1 |
19 |
robfinch |
`timescale 1ns / 1ps
|
2 |
|
|
// ============================================================================
|
3 |
|
|
// __
|
4 |
|
|
// \\__/ o\ (C) 2006-2019 Robert Finch, Waterloo
|
5 |
|
|
// \ __ / All rights reserved.
|
6 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
7 |
|
|
// ||
|
8 |
|
|
//
|
9 |
|
|
// fpAddsub_L10.v
|
10 |
|
|
// - floating point adder/subtracter
|
11 |
|
|
// - ten cycle latency
|
12 |
|
|
// - can issue every clock cycle
|
13 |
|
|
// - parameterized width
|
14 |
|
|
// - IEEE 754 representation
|
15 |
|
|
//
|
16 |
|
|
//
|
17 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
18 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
19 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
20 |
|
|
// (at your option) any later version.
|
21 |
|
|
//
|
22 |
|
|
// This source file is distributed in the hope that it will be useful,
|
23 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
24 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
25 |
|
|
// GNU General Public License for more details.
|
26 |
|
|
//
|
27 |
|
|
// You should have received a copy of the GNU General Public License
|
28 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
29 |
|
|
//
|
30 |
|
|
// ============================================================================
|
31 |
|
|
|
32 |
|
|
module fpAddsub_L10(clk, ce, rm, op, a, b, o);
|
33 |
|
|
parameter WID = 128;
|
34 |
|
|
localparam MSB = WID-1;
|
35 |
|
|
localparam EMSB = WID==128 ? 14 :
|
36 |
|
|
WID==96 ? 14 :
|
37 |
|
|
WID==80 ? 14 :
|
38 |
|
|
WID==64 ? 10 :
|
39 |
|
|
WID==52 ? 10 :
|
40 |
|
|
WID==48 ? 11 :
|
41 |
|
|
WID==44 ? 10 :
|
42 |
|
|
WID==42 ? 10 :
|
43 |
|
|
WID==40 ? 9 :
|
44 |
|
|
WID==32 ? 7 :
|
45 |
|
|
WID==24 ? 6 : 4;
|
46 |
|
|
localparam FMSB = WID==128 ? 111 :
|
47 |
|
|
WID==96 ? 79 :
|
48 |
|
|
WID==80 ? 63 :
|
49 |
|
|
WID==64 ? 51 :
|
50 |
|
|
WID==52 ? 39 :
|
51 |
|
|
WID==48 ? 34 :
|
52 |
|
|
WID==44 ? 31 :
|
53 |
|
|
WID==42 ? 29 :
|
54 |
|
|
WID==40 ? 28 :
|
55 |
|
|
WID==32 ? 22 :
|
56 |
|
|
WID==24 ? 15 : 9;
|
57 |
|
|
|
58 |
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
59 |
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
60 |
|
|
|
61 |
|
|
input clk; // system clock
|
62 |
|
|
input ce; // core clock enable
|
63 |
|
|
input [2:0] rm; // rounding mode
|
64 |
|
|
input op; // operation 0 = add, 1 = subtract
|
65 |
|
|
input [WID-1:0] a; // operand a
|
66 |
|
|
input [WID-1:0] b; // operand b
|
67 |
|
|
output [EX:0] o; // output
|
68 |
|
|
|
69 |
|
|
wire so; // sign output
|
70 |
|
|
wire [EMSB:0] xo; // de normalized exponent output
|
71 |
|
|
reg [FX:0] mo; // mantissa output
|
72 |
|
|
|
73 |
|
|
assign o = {so,xo,mo};
|
74 |
|
|
|
75 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
76 |
|
|
// Clock edge #1
|
77 |
|
|
// - Decompose inputs into more digestible values.
|
78 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
79 |
|
|
wire [WID-1:0] a1;
|
80 |
|
|
wire [WID-1:0] b1;
|
81 |
|
|
wire sa1, sb1;
|
82 |
|
|
wire [EMSB:0] xa1, xb1;
|
83 |
|
|
wire [FMSB:0] ma1, mb1;
|
84 |
|
|
wire [FMSB+1:0] fracta1, fractb1;
|
85 |
|
|
wire adn1, bdn1; // a,b denormalized ?
