1 |
6 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2006-2016 Robert Finch, Stratford
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
9 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
10 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
11 |
|
|
// (at your option) any later version.
|
12 |
|
|
//
|
13 |
|
|
// This source file is distributed in the hope that it will be useful,
|
14 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
// GNU General Public License for more details.
|
17 |
|
|
//
|
18 |
|
|
// You should have received a copy of the GNU General Public License
|
19 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
20 |
|
|
//
|
21 |
|
|
// fpAddsub.v
|
22 |
|
|
// - floating point adder/subtracter
|
23 |
|
|
// - two cycle latency
|
24 |
|
|
// - can issue every clock cycle
|
25 |
|
|
// - parameterized width
|
26 |
|
|
// - IEEE 754 representation
|
27 |
|
|
//
|
28 |
|
|
// This adder/subtractor handles denormalized numbers.
|
29 |
|
|
// It has a two cycle latency.
|
30 |
|
|
// The output format is of an internal expanded representation
|
31 |
|
|
// in preparation to be fed into a normalization unit, then
|
32 |
|
|
// rounding. Basically, it's the same as the regular format
|
33 |
|
|
// except the mantissa is doubled in size, the leading two
|
34 |
|
|
// bits of which are assumed to be whole bits.
|
35 |
|
|
// ============================================================================
|
36 |
|
|
//
|
37 |
|
|
module fpAddsub(clk, ce, rm, op, a, b, o);
|
38 |
|
|
parameter WID = 32;
|
39 |
|
|
localparam MSB = WID-1;
|
40 |
|
|
localparam EMSB = WID==80 ? 14 :
|
41 |
|
|
WID==64 ? 10 :
|
42 |
|
|
WID==52 ? 10 :
|
43 |
|
|
WID==48 ? 10 :
|
44 |
|
|
WID==44 ? 10 :
|
45 |
|
|
WID==42 ? 10 :
|
46 |
|
|
WID==40 ? 9 :
|
47 |
|
|
WID==32 ? 7 :
|
48 |
|
|
WID==24 ? 6 : 4;
|
49 |
|
|
localparam FMSB = WID==80 ? 63 :
|
50 |
|
|
WID==64 ? 51 :
|
51 |
|
|
WID==52 ? 39 :
|
52 |
|
|
WID==48 ? 35 :
|
53 |
|
|
WID==44 ? 31 :
|
54 |
|
|
WID==42 ? 29 :
|
55 |
|
|
WID==40 ? 28 :
|
56 |
|
|
WID==32 ? 22 :
|
57 |
|
|
WID==24 ? 15 : 9;
|
58 |
|
|
|
59 |
|
|
localparam WX = 3;
|
60 |
|
|
localparam FX = (FMSB+1)*2-1; // the MSB of the expanded fraction
|
61 |
|
|
localparam EX = FX + WX + EMSB + 1;
|
62 |
|
|
|
63 |
|
|
input clk; // system clock
|
64 |
|
|
input ce; // core clock enable
|
65 |
|
|
input [2:0] rm; // rounding mode
|
66 |
|
|
input op; // operation 0 = add, 1 = subtract
|
67 |
|
|
input [WID-1:0] a; // operand a
|
68 |
|
|
input [WID-1:0] b; // operand b
|
69 |
|
|
output [EX+1:0] o; // output
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
// variables
|
73 |
|
|
wire so; // sign output
|
74 |
|
|
wire [EMSB:0] xo; // de normalized exponent output
|
75 |
|
|
reg [EMSB:0] xo1; // de normalized exponent output
|
76 |
|
|
wire [FX+WX:0] mo; // mantissa output
|
77 |
|
|
reg [FX+WX:0] mo1; // mantissa output
|
78 |
|
|
|
79 |
|
|
// There's an extra bit output in the mantissa to allow for three whole
|
80 |
|
|
// digits which the normalizer uses.
