OpenCores
URL https://opencores.org/ocsvn/ft816float/ft816float/trunk

Subversion Repositories ft816float

[/] [ft816float/] [trunk/] [rtl/] [verilog/] [FT816Float.v] - Blame information for rev 44

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 3 robfinch
`timescale 1ns / 1ps
2
// ============================================================================
3
//        __
4
//   \\__/ o\    (C) 2014  Robert Finch, Stratford
5
//    \  __ /    All rights reserved.
6
//     \/_//     robfinch<remove>@finitron.ca
7
//       ||
8
//
9
// FT816Float.v
10
//  - Triple precision floating point accelerator
11
//
12
// This source file is free software: you can redistribute it and/or modify 
13
// it under the terms of the GNU Lesser General Public License as published 
14
// by the Free Software Foundation, either version 3 of the License, or     
15
// (at your option) any later version.                                      
16
//                                                                          
17
// This source file is distributed in the hope that it will be useful,      
18
// but WITHOUT ANY WARRANTY; without even the implied warranty of           
19
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            
20
// GNU General Public License for more details.                             
21
//                                                                          
22
// You should have received a copy of the GNU General Public License        
23
// along with this program.  If not, see <http://www.gnu.org/licenses/>.    
24
//                                                                          
25
// 1600 LUTs 350 FF's
26
// 140 MHz
27
// ============================================================================
28
//
29
`define SIMULATION      1'b1
30
 
31
module FT816Float(rst, clk, vda, rw, ad, db, rdy);
32
parameter pIOAddress = 24'hFEA200;
33
parameter pRdyStyle = 1'b1;
34
parameter EMSB = 15;
35
parameter FMSB = 79;
36
parameter TRUE = 1'b1;
37
parameter FALSE = 1'b0;
38
parameter FADD = 8'd1;
39
parameter FSUB = 8'd2;
40
parameter FMUL = 8'd3;
41
parameter FDIV = 8'd4;
42
parameter FIX2FLT = 8'd5;
43
parameter FLT2FIX = 8'd6;
44
parameter FABS = 8'd7;
45
parameter ABS = 8'd7;
46
parameter NABS = 8'd8;
47
parameter FNABS = 8'd8;
48
parameter MD1 = 8'd10;
49
parameter ABSSWP = 8'd11;
50
parameter ABSSWP1 = 8'd12;
51
parameter NORM1 = 8'd13;
52
parameter NORM = 8'd14;
53
parameter ADD = 8'd15;
54
parameter FCOMPL = 8'd16;
55
parameter FNEG = 8'd16;
56
parameter SWAP = 8'd17;
57
parameter FIXED_ADD = 8'h81;
58
parameter FIXED_SUB = 8'h82;
59
parameter FIXED_MUL = 8'h83;
60
parameter FIXED_DIV = 8'h84;
61
parameter FIXED_ABS = 8'h87;
62
parameter FIXED_NEG = 8'h90;
63
parameter SWPALG = 8'd18;
64
parameter ADDEND = 8'd19;
65
parameter ALGNSW = 8'd20;
66
parameter RTLOG = 8'd22;
67
parameter FMUL1 = 8'd24;
68
parameter FMUL2 = 8'd25;
69
parameter MUL1 = 8'd26;
70
parameter FMUL3 = 8'd27;
71
parameter MUL2 = 8'd28;
72
parameter MDEND = 8'd29;
73
parameter FDIV1 = 8'd30;
74
parameter MD2 = 8'd31;
75
parameter MD3 = 8'd32;
76
parameter OVCHK = 8'd34;
77
parameter OVFL = 8'd35;
78
parameter DIV1 = 8'd36;
79
parameter IDLE = 8'd62;
80
parameter RESET = 8'd63;
81
 
82
input rst;
83
input clk;
84
input vda;
85
input rw;
86
input [23:0] ad;
87
inout tri [7:0] db;
88
output rdy;
89
 