|
86 |
|
|
wire xaInf1, xbInf1;
|
87 |
|
|
wire aInf1, bInf1;
|
88 |
|
|
wire aNan1, bNan1;
|
89 |
|
|
wire az1, bz1; // operand a,b is zero
|
90 |
|
|
wire op1;
|
91 |
|
|
|
92 |
|
|
fpDecompReg #(WID) u1a (.clk(clk), .ce(ce), .i(a), .o(a1), .sgn(sa1), .exp(xa1), .man(ma1), .fract(fracta1), .xz(adn1), .vz(az1), .xinf(xaInf1), .inf(aInf1), .nan(aNan1) );
|
93 |
|
|
fpDecompReg #(WID) u1b (.clk(clk), .ce(ce), .i(b), .o(b1), .sgn(sb1), .exp(xb1), .man(mb1), .fract(fractb1), .xz(bdn1), .vz(bz1), .xinf(xbInf1), .inf(bInf1), .nan(bNan1) );
|
94 |
|
|
delay1 #(1) dop1(.clk(clk), .ce(ce), .i(op), .o(op1) );
|
95 |
|
|
|
96 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
97 |
|
|
// Clock edge #2
|
98 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
99 |
|
|
reg xabeq2;
|
100 |
|
|
reg mabeq2;
|
101 |
|
|
reg anbz2;
|
102 |
|
|
reg xabInf2;
|
103 |
|
|
reg anbInf2;
|
104 |
|
|
wire [EMSB:0] xa2, xb2;
|
105 |
|
|
wire [FMSB:0] ma2, mb2;
|
106 |
|
|
// operands sign,exponent,mantissa
|
107 |
|
|
wire [FMSB+1:0] fracta2, fractb2;
|
108 |
|
|
wire az2, bz2; // operand a,b is zero
|
109 |
|
|
reg xa_gt_xb2;
|
110 |
|
|
reg var2;
|
111 |
|
|
reg [EMSB:0] xad2;
|
112 |
|
|
reg [EMSB:0] xbd2;
|
113 |
|
|
reg realOp2;
|
114 |
|
|
|
115 |
|
|
delay1 #(EMSB+1) dxa2(.clk(clk), .ce(ce), .i(xa1), .o(xa2) );
|
116 |
|
|
delay1 #(EMSB+1) dxb2(.clk(clk), .ce(ce), .i(xb1), .o(xb2) );
|
117 |
|
|
delay1 #(FMSB+1) dma2(.clk(clk), .ce(ce), .i(ma1), .o(ma2) );
|
118 |
|
|
delay1 #(FMSB+1) dmb2(.clk(clk), .ce(ce), .i(mb1), .o(mb2) );
|
119 |
|
|
delay1 #(1) daz2(.clk(clk), .ce(ce), .i(az1), .o(az2) );
|
120 |
|
|
delay1 #(1) dbz2(.clk(clk), .ce(ce), .i(bz1), .o(bz2) );
|
121 |
|
|
delay1 #(FMSB+2) dfracta2(.clk(clk), .ce(ce), .i(fracta1), .o(fracta2) );
|
122 |
|
|
delay1 #(FMSB+2) dfractb2(.clk(clk), .ce(ce), .i(fractb1), .o(fractb2) );
|
123 |
|
|
|
124 |
|
|
always @(posedge clk)
|
125 |
|
|
if (ce) xa_gt_xb2 <= xa1 > xb1;
|
126 |
|
|
always @(posedge clk)
|
127 |
|
|
if (ce) var2 <= (xa1==xb1 && ma1 > mb1);
|
128 |
|
|
always @(posedge clk)
|
129 |
|
|
if (ce) xad2 <= xa1|adn1; // operand a exponent, compensated for denormalized numbers
|
130 |
|
|
always @(posedge clk)
|
131 |
|
|
if (ce) xbd2 <= xb1|bdn1; // operand b exponent, compensated for denormalized numbers
|
132 |
|
|
always @(posedge clk)
|
133 |
|
|
if (ce) xabeq2 <= xa1==xb1;
|
134 |
|
|
always @(posedge clk)
|
135 |
|
|
if (ce) mabeq2 <= ma1==mb1;
|
136 |
|
|
always @(posedge clk)
|
137 |
|
|
if (ce) anbz2 <= az1 & bz1;
|
138 |
|
|
always @(posedge clk)
|
139 |
|
|
if (ce) xabInf2 <= xaInf1 & xbInf1;
|
140 |
|
|
always @(posedge clk)
|
141 |
|
|
if (ce) anbInf2 <= aInf1 & bInf1;
|
142 |
|
|
|
143 |
|
|
// Figure out which operation is really needed an add or
|
144 |
|
|
// subtract ?