|
81 |
|
|
assign o = {so,xo,mo};
|
82 |
|
|
|
83 |
|
|
// operands sign,exponent,mantissa
|
84 |
|
|
wire sa, sb;
|
85 |
|
|
wire [EMSB:0] xa, xb;
|
86 |
|
|
wire [FMSB:0] ma, mb;
|
87 |
|
|
wire [FMSB+1:0] fracta, fractb;
|
88 |
|
|
wire [FMSB+1:0] fracta1, fractb1;
|
89 |
|
|
|
90 |
|
|
// which has greater magnitude ? Used for sign calc
|
91 |
|
|
wire xa_gt_xb = xa > xb;
|
92 |
|
|
wire xa_gt_xb1;
|
93 |
|
|
wire a_gt_b = xa_gt_xb || (xa==xb && ma > mb);
|
94 |
|
|
wire a_gt_b1;
|
95 |
|
|
wire az, bz; // operand a,b is zero
|
96 |
|
|
|
97 |
|
|
wire adn, bdn; // a,b denormalized ?
|
98 |
|
|
wire xaInf, xbInf;
|
99 |
|
|
wire aInf, bInf, aInf1, bInf1;
|
100 |
|
|
wire aNan, bNan, aNan1, bNan1;
|
101 |
|
|
|
102 |
|
|
wire [EMSB:0] xad = xa|adn; // operand a exponent, compensated for denormalized numbers
|
103 |
|
|
wire [EMSB:0] xbd = xb|bdn; // operand b exponent, compensated for denormalized numbers
|
104 |
|
|
|
105 |
|
|
fpDecompose #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .man(ma), .fract(fracta), .xz(adn), .vz(az), .xinf(xaInf), .inf(aInf), .nan(aNan) );
|
106 |
|
|
fpDecompose #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .man(mb), .fract(fractb), .xz(bdn), .vz(bz), .xinf(xbInf), .inf(bInf), .nan(bNan) );
|
107 |
|
|
|
108 |
|
|
// Figure out which operation is really needed an add or
|
109 |
|
|
// subtract ?
|
110 |
|
|
// If the signs are the same, use the orignal op,
|
111 |
|
|
// otherwise flip the operation
|
112 |
|
|
// a + b = add,+
|
113 |
|
|
// a + -b = sub, so of larger
|
114 |
|
|
// -a + b = sub, so of larger
|
115 |
|
|
// -a + -b = add,-
|
116 |
|
|
// a - b = sub, so of larger
|
117 |
|
|
// a - -b = add,+
|
118 |
|
|
// -a - b = add,-
|
119 |
|
|
// -a - -b = sub, so of larger
|
120 |
|
|
wire realOp = op ^ sa ^ sb;
|
121 |
|
|
wire realOp1;
|
122 |
|
|
wire op1;
|
123 |
|
|
|
124 |
|
|
// Find out if the result will be zero.
|
125 |
|
|
wire resZero = (realOp && xa==xb && ma==mb) || // subtract, same magnitude
|
126 |
|
|
(az & bz); // both a,b zero
|
127 |
|
|
|
128 |
|
|
// Compute output exponent
|
129 |
|
|
//
|
130 |
|
|
// The output exponent is the larger of the two exponents,
|
131 |
|
|
// unless a subtract operation is in progress and the two
|
132 |
|
|
// numbers are equal, in which case the exponent should be
|
133 |
|
|
// zero.
