero_signal_2 : std_logic;
|
98 |
|
|
signal expon_term : std_logic_vector(11 downto 0);
|
99 |
|
|
signal expon_uf_1 : std_logic;
|
100 |
|
|
signal expon_uf_term_1 : std_logic_vector(11 downto 0);
|
101 |
|
|
signal expon_final_1 : std_logic_vector(11 downto 0);
|
102 |
|
|
signal expon_final_2 : std_logic_vector(11 downto 0);
|
103 |
|
|
signal expon_shift_a : std_logic_vector(11 downto 0);
|
104 |
|
|
signal expon_shift_b : std_logic_vector(11 downto 0);
|
105 |
|
|
signal expon_uf_2 : std_logic;
|
106 |
|
|
signal expon_uf_term_2 : std_logic_vector(11 downto 0);
|
107 |
|
|
signal expon_uf_term_3 : std_logic_vector(11 downto 0);
|
108 |
|
|
signal expon_uf_gt_maxshift : std_logic;
|
109 |
|
|
signal expon_uf_term_4 : std_logic_vector(11 downto 0);
|
110 |
|
|
signal expon_final_3 : std_logic_vector(11 downto 0);
|
111 |
|
|
signal expon_final_4 : std_logic_vector(11 downto 0);
|
112 |
|
|
signal quotient_msb : std_logic;
|
113 |
|
|
signal expon_final_4_et0 : std_logic;
|
114 |
|
|
signal expon_final_4_term : std_logic;
|
115 |
|
|
signal expon_final_5 : std_logic_vector(11 downto 0);
|
116 |
|
|
signal mantissa_1 : std_logic_vector(51 downto 0);
|
117 |
|
|
signal mantissa_2 : std_logic_vector(51 downto 0);
|
118 |
|
|
signal mantissa_3 : std_logic_vector(51 downto 0);
|
119 |
|
|
signal mantissa_4 : std_logic_vector(51 downto 0);
|
120 |
|
|
signal mantissa_5 : std_logic_vector(51 downto 0);
|
121 |
|
|
signal mantissa_6 : std_logic_vector(51 downto 0);
|
122 |
|
|
signal remainder_a : std_logic_vector(107 downto 0);
|
123 |
|
|
signal remainder_shift_term : std_logic_vector(11 downto 0);
|
124 |
|
|
signal remainder_b : std_logic_vector(107 downto 0);
|
125 |
|
|
signal remainder_1 : std_logic_vector(55 downto 0);
|
126 |
|
|
signal remainder_2 : std_logic_vector(55 downto 0);
|
127 |
|
|
signal remainder_3 : std_logic_vector(55 downto 0);
|
128 |
|
|
signal remainder_4 : std_logic_vector(55 downto 0);
|
129 |
|
|
signal remainder_5 : std_logic_vector(55 downto 0);
|
130 |
|
|
signal remainder_6 : std_logic_vector(55 downto 0);
|
131 |
|
|
signal m_norm : std_logic;
|
132 |
|
|
signal rem_lsb : std_logic;
|
133 |
|
|
|
134 |
|
|
begin
|
135 |
|
|
sign <= opa(63) xor opb(63);
|
136 |
|
|
expon_a <= opa(62 downto 52);
|
137 |
|
|
expon_b <= opb(62 downto 52);
|
138 |
|
|
a_is_norm <= or_reduce(expon_a);
|
139 |
|
|
b_is_norm <= or_reduce(expon_b);
|
140 |
|
|
a_is_zero <= not or_reduce(opa(62 downto 0));
|
141 |
|
|
exponent_a <= '0' & expon_a;
|
142 |
|
|
exponent_b <= '0' & expon_b;
|
143 |
|
|
dividend_denorm <= dividend_a_shifted & '0';
|
144 |
|
|