|
145 |
|
|
// If the signs are the same, use the orignal op,
|
146 |
|
|
// otherwise flip the operation
|
147 |
|
|
// a + b = add,+
|
148 |
|
|
// a + -b = sub, so of larger
|
149 |
|
|
// -a + b = sub, so of larger
|
150 |
|
|
// -a + -b = add,-
|
151 |
|
|
// a - b = sub, so of larger
|
152 |
|
|
// a - -b = add,+
|
153 |
|
|
// -a - b = add,-
|
154 |
|
|
// -a - -b = sub, so of larger
|
155 |
|
|
always @(posedge clk)
|
156 |
|
|
if (ce) realOp2 <= op1 ^ sa1 ^ sb1;
|
157 |
|
|
|
158 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
159 |
|
|
// Clock edge #3
|
160 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
161 |
|
|
wire [EMSB:0] xa3, xb3;
|
162 |
|
|
wire xa_gt_xb3;
|
163 |
|
|
reg x_gt_b3;
|
164 |
|
|
wire xabInf3;
|
165 |
|
|
wire sa3,sb3;
|
166 |
|
|
wire op3;
|
167 |
|
|
wire [2:0] rm3;
|
168 |
|
|
reg [EMSB:0] xdiff3;
|
169 |
|
|
// which has greater magnitude ? Used for sign calc
|
170 |
|
|
reg a_gt_b3;
|
171 |
|
|
reg resZero3;
|
172 |
|
|
reg [FMSB+1:0] mfs3;
|
173 |
|
|
|
174 |
|
|
delay1 #(EMSB+1) dxa3(.clk(clk), .ce(ce), .i(xa2), .o(xa3));
|
175 |
|
|
delay1 #(EMSB+1) dxb3(.clk(clk), .ce(ce), .i(xb2), .o(xb3));
|
176 |
|
|
delay1 #(1) dxabInf2(.clk(clk), .ce(ce), .i(xabInf2), .o(xabInf3));
|
177 |
|
|
delay1 #(1) dxagtxb2(.clk(clk), .ce(ce), .i(xa_gt_xb2), .o(xa_gt_xb3));
|
178 |
|
|
delay2 #(1) dsa2(.clk(clk), .ce(ce), .i(sa1), .o(sa3));
|
179 |
|
|
delay2 #(1) dsb2(.clk(clk), .ce(ce), .i(sb1), .o(sb3));
|
180 |
|
|
delay2 #(1) dop2(.clk(clk), .ce(ce), .i(op1), .o(op3));
|
181 |
|
|
delay3 #(3) drm2(.clk(clk), .ce(ce), .i(rm), .o(rm3));
|
182 |
|
|
|
183 |
|
|
always @(posedge clk)
|
184 |
|
|
if (ce) a_gt_b3 <= xa_gt_xb2 || var2;
|
185 |
|
|
// Find out if the result will be zero.
|
186 |
|
|
always @(posedge clk)
|
187 |
|
|
if (ce) resZero3 <= (realOp2 & xabeq2 & mabeq2) | anbz2; // subtract, same magnitude, both a,b zero
|
188 |
|
|
|
189 |
|
|
// Compute the difference in exponents, provides shift amount
|
190 |
|
|
always @(posedge clk)
|
191 |
|
|
if (ce) xdiff3 <= xa_gt_xb2 ? xad2 - xbd2 : xbd2 - xad2;
|
192 |
|
|
// determine which fraction to denormalize
|
193 |
|
|
always @(posedge clk)
|
194 |
|
|
if (ce) mfs3 <= xa_gt_xb2 ? fractb2 : fracta2;
|
195 |
|
|
|
196 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
197 |
|
|
// Clock edge #4
|
198 |
|
|
// Compute output exponent
|
199 |
|
|
//
|
200 |
|
|
// The output exponent is the larger of the two exponents, unless a subtract
|
201 |
|
|
// operation is in progress and the two numbers are equal, in which case the
|
202 |
|
|
// exponent should be zero.