|
134 |
|
|
|
135 |
|
|
always @(xaInf,xbInf,resZero,xa,xb,xa_gt_xb)
|
136 |
|
|
xo1 = (xaInf&xbInf) ? xa : resZero ? 0 : xa_gt_xb ? xa : xb;
|
137 |
|
|
|
138 |
|
|
// Compute output sign
|
139 |
|
|
reg so1;
|
140 |
|
|
always @*
|
141 |
|
|
case ({resZero,sa,op,sb}) // synopsys full_case parallel_case
|
142 |
|
|
4'b0000: so1 <= 0; // + + + = +
|
143 |
|
|
4'b0001: so1 <= !a_gt_b; // + + - = sign of larger
|
144 |
|
|
4'b0010: so1 <= !a_gt_b; // + - + = sign of larger
|
145 |
|
|
4'b0011: so1 <= 0; // + - - = +
|
146 |
|
|
4'b0100: so1 <= a_gt_b; // - + + = sign of larger
|
147 |
|
|
4'b0101: so1 <= 1; // - + - = -
|
148 |
|
|
4'b0110: so1 <= 1; // - - + = -
|
149 |
|
|
4'b0111: so1 <= a_gt_b; // - - - = sign of larger
|
150 |
|
|
4'b1000: so1 <= 0; // A + B, sign = +
|
151 |
|
|
4'b1001: so1 <= rm==3; // A + -B, sign = + unless rounding down
|
152 |
|
|
4'b1010: so1 <= rm==3; // A - B, sign = + unless rounding down
|
153 |
|
|
4'b1011: so1 <= 0; // +A - -B, sign = +
|
154 |
|
|
4'b1100: so1 <= rm==3; // -A + B, sign = + unless rounding down
|
155 |
|
|
4'b1101: so1 <= 1; // -A + -B, sign = -
|
156 |
|
|
4'b1110: so1 <= 1; // -A - +B, sign = -
|
157 |
|
|
4'b1111: so1 <= rm==3; // -A - -B, sign = + unless rounding down
|
158 |
|
|
endcase
|
159 |
|
|
|
160 |
|
|
delay2 #(EMSB+1) d1(.clk(clk), .ce(ce), .i(xo1), .o(xo) );
|
161 |
|
|
delay2 #(1) d2(.clk(clk), .ce(ce), .i(so1), .o(so) );
|
162 |
|
|
|
163 |
|
|
// Compute the difference in exponents, provides shift amount
|
164 |
|
|
wire [EMSB:0] xdiff = xa_gt_xb ? xad - xbd : xbd - xad;
|
165 |
|
|
wire [6:0] xdif = xdiff > FMSB+3 ? FMSB+3 : xdiff;
|
166 |
|
|
wire [6:0] xdif1;
|
167 |
|
|
|
168 |
|
|
// determine which fraction to denormalize
|
169 |
|
|
wire [FMSB+1:0] mfs = xa_gt_xb ? fractb : fracta;
|
170 |
|
|
wire [FMSB+1:0] mfs1;
|
171 |
|
|
|
172 |
|
|
// Determine the sticky bit
|
173 |
|
|
wire sticky, sticky1;
|
174 |
|
|
redor64 u1 (.a(xdif), .b({mfs,2'b0}), .o(sticky) );
|
175 |
|
|
|
176 |
|
|
// register inputs to shifter and shift
|
177 |
|
|
delay1 #(1) d16(.clk(clk), .ce(ce), .i(sticky), .o(sticky1) );
|
178 |
|
|
delay1 #(7) d15(.clk(clk), .ce(ce), .i(xdif), .o(xdif1) );
|
179 |
|
|
delay1 #(FMSB+2) d14(.clk(clk), .ce(ce), .i(mfs), .o(mfs1) );
|
180 |
|
|
|
181 |
|
|
wire [FMSB+3:0] md1 = ({mfs1,2'b0} >> xdif1)|sticky1;
|
182 |
|
|
|
183 |
|
|
// sync control signals
|
184 |
|
|
delay1 #(1) d4 (.clk(clk), .ce(ce), .i(xa_gt_xb), .o(xa_gt_xb1) );
|
185 |
|
|
delay1 #(1) d17(.clk(clk), .ce(ce), .i(a_gt_b), .o(a_gt_b1) );
|
186 |
|
|
delay1 #(1) d5 (.clk(clk), .ce(ce), .i(realOp), .o(realOp1) );
|
187 |
|
|
delay1 #(FMSB+2) d5a(.clk(clk), .ce(ce), .i(fracta), .o(fracta1) );