dividend_1 <= "01" & dividend_a when a_is_norm = '1' else '0' & dividend_denorm;
|
145 |
|
|
divisor_denorm <= divisor_b_shifted & '0';
|
146 |
|
|
divisor_1 <= "01" & divisor_b when b_is_norm = '1' else '0' & divisor_denorm;
|
147 |
|
|
count_nonzero <= '0' when count_index = "000000" else '1';
|
148 |
|
|
count_index <= count_out;
|
149 |
|
|
quotient_msb <= quotient_out(53);
|
150 |
|
|
mantissa_2 <= quotient_out(52 downto 1);
|
151 |
|
|
mantissa_3 <= quotient_out(51 downto 0);
|
152 |
|
|
mantissa_4 <= mantissa_2 when quotient_msb = '1' else mantissa_3;
|
153 |
|
|
mantissa_5 <= mantissa_2 when expon_final_4 = "000000000001" else mantissa_4;
|
154 |
|
|
mantissa_6 <= mantissa_1 when expon_final_4_et0 = '1' else mantissa_5;
|
155 |
|
|
remainder_a <= quotient_out(53 downto 0) & remainder_msb & remainder_out(52 downto 0);
|
156 |
|
|
remainder_1 <= remainder_b(107 downto 52);
|
157 |
|
|
remainder_2 <= quotient_out(0) & remainder_msb & remainder_out(52 downto 0) & '0' ;
|
158 |
|
|
remainder_3 <= remainder_msb & remainder_out(52 downto 0) & "00" ;
|
159 |
|
|
remainder_4 <= remainder_2 when quotient_msb = '1' else remainder_3;
|
160 |
|
|
remainder_5 <= remainder_2 when expon_final_4 = "000000000001" else remainder_4;
|
161 |
|
|
remainder_6 <= remainder_1 when expon_final_4_et0 = '1' else remainder_5;
|
162 |
|
|
m_norm <= or_reduce(expon_final_5);
|
163 |
|
|
rem_lsb <= or_reduce(remainder_6(54 downto 0));
|
164 |
|
|
mantissa_7 <= '0' & m_norm & mantissa_6 & remainder_6(55) & rem_lsb ;
|
165 |
|
|
|
166 |
|
|
process
|
167 |
|
|
begin
|
168 |
|
|
wait until clk'event and clk = '1';
|
169 |
|
|
if (rst = '1') then
|
170 |
|
|
exponent_out <= (others =>'0');
|
171 |
|
|
else
|
172 |
|
|
if (a_is_zero = '1') then
|
173 |
|
|
exponent_out <= "000000000000";
|
174 |
|
|
else
|
175 |
|
|
exponent_out <= expon_final_5;
|
176 |
|
|
end if;
|
177 |
|
|
end if;
|
178 |
|
|
end process;
|
179 |
|
|
|
180 |
|
|
process
|
181 |
|
|
begin
|
182 |
|
|
wait until clk'event and clk = '1';
|
183 |
|
|
if (rst = '1') then
|
184 |
|
|
count_out <= (others =>'0');
|
185 |
|
|
elsif (enable_signal = '1') then
|
186 |
|
|
count_out <= "110101"; -- 53
|
187 |
|
|
elsif (count_nonzero = '1') then
|
188 |
|
|
count_out <= count_out - "000001";
|
189 |
|
|
end if;
|
190 |
|
|
end process;
|
191 |
|
|
|
192 |
|
|
process
|
193 |
|
|
begin
|
194 |
|
|
wait until clk'event and clk = '1';
|
195 |
|
|
if (rst = '1') then
|
196 |
|
|
quotient_out <= (others =>'0');
|
197 |
|
|
remainder_out <= (others =>'0');
|
198 |
|
|
else
|
199 |
|
|
quotient_out <= quotient;
|
200 |
|
|
remainder_out <= remainder;