|
203 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
204 |
|
|
reg [EMSB:0] xdif4;
|
205 |
|
|
wire [FMSB+1:0] mfs4;
|
206 |
|
|
reg [EMSB:0] xo4; // de normalized exponent output
|
207 |
|
|
reg so4;
|
208 |
|
|
|
209 |
|
|
always @(posedge clk)
|
210 |
|
|
if (ce) xo4 <= xabInf3 ? xa3 : resZero3 ? {EMSB+1{1'b0}} : xa_gt_xb3 ? xa3 : xb3;
|
211 |
|
|
|
212 |
|
|
// Compute output sign
|
213 |
|
|
always @(posedge clk)
|
214 |
|
|
if (ce)
|
215 |
|
|
case ({resZero3,sa3,op3,sb3}) // synopsys full_case parallel_case
|
216 |
|
|
4'b0000: so4 <= 0; // + + + = +
|
217 |
|
|
4'b0001: so4 <= !a_gt_b3; // + + - = sign of larger
|
218 |
|
|
4'b0010: so4 <= !a_gt_b3; // + - + = sign of larger
|
219 |
|
|
4'b0011: so4 <= 0; // + - - = +
|
220 |
|
|
4'b0100: so4 <= a_gt_b3; // - + + = sign of larger
|
221 |
|
|
4'b0101: so4 <= 1; // - + - = -
|
222 |
|
|
4'b0110: so4 <= 1; // - - + = -
|
223 |
|
|
4'b0111: so4 <= a_gt_b3; // - - - = sign of larger
|
224 |
|
|
4'b1000: so4 <= 0; // A + B, sign = +
|
225 |
|
|
4'b1001: so4 <= rm3==3'd3; // A + -B, sign = + unless rounding down
|
226 |
|
|
4'b1010: so4 <= rm3==3'd3; // A - B, sign = + unless rounding down
|
227 |
|
|
4'b1011: so4 <= 0; // +A - -B, sign = +
|
228 |
|
|
4'b1100: so4 <= rm3==3'd3; // -A + B, sign = + unless rounding down
|
229 |
|
|
4'b1101: so4 <= 1; // -A + -B, sign = -
|
230 |
|
|
4'b1110: so4 <= 1; // -A - +B, sign = -
|
231 |
|
|
4'b1111: so4 <= rm3==3'd3; // -A - -B, sign = + unless rounding down
|
232 |
|
|
endcase
|
233 |
|
|
|
234 |
|
|
always @(posedge clk)
|
235 |
|
|
if (ce) xdif4 <= xdiff3 > FMSB+3 ? FMSB+3 : xdiff3;
|
236 |
|
|
delay1 #(FMSB+2) dmsf3(.clk(clk), .ce(ce), .i(mfs3), .o(mfs4));
|
237 |
|
|
|
238 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
239 |
|
|
// Clock edge #5
|
240 |
|
|
// Determine the sticky bit
|
241 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
242 |
|
|
wire [EMSB:0] xdif5;
|
243 |
|
|
wire [FMSB+1:0] mfs5;
|
244 |
|
|
wire sticky, sticky5;
|
245 |
|
|
|
246 |
|
|
// register inputs to shifter and shift
|
247 |
|
|
delay1 #(1) dstky4(.clk(clk), .ce(ce), .i(sticky), .o(sticky5) );
|
248 |
|
|
delay1 #(EMSB+1) dxdif4(.clk(clk), .ce(ce), .i(xdif4), .o(xdif5) );
|
249 |
|
|
delay1 #(FMSB+2) dmsf4(.clk(clk), .ce(ce), .i(mfs4), .o(mfs5));
|
250 |
|
|
|
251 |
|
|
generate
|
252 |
|
|
begin
|
253 |
|
|
if (WID==128)
|
254 |
|
|
redor128 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
255 |
|
|
else if (WID==96)
|
256 |
|
|
redor96 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
257 |
|
|
else if (WID==80)
|
258 |
|
|
redor80 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
259 |
|
|
else if (WID==64)
|
260 |
|
|
redor64 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
261 |
|
|
else if (WID==40)
|
262 |
|
|
redor40 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
263 |
|
|