90
reg [7:0] cmd;
91
reg [7:0] state;
92
reg [5:0] state_stk [3:0];
93
//reg [3:0] sp;
94
reg [1:0] sign;
95
reg [EMSB:0] acc;
96
reg [7:0] y;
97
reg [EMSB+FMSB+1:0] FAC1;
98
reg [EMSB+FMSB+1:0] FAC2;
99
reg [FMSB:0] E;
100
wire [EMSB:0] FAC1_exp = FAC1[EMSB+FMSB+1:FMSB+1];
101
wire [FMSB:0] FAC1_man = FAC1[FMSB:0];
102
wire [EMSB:0] FAC2_exp = FAC2[EMSB+FMSB+1:FMSB+1];
103
wire [FMSB:0] FAC2_man = FAC2[FMSB:0];
104
 
105
reg addOrSub;
106
wire [FMSB+1:0] sum = addOrSub ? FAC2_man - FAC1_man : FAC2_man + FAC1_man;
107
wire [FMSB+1:0] dif = FAC2_man - E;
108
wire [FMSB+1:0] neg = {FMSB+1{1'b0}} - FAC1_man;
109
wire [EMSB+1:0] expdif = FAC2_exp - FAC1_exp;
110
// Note the carry flag must be extended manually!
111
reg cf,vf,nf;
112
wire [EMSB+1:0] exp_sum = acc + FAC1_exp + {15'd0,cf};   // FMUL
113
wire [EMSB+1:0] exp_dif = acc - FAC1_exp - {15'd0,~cf};  // FDIV
114
reg [FMSB:0] rem;
115
reg isRTAR;
116
reg busy;
117
reg shiftBy16;
118
reg isFixedPoint;
119
reg [7:0] dbo;
120
 
121
wire eq = FAC1==FAC2;
122
wire gt = (FAC1[FMSB]^FAC2[FMSB]) ? FAC2[FMSB] : // If the signs are different, whichever one is positive
123
                   FAC1_exp==FAC2_exp ? (FAC1_man > FAC2_man) : // if exponents are equal check mantissa
124
                   FAC1_exp > FAC2_exp; // else compare exponents
125
wire lt = !(gt|eq);
126
wire zf = ~|FAC1;
127
 
128
wire cs = vda && (ad[23:8]==pIOAddress[23:8]);
129
reg rdy1,rdy2;
130
always @(posedge clk)
131
if (rst) begin
132
        rdy1 <= 1'b1;
133
        rdy2 <= 1'b1;
134
end
135
else begin
136
        rdy1 <= cs & ~rdy1;
137
        rdy2 <= cs & rdy1;
138
end
139
assign rdy = cs ? (rw ? rdy2 : 1'b1) : pRdyStyle;
140
assign db = cs & rw ? dbo : {8{1'bz}};
141
 
142
// This is a clock cycle counter used in simulation to determine the number of
143
// cycles a given operation takes to complete.
144
reg [11:0] cyccnt;
145
 
146
always @(posedge clk)
147
if (rst) begin
148
        next_state(RESET);
149
`ifdef SIMULATION
150
        FAC1 <= 96'd0;  // for simulation
151
        FAC2 <= 96'd0;
152
`endif
153
end
154
else begin
155
`ifdef SIMULATION
156
        cyccnt <= cyccnt + 1;
157
`endif
158
        cmd <= 8'h00;
159
        if (cs & ~rw)
160
                case(ad[7:0])
161
                8'h00:  FAC1[7:0] <= db;
162
                8'h01:  FAC1[15:8] <= db;
163
                8'h02:  FAC1[23:16] <= db;
164
                8'h03:  FAC1[31:24] <= db;
165
                8'h04:  FAC1[39:32] <= db;
166
                8'h05:  FAC1[47:40] <= db;
167
                8'h06:  FAC1[55:48] <= db;
168
                8'h07:  FAC1[63:56] <= db;
169
                8'h08:  FAC1[71:64] <= db;
170
                8'h09:  FAC1[79:72] <= db;
171
                8'h0A:  FAC1[87:80] <= db;
172
                8'h0B:  FAC1[95:88] <= db;
173
                8'h0E:  cmd <= db;
174
                8'h10:  FAC2[7:0] <= db;
175
                8'h11:  FAC2[15:8] <= db;
176
                8'h12:  FAC2[23:16] <= db;
177
                8'h13:  FAC2[31:24] <= db;
178
                8'h14:  FAC2[39:32] <= db;
179
                8'h15:  FAC2[47:40] <= db;
180
                8'h16:  FAC2[55:48] <= db;
181
                8'h17:  FAC2[63:56] <= db;
182
                8'h18:  FAC2[71:64] <= db;
183
                8'h19:  FAC2[79:72] <= db;
184
                8'h1A:  FAC2[87:80] <= db;
185
                8'h1B:  FAC2[95:88] <= db;
186
                endcase
187
 