|
201 |
|
|
end if;
|
202 |
|
|
end process;
|
203 |
|
|
|
204 |
|
|
|
205 |
|
|
process
|
206 |
|
|
begin
|
207 |
|
|
wait until clk'event and clk = '1';
|
208 |
|
|
if (rst = '1') then
|
209 |
|
|
quotient <= (others =>'0');
|
210 |
|
|
elsif (count_nonzero_signal = '1') then
|
211 |
|
|
if (divisor_signal > dividend_signal) then
|
212 |
|
|
quotient(conv_integer(count_index)) <= '0';
|
213 |
|
|
else
|
214 |
|
|
quotient(conv_integer(count_index)) <= '1';
|
215 |
|
|
end if;
|
216 |
|
|
end if;
|
217 |
|
|
end process;
|
218 |
|
|
|
219 |
|
|
process
|
220 |
|
|
begin
|
221 |
|
|
wait until clk'event and clk = '1';
|
222 |
|
|
if (rst = '1') then
|
223 |
|
|
remainder <= (others =>'0');
|
224 |
|
|
remainder_msb <= '0';
|
225 |
|
|
elsif ((not count_nonzero_signal and count_nonzero_signal_2) = '1') then
|
226 |
|
|
remainder <= dividend_signal;
|
227 |
|
|
if (divisor_signal > dividend_signal) then
|
228 |
|
|
remainder_msb <= '0';
|
229 |
|
|
else
|
230 |
|
|
remainder_msb <= '1';
|
231 |
|
|
end if;
|
232 |
|
|
end if;
|
233 |
|
|
end process;
|
234 |
|
|
|
235 |
|
|
process
|
236 |
|
|
begin
|
237 |
|
|
wait until clk'event and clk = '1';
|
238 |
|
|
if (rst = '1') then
|
239 |
|
|
dividend_signal <= (others =>'0');
|
240 |
|
|
divisor_signal <= (others =>'0');
|
241 |
|
|
elsif (enable_signal_e = '1') then
|
242 |
|
|
dividend_signal <= dividend_1;
|
243 |
|
|
divisor_signal <= divisor_1;
|
244 |
|
|
elsif (count_nonzero_signal = '1') then
|
245 |
|
|
if (divisor_signal > dividend_signal) then
|
246 |
|
|
dividend_signal <= shl(dividend_signal, conv_std_logic_vector('1', 54));
|
247 |
|
|
else
|
248 |
|
|
dividend_signal <= shl(dividend_signal - divisor_signal, conv_std_logic_vector('1', 54));
|
249 |
|
|
end if;
|
250 |
|
|
end if;
|
251 |
|
|
end process;
|
252 |
|
|
|
253 |
|
|
process
|
254 |
|
|
begin
|
255 |
|
|
wait until clk'event and clk = '1';
|
256 |
|
|
if (rst = '1') then
|
257 |
|
|
expon_term <= (others =>'0');
|
258 |
|
|
expon_uf_1 <= '0';
|
259 |
|
|
expon_uf_term_1 <= (others =>'0');
|
260 |
|
|
expon_final_1 <= (others =>'0');
|
261 |
|
|
expon_final_2 <= (others =>'0');
|
262 |
|
|
expon_shift_a <= (others =>'0');
|
263 |
|
|
expon_shift_b <= (others =>'0');
|
264 |
|
|
expon_uf_2 <= '0';
|
265 |
|
|
expon_uf_term_2 <= (others =>'0');
|
266 |
|
|
expon_uf_term_3 <= (others =>'0');
|
267 |
|
|
expon_uf_gt_maxshift <= '0';
|
268 |
|
|
expon_uf_term_4 <= (others =>'0');
|
269 |
|
|
expon_final_3 <= (others =>'0');
|
270 |
|
|
expon_final_4 <= (others =>'0');
|
271 |
|
|
expon_final_4_et0 <= '0';
|
272 |
|
|
expon_final_4_term <= '0';
|
273 |