else if (WID==32)
|
264 |
|
|
redor32 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
265 |
|
|
end
|
266 |
|
|
endgenerate
|
267 |
|
|
|
268 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
269 |
|
|
// Clock edge #6
|
270 |
|
|
// Shift (denormalize)
|
271 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
272 |
|
|
reg [FMSB+3:0] md6;
|
273 |
|
|
wire xa_gt_xb6;
|
274 |
|
|
wire [FMSB+1:0] fracta6, fractb6;
|
275 |
|
|
|
276 |
|
|
delay3 #(1) dxagtxb5(.clk(clk), .ce(ce), .i(xa_gt_xb3), .o(xa_gt_xb6));
|
277 |
|
|
delay4 #(FMSB+2) dfracta5(.clk(clk), .ce(ce), .i(fracta2), .o(fracta6) );
|
278 |
|
|
delay4 #(FMSB+2) dfractb5(.clk(clk), .ce(ce), .i(fractb2), .o(fractb6) );
|
279 |
|
|
|
280 |
|
|
always @(posedge clk)
|
281 |
|
|
if (ce) md6 <= ({mfs5,2'b0} >> xdif5)|sticky5;
|
282 |
|
|
|
283 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
284 |
|
|
// Clock edge #7
|
285 |
|
|
// Sort operands
|
286 |
|
|
// addition can generate an extra bit, subtract can't go negative
|
287 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
288 |
|
|
reg [FMSB+3:0] oa7;
|
289 |
|
|
reg [FMSB+3:0] ob7;
|
290 |
|
|
wire a_gt_b7;
|
291 |
|
|
|
292 |
|
|
delay4 #(1) dagtb5(.clk(clk), .ce(ce), .i(a_gt_b3), .o(a_gt_b7));
|
293 |
|
|
|
294 |
|
|
always @(posedge clk)
|
295 |
|
|
if (ce) oa7 <= xa_gt_xb6 ? {fracta6,2'b0} : md6;
|
296 |
|
|
always @(posedge clk)
|
297 |
|
|
if (ce) ob7 <= xa_gt_xb6 ? md6 : {fractb6,2'b0};
|
298 |
|
|
|
299 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
300 |
|
|
// Clock edge #8
|
301 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
302 |
|
|
reg [FMSB+3:0] oaa8;
|
303 |
|
|
reg [FMSB+3:0] obb8;
|
304 |
|
|
wire [EMSB:0] xo8;
|
305 |
|
|
wire realOp8;
|
306 |
|
|
vtdl #(.WID(1)) drealop7 (.clk(clk), .ce(ce), .a(4'd5), .d(realOp2), .q(realOp8));
|
307 |
|
|
vtdl #(.WID(EMSB+1)) dxo7(.clk(clk), .ce(ce), .a(4'd3), .d(xo4), .q(xo8));
|
308 |
|
|
always @(posedge clk)
|
309 |
|
|
if (ce) oaa8 <= a_gt_b7 ? oa7 : ob7;
|
310 |
|
|
always @(posedge clk)
|
311 |
|
|
if (ce) obb8 <= a_gt_b7 ? ob7 : oa7;
|
312 |
|
|
|
313 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
314 |
|
|
// Clock edge #9
|
315 |
|
|
// perform add/subtract
|
316 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
317 |
|
|
reg [FMSB+4:0] mab9;
|
318 |
|
|
wire anbInf9;
|
319 |
|
|
wire aNan9, bNan9;
|
320 |
|
|
wire op9;
|
321 |
|
|
wire [FMSB+1:0] fracta9, fractb9;
|
322 |
|
|
wire xo9;
|
323 |
|
|
reg xinf9;
|
324 |
|
|
|
325 |
|
|
vtdl #(1) danbInf7(.clk(clk), .ce(ce), .a(4'd6), .d(anbInf2), .q(anbInf9));
|
326 |
|
|
vtdl #(1) danan8(.clk(clk), .ce(ce), .a(4'd7), .d(aNan1), .q(aNan9));
|
327 |
|
|
vtdl #(1) dbnan8(.clk(clk), .ce(ce), .a(4'd7), .d(bNan1), .q(bNan9));
|
328 |
|
|
vtdl #(1) dop6(.clk(clk), .ce(ce), .a(4'd5), .d(op3), .q(op9));
|
329 |
|
|