|
188 |
|
|
delay1 #(FMSB+2) d6a(.clk(clk), .ce(ce), .i(fractb), .o(fractb1) );
|
189 |
|
|
delay1 #(1) d7 (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
|
190 |
|
|
delay1 #(1) d8 (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
|
191 |
|
|
delay1 #(1) d9 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) );
|
192 |
|
|
delay1 #(1) d10(.clk(clk), .ce(ce), .i(bNan), .o(bNan1) );
|
193 |
|
|
delay1 #(1) d11(.clk(clk), .ce(ce), .i(op), .o(op1) );
|
194 |
|
|
|
195 |
|
|
// Sort operands and perform add/subtract
|
196 |
|
|
// addition can generate an extra bit, subtract can't go negative
|
197 |
|
|
wire [FMSB+3:0] oa = xa_gt_xb1 ? {fracta1,2'b0} : md1;
|
198 |
|
|
wire [FMSB+3:0] ob = xa_gt_xb1 ? md1 : {fractb1,2'b0};
|
199 |
|
|
wire [FMSB+3:0] oaa = a_gt_b1 ? oa : ob;
|
200 |
|
|
wire [FMSB+3:0] obb = a_gt_b1 ? ob : oa;
|
201 |
|
|
wire [FMSB+4:0] mab = realOp1 ? oaa - obb : oaa + obb;
|
202 |
|
|
|
203 |
|
|
always @*
|
204 |
|
|
casex({aInf1&bInf1,aNan1,bNan1})
|
205 |
|
|
3'b1xx: mo1 = {1'b0,op1,{FMSB-1{1'b0}},op1,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
206 |
|
|
3'bx1x: mo1 = {1'b0,fracta1[FMSB+1:0],{FMSB{1'b0}}};
|
207 |
|
|
3'bxx1: mo1 = {1'b0,fractb1[FMSB+1:0],{FMSB{1'b0}}};
|
208 |
|
|
default: mo1 = {mab,{FMSB-1{1'b0}}}; // mab has an extra lead bit
|
209 |
|
|
endcase
|
210 |
|
|
|
211 |
|
|
delay1 #(FX+WX+1) d3(.clk(clk), .ce(ce), .i(mo1), .o(mo) );
|
212 |
|
|
|
213 |
|
|
endmodule
|
214 |
|
|
|
215 |
|
|
module fpAddsub_tb();
|
216 |
|
|
reg clk;
|
217 |
|
|
wire ce = 1'b1;
|
218 |
|
|
wire [2:0] rm = 3'b0;
|
219 |
|
|
wire [57:0] o1,o2,o3,o4,o5,o6;
|
220 |
|
|
wire [35:0] o11,o12,o13;
|
221 |
|
|
wire [31:0] o21,o22,o23;
|
222 |
|
|
|
223 |
|
|
initial begin
|
224 |
|
|
clk = 1'b0;
|
225 |
|
|
end
|
226 |
|
|
always #10 clk = ~clk;
|
227 |
|
|
|
228 |
|
|
fpAddsub u1 (clk, ce, rm, 1'b0, 32'h0, 32'h0, o1); // zero plus zero
|
229 |
|
|
fpAddsub u2 (clk, ce, rm, 1'b1, 32'h0, 32'h0, o2); // zero minus zero
|
230 |
|
|
fpAddsub u3 (clk, ce, rm, 1'b0, 32'h3F000000, 32'h3F000000, o3); // .5 + .5
|
231 |
|
|
fpAddsub u4 (clk, ce, rm, 1'b0, 32'h43520000, 32'h41700000, o4); // 210+15
|
232 |
|
|
fpAddsub u5 (clk, ce, rm, 1'b1, 32'hC3520000, 32'hC1700000, o5); // -210- -15
|
233 |
|
|
|
234 |
|
|
fpNormalize u11 (clk, ce, 1'b0, o3, o11);
|
235 |
|
|
fpNormalize u12 (clk, ce, 1'b0, o4, o12);
|
236 |
|
|
fpNormalize u13 (clk, ce, 1'b0, o5, o13);
|
237 |
|
|
|
238 |
|
|
fpRound u21 (3'd1, o11, o21); // zero for zero
|
239 |
|
|
fpRound u22 (3'd1, o12, o22); //
|
240 |
|
|
fpRound u23 (3'd1, o13, o23); //
|
241 |
|
|
|
242 |
|
|
endmodule
|
243 |
|
|
|