188
        case(ad[7:0])
189
        8'h00:  dbo <= FAC1[7:0];
190
        8'h01:  dbo <= FAC1[15:8];
191
        8'h02:  dbo <= FAC1[23:16];
192
        8'h03:  dbo <= FAC1[31:24];
193
        8'h04:  dbo <= FAC1[39:32];
194
        8'h05:  dbo <= FAC1[47:40];
195
        8'h06:  dbo <= FAC1[55:48];
196
        8'h07:  dbo <= FAC1[63:56];
197
        8'h08:  dbo <= FAC1[71:64];
198
        8'h09:  dbo <= FAC1[79:72];
199
        8'h0A:  dbo <= FAC1[87:80];
200
        8'h0B:  dbo <= FAC1[95:88];
201
        8'h0E:  dbo <= {busy,2'b00,lt,eq,gt,zf,vf};
202
        8'h10:  dbo <= FAC2[7:0];
203
        8'h11:  dbo <= FAC2[15:8];
204
        8'h12:  dbo <= FAC2[23:16];
205
        8'h13:  dbo <= FAC2[31:24];
206
        8'h14:  dbo <= FAC2[39:32];
207
        8'h15:  dbo <= FAC2[47:40];
208
        8'h16:  dbo <= FAC2[55:48];
209
        8'h17:  dbo <= FAC2[63:56];
210
        8'h18:  dbo <= FAC2[71:64];
211
        8'h19:  dbo <= FAC2[79:72];
212
        8'h1A:  dbo <= FAC2[87:80];
213
        8'h1B:  dbo <= FAC2[95:88];
214
        endcase
215
 
216
case(state)
217
RESET:
218
        begin
219
//              sp <= 4'h0;
220
                next_state(IDLE);
221
        end
222
 
223
//-----------------------------------------------------------------------------
224
//-----------------------------------------------------------------------------
225
 
226
IDLE:
227
        begin
228
`ifdef SIMULATION
229
                if (cyccnt > 0)
230
                        $display("Cycle Count=%d", cyccnt);
231
                cyccnt <= 12'h0;
232
`endif
233
                busy <= 1'b0;
234
//              sp <= 4'h0;
235
                isFixedPoint <= FALSE;
236
                case(cmd)
237
                FADD:   begin push_state(IDLE); next_state(FADD); busy <= 1'b1; addOrSub <= 1'b0; end
238
                FSUB:   begin push_state(IDLE); next_state(FSUB); busy <= 1'b1; addOrSub <= 1'b0; end
239
                FMUL:   begin push_state(IDLE); next_state(FMUL); busy <= 1'b1; addOrSub <= 1'b0; end
240
                FDIV:   begin push_state(IDLE); next_state(FDIV); busy <= 1'b1; end
241
                FIX2FLT:        begin push_state(IDLE); next_state(FIX2FLT); busy <= 1'b1; end
242
                FLT2FIX:        begin push_state(IDLE); next_state(FLT2FIX); busy <= 1'b1; end
243
                FNEG:           begin push_state(IDLE); next_state(FCOMPL); busy <= 1'b1; end
244
                FABS:           begin push_state(IDLE); next_state(ABS); busy <= 1'b1; end
245
                FNABS:          begin push_state(IDLE); next_state(NABS); busy <= 1'b1; end
246
                SWAP:           begin push_state(IDLE); next_state(SWAP); busy <= 1'b1; end
247
                // Fixed point operations
248
                FIXED_ADD:      begin push_state(IDLE); next_state(FADD); busy <= 1'b1; isFixedPoint <= TRUE; addOrSub <= 1'b0; end
249
                FIXED_SUB:      begin push_state(IDLE); next_state(FSUB); busy <= 1'b1; isFixedPoint <= TRUE; addOrSub <= 1'b0; end
250
                FIXED_MUL:      begin push_state(IDLE); next_state(FMUL); busy <= 1'b1; isFixedPoint <= TRUE; addOrSub <= 1'b0; end
251
                FIXED_DIV:      begin push_state(IDLE); next_state(FDIV); busy <= 1'b1; isFixedPoint <= TRUE; end
252
                FIXED_NEG:      begin push_state(IDLE); next_state(FCOMPL); busy <= 1'b1; isFixedPoint <= TRUE; end
253
                FIXED_ABS:      begin push_state(IDLE); next_state(ABS); busy <= 1'b1; isFixedPoint <= TRUE; end
254
                endcase
255
        end
256
 