delay3 #(FMSB+2) dfracta8(.clk(clk), .ce(ce), .i(fracta6), .o(fracta9) );
|
330 |
|
|
delay3 #(FMSB+2) dfractb8(.clk(clk), .ce(ce), .i(fractb6), .o(fractb9) );
|
331 |
|
|
|
332 |
|
|
always @(posedge clk)
|
333 |
|
|
if (ce) mab9 <= realOp8 ? oaa8 - obb8 : oaa8 + obb8;
|
334 |
|
|
always @(posedge clk)
|
335 |
|
|
if (ce) xinf9 <= xo8 == {EMSB+1{1'b1}};
|
336 |
|
|
|
337 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
338 |
|
|
// Clock edge #10
|
339 |
|
|
// Final outputs
|
340 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
341 |
|
|
vtdl #(1) dso6(.clk(clk), .ce(ce), .a(4'd5), .d(so4), .q(so));
|
342 |
|
|
vtdl #(.WID(EMSB+1)) dxo6(.clk(clk), .ce(ce), .a(4'd1), .d(xo8), .q(xo));
|
343 |
|
|
|
344 |
|
|
always @(posedge clk)
|
345 |
|
|
if (ce)
|
346 |
20 |
robfinch |
casez({anbInf9,aNan9,bNan9,xinf9})
|
347 |
|
|
4'b1???: mo <= {1'b0,op9,{FMSB-1{1'b0}},op9,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
348 |
|
|
4'b01??: mo <= {1'b0,fracta9[FMSB+1:0],{FMSB{1'b0}}};
|
349 |
|
|
4'b001?: mo <= {1'b0,fractb9[FMSB+1:0],{FMSB{1'b0}}};
|
350 |
|
|
4'b0001: mo <= 1'd0; // exponent hit infinity -> force mantissa to zero
|
351 |
19 |
robfinch |
default: mo <= {mab9,{FMSB-1{1'b0}}}; // mab has an extra lead bit and two trailing bits
|
352 |
|
|
endcase
|
353 |
|
|
|
354 |
|
|
endmodule
|
355 |
|
|
|
356 |
|
|
module fpAddsubnr_L10(clk, ce, rm, op, a, b, o);
|
357 |
|
|
parameter WID = 128;
|
358 |
|
|
localparam MSB = WID-1;
|
359 |
|
|
localparam EMSB = WID==128 ? 14 :
|
360 |
|
|
WID==96 ? 14 :
|
361 |
|
|
WID==80 ? 14 :
|
362 |
|
|
WID==64 ? 10 :
|
363 |
|
|
WID==52 ? 10 :
|
364 |
|
|
WID==48 ? 11 :
|
365 |
|
|
WID==44 ? 10 :
|
366 |
|
|
WID==42 ? 10 :
|
367 |
|
|
WID==40 ? 9 :
|
368 |
|
|
WID==32 ? 7 :
|
369 |
|
|
WID==24 ? 6 : 4;
|
370 |
|
|
localparam FMSB = WID==128 ? 111 :
|
371 |
|
|
WID==96 ? 79 :
|
372 |
|
|
WID==80 ? 63 :
|
373 |
|
|
WID==64 ? 51 :
|
374 |
|
|
WID==52 ? 39 :
|
375 |
|
|
WID==48 ? 34 :
|
376 |
|
|
WID==44 ? 31 :
|
377 |
|
|
WID==42 ? 29 :
|
378 |
|
|
WID==40 ? 28 :
|
379 |
|
|
WID==32 ? 22 :
|
380 |
|
|
WID==24 ? 15 : 9;
|
381 |
|
|
|
382 |
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
383 |
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
384 |
|
|
|
385 |
|
|
input clk; // system clock
|
386 |
|
|
input ce; // core clock enable
|
387 |
|
|
input [2:0] rm; // rounding mode
|
388 |
|
|
input op; // operation 0 = add, 1 = subtract
|
389 |
|
|
input [MSB:0] a; // operand a
|
390 |
|
|
input [MSB:0] b; // operand b
|
391 |
|
|
output [MSB:0] o; // output
|
392 |
|
|
|
393 |
|
|
wire [EX:0] o1;
|
394 |
|
|
wire [MSB+3:0] fpn0;
|
395 |
|
|
|
396 |
|
|
fpAddsub_L10 #(WID) u1 (clk, ce, rm, op, a, b, o1);
|
397 |
|
|
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(1'b0), .i(o1), .o(fpn0) );
|
398 |
|
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
399 |
|
|
|
400 |
|
|
endmodule
|