|
|
expon_final_5 <= (others =>'0');
|
274 |
|
|
mantissa_a <= (others =>'0');
|
275 |
|
|
mantissa_b <= (others =>'0');
|
276 |
|
|
dividend_a <= (others =>'0');
|
277 |
|
|
divisor_b <= (others =>'0');
|
278 |
|
|
dividend_shift <= (others =>'0');
|
279 |
|
|
divisor_shift <= (others =>'0');
|
280 |
|
|
dividend_shift_2 <= (others =>'0');
|
281 |
|
|
divisor_shift_2 <= (others =>'0');
|
282 |
|
|
remainder_shift_term <= (others =>'0');
|
283 |
|
|
remainder_b <= (others =>'0');
|
284 |
|
|
dividend_a_shifted <= (others =>'0');
|
285 |
|
|
divisor_b_shifted <= (others =>'0');
|
286 |
|
|
mantissa_1 <= (others =>'0');
|
287 |
|
|
elsif (enable_signal_2 = '1') then
|
288 |
|
|
expon_term <= exponent_a + "001111111111"; -- 1023
|
289 |
|
|
if (exponent_b > expon_term) then
|
290 |
|
|
expon_uf_1 <= '1';
|
291 |
|
|
else
|
292 |
|
|
expon_uf_1 <= '0';
|
293 |
|
|
end if;
|
294 |
|
|
if (expon_uf_1 = '1') then
|
295 |
|
|
expon_uf_term_1 <= exponent_b - expon_term;
|
296 |
|
|
expon_final_2 <= (others =>'0');
|
297 |
|
|
else
|
298 |
|
|
expon_uf_term_1 <= (others =>'0');
|
299 |
|
|
expon_final_2 <= expon_final_1;
|
300 |
|
|
end if;
|
301 |
|
|
expon_final_1 <= expon_term - exponent_b;
|
302 |
|
|
if (expon_uf_1 = '1') then
|
303 |
|
|
expon_uf_term_1 <= exponent_b - expon_term;
|
304 |
|
|
else
|
305 |
|
|
expon_uf_term_1 <= (others =>'0');
|
306 |
|
|
end if;
|
307 |
|
|
if (a_is_norm = '1') then
|
308 |
|
|
expon_shift_a <= (others =>'0');
|
309 |
|
|
else
|
310 |
|
|
expon_shift_a <= "000000" & dividend_shift_2;
|
311 |
|
|
end if;
|
312 |
|
|
if (b_is_norm = '1') then
|
313 |
|
|
expon_shift_b <= (others =>'0');
|
314 |
|
|
else
|
315 |
|
|
expon_shift_b <= "000000" & divisor_shift_2;
|
316 |
|
|
end if;
|
317 |
|
|
if (expon_shift_a > expon_final_2) then
|
318 |
|
|
expon_uf_2 <= '1';
|
319 |
|
|
else
|
320 |
|
|
expon_uf_2 <= '0';
|
321 |
|
|
end if;
|
322 |
|
|
if (expon_uf_2 = '1') then
|
323 |
|
|
expon_uf_term_2 <= expon_shift_a - expon_final_2;
|
324 |
|
|
else
|
325 |
|
|
expon_uf_term_2 <= (others =>'0');
|
326 |
|
|
end if;
|
327 |
|
|
expon_uf_term_3 <= expon_uf_term_2 + expon_uf_term_1;
|
328 |
|
|
if (expon_uf_term_3 > "000000110011") then -- 51
|
329 |
|
|
expon_uf_gt_maxshift <= '1';
|
330 |
|
|
else
|
331 |
|
|
expon_uf_gt_maxshift <= '0';
|
332 |
|
|
end if;
|
333 |
|
|
if (expon_uf_gt_maxshift = '1') then
|
334 |
|
|
expon_uf_term_4 <= "000000110100"; --52
|
335 |
|
|
else
|
336 |
|
|
expon_uf_term_4 <= expon_uf_term_3;
|
337 |
|
|
end if;
|
338 |
|
|
if (expon_uf_2 = '1') then
|
339 |
|
|
expon_final_3 <= (others =>'0');
|
340 |
|
|
else
|
341 |