257
//-----------------------------------------------------------------------------
258
//-----------------------------------------------------------------------------
259
 
260
MD1:
261
        begin
262
                $display("MD1");
263
                sign <= {sign[1:0],1'b0};
264
                next_state(ABSSWP);
265
                push_state(ABSSWP);
266
        end
267
ABSSWP:
268
        begin
269
                if (~FAC1_man[FMSB]) begin
270
                        next_state(ABSSWP1);
271
                end
272
                else begin
273
                        push_state(ABSSWP1);
274
                        sign <= sign + 2'd1;
275
                        next_state(FCOMPL);
276
                end
277
        end
278
ABSSWP1:
279
        begin
280
                cf <= 1'b1;
281
                next_state(SWAP);
282
        end
283
 
284
 
285
//-----------------------------------------------------------------------------
286
// Take the absolute value of FAC1
287
//-----------------------------------------------------------------------------
288
 
289
ABS:
290
        begin
291
                if (FAC1_man[FMSB])
292
                        next_state(FCOMPL);
293
                else
294
                        pop_state();
295
        end
296
 
297
//-----------------------------------------------------------------------------
298
// Take the negative absolute value of FAC1
299
//-----------------------------------------------------------------------------
300
 
301
NABS:
302
        begin
303
                if (~FAC1_man[FMSB])
304
                        next_state(FCOMPL);
305
                else
306
                        pop_state();
307
        end
308
 
309
//-----------------------------------------------------------------------------
310
// Normalize
311
// - Decrement exponent and shift left
312
// - Normalization is normally the last step of an operation.
313
// - If possible the FAC is shifted by 16 bits at a time. This helps with
314
//   the many small constants that are usually present.
315
//-----------------------------------------------------------------------------
316
NORM:
317
        begin
318
        if (isFixedPoint)       // nothing to do for fixed point
319
                pop_state();
320
        else begin
321
        $display("Normalize FAC1H %h", FAC1[FMSB:FMSB-15]);
322
        if (FAC1[FMSB]!=FAC1[FMSB-1] || ~|FAC1_exp) begin
323
                $display("Normal: %h",FAC1);
324
                pop_state();
325
        end
326
        // If the mantissa is zero, set the the exponent to zero. Otherwise 
327
        // normalization could spin for thousands of clock cycles decrementing
328
        // the exponent to zero.
329
        else if (~|FAC1_man) begin
330
                FAC1[EMSB+FMSB+1:FMSB+1] <= 16'h0;
331
                pop_state();
332
        end
333
        else if (FAC1[FMSB:FMSB-15]=={16{FAC1[FMSB]}}) begin
334
                $display("shift by 16");
335
                FAC1[EMSB+FMSB+1:FMSB+1] <= FAC1[EMSB+FMSB+1:FMSB+1] - 16'd16;
336
                FAC1[FMSB:0] <= {FAC1[FMSB-16:0],16'h0};
337
        end
338
        else begin
339
                FAC1[EMSB+FMSB+1:FMSB+1] <= FAC1[EMSB+FMSB+1:FMSB+1] - 16'd1;
340
                FAC1[FMSB:0] <= {FAC1[FMSB-1:0],1'b0};
341
        end
342
        end
343
        end
344
 
345
//-----------------------------------------------------------------------------
346
// Add mantissa's and compute carry and overflow.
347
// This is used by both ADD and MUL.
348
//-----------------------------------------------------------------------------
349
 
350
ADD:
351
        begin
352
                FAC1[FMSB:0] <= sum[FMSB:0];
353
                cf <= sum[FMSB+1];
354
                vf <= (sum[FMSB] ^ FAC2[FMSB]) & (1'b1 ^ FAC1[FMSB] ^ FAC2[FMSB]);
355
                pop_state();
356
        end
357
 
358
//-----------------------------------------------------------------------------
359
// Negate
360
//-----------------------------------------------------------------------------
361
 
362
// Complement FAC1
363
FCOMPL:
364
        begin
365
                $display("FCOMPL");
366
                FAC1[FMSB:0] <= neg[FMSB:0];
367
                cf <= ~neg[FMSB+1];
368
                vf <= neg[FMSB]==FAC1[FMSB];
369
                if (isFixedPoint)
370
                        pop_state();
371
                else
372
                        next_state(ADDEND);
373
        end
374
 
375
//-----------------------------------------------------------------------------
376
// Swap FAC1 and FAC2
377
//-----------------------------------------------------------------------------
378
 
379
SWAP:
380
        begin
381
                $display("Swapping FAC1 and FAC2");
382
                FAC1 <= FAC2;
383
                FAC2 <= FAC1;
384
                E <= FAC2[FMSB:0];
385
                acc <= FAC1_exp;
386
                pop_state();
387
        end
388
 
389
//-----------------------------------------------------------------------------
390
// Subtract
391
// - subtract first complements the FAC then performs an ADD operation.
392
//-----------------------------------------------------------------------------
393
 
394
FSUB:
395
        begin
396
//              if (isFixedPoint)
397
//                      push_state(FADD);
398
//              else
399
//                      push_state(SWPALG);
400
                push_state(FADD);
401
                next_state(FCOMPL);
402
        end
403
SWPALG:
404
        begin
405
                push_state(FADD);
406
                next_state(ALGNSW);
407
        end
408
 
409
//-----------------------------------------------------------------------------
410
// Addition
411
//-----------------------------------------------------------------------------
412
 
413
FADD:
414
        begin
415
                cf <= ~expdif[EMSB+1];  // Must set carry flag from compare
416
                // If the exponents are too different then one of the values will
417
                // become zero, so the result is just the larger value. This check
418
                // is to prevent shifting thousands of times.
419
                if (expdif[15] ? expdif < 16'hFFB0 : expdif[15:0] > 16'h0050) begin
420
                        FAC1 <= expdif[15] ? FAC2 : FAC1;
421
                        pop_state();
422
                end
423
                else if (|expdif[15:0] & !isFixedPoint)
424
                        next_state(SWPALG);
425
                else begin
426
                        if (!isFixedPoint) push_state(ADDEND);
427
                        next_state(ADD);
428
                end
429
        end
430
ADDEND:
431
        begin
432
                if (!vf)
433
                        next_state(NORM);
434
                else begin
435
                        isRTAR <= FALSE;
436
                        next_state(RTLOG);
437
                end
438
        end
439
ALGNSW:
440
        begin
441
                if (!cf)
442
                        next_state(SWAP);
443
                else begin
444
                        isRTAR <= TRUE;
445
                        next_state(RTLOG);
446
                end
447
        end
448
 
449
//-----------------------------------------------------------------------------
450
// Right shift, logical or arithmetic.
451
//-----------------------------------------------------------------------------
452
 