|
|
expon_final_3 <= expon_final_2 - expon_shift_a;
|
342 |
|
|
end if;
|
343 |
|
|
expon_final_4 <= expon_final_3 + expon_shift_b;
|
344 |
|
|
if (expon_final_4 = "000000000000") then
|
345 |
|
|
expon_final_4_et0 <= '1';
|
346 |
|
|
else
|
347 |
|
|
expon_final_4_et0 <= '0';
|
348 |
|
|
end if;
|
349 |
|
|
if (expon_final_4_et0 = '1') then
|
350 |
|
|
expon_final_4_term <= '0';
|
351 |
|
|
else
|
352 |
|
|
expon_final_4_term <= '1';
|
353 |
|
|
end if;
|
354 |
|
|
if (quotient_msb = '1') then
|
355 |
|
|
expon_final_5 <= expon_final_4;
|
356 |
|
|
else
|
357 |
|
|
expon_final_5 <= expon_final_4 - expon_final_4_term;
|
358 |
|
|
end if;
|
359 |
|
|
mantissa_a <= opa(51 downto 0);
|
360 |
|
|
mantissa_b <= opb(51 downto 0);
|
361 |
|
|
dividend_a <= mantissa_a;
|
362 |
|
|
divisor_b <= mantissa_b;
|
363 |
|
|
dividend_shift <= count_l_zeros(dividend_a);
|
364 |
|
|
divisor_shift <= count_l_zeros(divisor_b);
|
365 |
|
|
dividend_shift_2 <= dividend_shift;
|
366 |
|
|
divisor_shift_2 <= divisor_shift;
|
367 |
|
|
remainder_shift_term <= "000000110100" - expon_uf_term_4; -- 52
|
368 |
|
|
remainder_b <= shl(remainder_a, remainder_shift_term);
|
369 |
|
|
dividend_a_shifted <= shl(dividend_a, dividend_shift_2);
|
370 |
|
|
divisor_b_shifted <= shl(divisor_b, divisor_shift_2);
|
371 |
|
|
mantissa_1 <= shr(quotient_out(53 downto 2), expon_uf_term_4);
|
372 |
|
|
end if;
|
373 |
|
|
end process;
|
374 |
|
|
|
375 |
|
|
process
|
376 |
|
|
begin
|
377 |
|
|
wait until clk'event and clk = '1';
|
378 |
|
|
if (rst = '1') then
|
379 |
|
|
count_nonzero_signal <= '0';
|
380 |
|
|
count_nonzero_signal_2 <= '0';
|
381 |
|
|
enable_signal <= '0';
|
382 |
|
|
enable_signal_a <= '0';
|
383 |
|
|
enable_signal_b <= '0';
|
384 |
|
|
enable_signal_c <= '0';
|
385 |
|
|
enable_signal_d <= '0';
|
386 |
|
|
enable_signal_e <= '0';
|
387 |
|
|
else
|
388 |
|
|
count_nonzero_signal <= count_nonzero;
|
389 |
|
|
count_nonzero_signal_2 <= count_nonzero_signal;
|
390 |
|
|
enable_signal <= enable_signal_e;
|
391 |
|
|
enable_signal_a <= enable;
|
392 |
|
|
enable_signal_b <= enable_signal_a;
|
393 |
|
|
enable_signal_c <= enable_signal_b;
|
394 |
|
|
enable_signal_d <= enable_signal_c;
|
395 |
|
|
enable_signal_e <= enable_signal_d;
|
396 |
|
|
end if;
|
397 |
|
|
end process;
|
398 |
|
|
|
399 |
|
|
process
|
400 |
|
|
begin
|
401 |
|
|
wait until clk'event and clk = '1';
|
402 |
|
|
if (rst = '1') then
|
403 |
|
|
enable_signal_2 <= '0';
|
404 |
|
|
elsif (enable = '1') then
|
405 |
|
|
enable_signal_2 <= '1';
|
406 |
|
|
end if;
|
407 |
|
|
end process;
|
408 |
|
|
|
409 |
|
|
end rtl;
|