453
RTLOG:
454
        begin
455
                FAC1[EMSB+FMSB+1:FMSB+1] <= FAC1[EMSB+FMSB+1:FMSB+1] + 16'd1;
456
                if (FAC1[EMSB+FMSB+1:FMSB+1]==16'hFFFF)
457
                        next_state(OVFL);
458
                else begin
459
                        FAC1[FMSB:0] <= {isRTAR ? FAC1_man[FMSB] : cf,FAC1[FMSB:1]};
460
                        E[FMSB:0] <= {FAC1[0],E[FMSB-1:1]};
461
                        cf <= E[0];
462
                        pop_state();
463
                end
464
        end
465
 
466
//-----------------------------------------------------------------------------
467
// Mulyiply
468
//-----------------------------------------------------------------------------
469
 
470
FMUL:
471
        begin
472
                next_state(MD1);
473
                push_state(FMUL1);
474
        end
475
FMUL1:
476
        begin
477
                acc <= exp_sum[EMSB:0];
478
                cf <= exp_sum[EMSB+1];
479
                push_state(MUL1);
480
                next_state(MD2);
481
        end
482
MUL1:
483
        begin
484
                // inline RTLOG1 code
485
                FAC1[FMSB:0] <= {1'b0,FAC1[FMSB:1]};
486
                E[FMSB:0] <= {FAC1[0],E[FMSB-1:1]};
487
                cf <= E[0];
488
                next_state(FMUL3);
489
                //push_state(FMUL3);
490
                //next_state(RTLOG1);
491
        end
492
FMUL3:
493
        begin
494
                if (cf) begin
495
                        FAC1[FMSB:0] <= sum[FMSB:0];
496
                        cf <= sum[FMSB+1];
497
                        vf <= (sum[FMSB] ^ FAC2[FMSB]) & (1'b1 ^ FAC1[FMSB] ^ FAC2[FMSB]);
498
                end
499
                y <= y - 8'd1;
500
                if (y==8'd0)
501
                        next_state(MDEND);
502
                else
503
                        next_state(MUL1);
504
        end
505
MDEND:
506
        begin
507
                sign <= {1'b0,sign[1]};
508
                if (~sign[0])
509
                        next_state(NORM);
510
                else
511
                        next_state(FCOMPL);
512
        end
513
 
514
//-----------------------------------------------------------------------------
515
// Divide
516
//-----------------------------------------------------------------------------
517
FDIV:
518
        begin
519
                push_state(FDIV1);
520
                next_state(MD1);
521
        end
522
FDIV1:
523
        begin
524
                acc <= exp_dif[EMSB:0];
525
                cf <= ~exp_dif[EMSB+1];
526
                $display("acc=%h %h %h", exp_dif, acc, FAC1_exp);
527
                push_state(DIV1);
528
                next_state(MD2);
529
        end
530
DIV1:
531
        begin
532
                $display("FAC1=%h, FAC2=%h, E=%h", FAC1, FAC2, E);
533
                y <= y - 8'd1;
534
                FAC1[FMSB:0] <= {FAC1[FMSB:0],~dif[FMSB+1]};
535
                if (dif[FMSB+1]) begin
536
                        FAC2[FMSB:0] <= {FAC2[FMSB-1:0],1'b0};
537
                        if (FAC2[FMSB]) begin
538
                                next_state(OVFL);
539
                        end
540
                        else if (y!=8'd1)
541
                                next_state(DIV1);
542
                        else begin
543
                                rem <= dif;
544
                                next_state(MDEND);
545
                        end
546
                end
547
                else begin
548
                        FAC2[FMSB:0] <= {dif[FMSB-1:0],1'b0};
549
                        if (dif[FMSB]) begin
550
                                next_state(OVFL);
551
                        end
552
                        else if (y!=8'd1)
553
                                next_state(DIV1);
554
                        else begin
555
                                rem <= dif;
556
                                next_state(MDEND);
557
                        end
558
                end
559
        end
560
 
561
//-----------------------------------------------------------------------------
562
//-----------------------------------------------------------------------------
563
MD2:
564
        begin
565
                FAC1[FMSB:0] <= 80'h0;
566
                if (isFixedPoint) begin
567
                        y <= 8'h4F;
568
                        pop_state();
569
                end
570
                else if (cf)
571
                        next_state(OVCHK);
572
                else if (acc[EMSB])
573
                        next_state(MD3);
574
                else begin
575
                        pop_state();
576
                        next_state(NORM);
577
                end
578
        end
579
MD3:
580
        begin
581
                acc[EMSB] <= ~acc[EMSB];
582
                FAC1[EMSB+FMSB+1:FMSB+1] <= {~acc[EMSB],acc[EMSB-1:0]};
583
                y <= 8'h4F;
584
                pop_state();
585
        end
586
OVCHK:
587
        begin
588
                if (~acc[EMSB])
589
                        next_state(MD3);
590
                else
591
                        next_state(OVFL);
592
        end
593
OVFL:
594
        begin
595
                vf <= 1'b1;
596
                next_state(IDLE);
597
        end
598
 
599
//-----------------------------------------------------------------------------
600
// FIX2FLT
601
// - convert 64 bit fixed point number to floating point
602
//-----------------------------------------------------------------------------
603
 
604
FIX2FLT:
605
        begin
606
                FAC1[EMSB+FMSB+1:FMSB+1] <= 16'h804E;   // exponent = 78
607
                next_state(NORM);
608
        end
609
 
610
//-----------------------------------------------------------------------------
611
// FLT2FIX
612
// - convert floating point number to fixed point.
613
//-----------------------------------------------------------------------------
614
 
615
FLT2FIX:
616
        begin
617
                // If the exponent is too small then no amount of shifting will
618
                // result in a non-zero number. In this case we just set the 
619
                // FAC to zero. Otherwise FLT2FIX would spin for thousands of cycles
620
                // until the exponent incremented finally to 803Eh.
621
                if (FAC1_exp < 16'h7FB0) begin
622
                        FAC1[79:0] <= 80'd0;
623
                        FAC1[95:80] <= 16'h804E;
624
                        pop_state();
625
                end
626
                // If the exponent is too large, we can't right shift and the value
627
                // would overflow a 64-bit integer, so we just set it to the max.
628
                else if (FAC1_exp > 16'h804E) begin
629
                        vf <= 1'b1;
630
                        FAC1[95:80] <= 16'h804E;
631
                        FAC1[79:0] <= FAC1[79] ? 80'h80000000000000000000 : 80'h7FFFFFFFFFFFFFFFFFFF;
632
                        pop_state();
633
                end
634
                else if (FAC1_exp==16'h804E)
635
                        pop_state();
636
                else begin
637
                        push_state(FLT2FIX);
638
                        isRTAR <= TRUE;
639
                        next_state(RTLOG);
640
                end
641
        end
642
endcase
643
end
644
 
645
/*
646
DIVBY10:
647
        begin
648
                FAC2[EMSB+FMSB+1:FMSB+1] <= 16'h8003;
649
                FAC2[FMSB] <= 1'b0;             // +ve
650
                FAC2[FMSB-1:75] <= 4'hA;        // 10
651
                FAC2[74:0] <= 75'd0;
652
                next_state(FDIV);
653
        end
654
*/
655
//-----------------------------------------------------------------------------
656
//-----------------------------------------------------------------------------
657
task push_state;
658
input [5:0] st;
659
begin
660
        state_stk[0] <= st;
661
        state_stk[1] <= state_stk[0];
662
        state_stk[2] <= state_stk[1];
663
        state_stk[3] <= state_stk[2];
664
//      state_stk[sp-4'd1] <= st;
665
//      sp <= sp - 4'd1;
666
end
667
endtask
668
 
669
task pop_state;
670
begin
671
        state <= state_stk[0];
672
        state_stk[0] <= state_stk[1];
673
        state_stk[1] <= state_stk[2];
674
        state_stk[2] <= state_stk[3];
675
        state_stk[3] <= IDLE;
676
//      next_state(state_stk[sp]);
677
//      sp <= sp + 4'd1;
678
end
679
endtask
680
 
681
task next_state;
682
input [7:0] st;
683
begin
684
        state <= st;
685
end
686
endtask
687
 
688
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.