| 1 |
19 |
robfinch |
`timescale 1ns / 1ps
|
| 2 |
|
|
// ============================================================================
|
| 3 |
|
|
// __
|
| 4 |
|
|
// \\__/ o\ (C) 2006-2019 Robert Finch, Waterloo
|
| 5 |
|
|
// \ __ / All rights reserved.
|
| 6 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
| 7 |
|
|
// ||
|
| 8 |
|
|
//
|
| 9 |
|
|
// fpAddsub_L10.v
|
| 10 |
|
|
// - floating point adder/subtracter
|
| 11 |
|
|
// - ten cycle latency
|
| 12 |
|
|
// - can issue every clock cycle
|
| 13 |
|
|
// - parameterized width
|
| 14 |
|
|
// - IEEE 754 representation
|
| 15 |
|
|
//
|
| 16 |
|
|
//
|
| 17 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
| 18 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
| 19 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
| 20 |
|
|
// (at your option) any later version.
|
| 21 |
|
|
//
|
| 22 |
|
|
// This source file is distributed in the hope that it will be useful,
|
| 23 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 24 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 25 |
|
|
// GNU General Public License for more details.
|
| 26 |
|
|
//
|
| 27 |
|
|
// You should have received a copy of the GNU General Public License
|
| 28 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 29 |
|
|
//
|
| 30 |
|
|
// ============================================================================
|
| 31 |
|
|
|
| 32 |
|
|
module fpAddsub_L10(clk, ce, rm, op, a, b, o);
|
| 33 |
|
|
parameter WID = 128;
|
| 34 |
|
|
localparam MSB = WID-1;
|
| 35 |
|
|
localparam EMSB = WID==128 ? 14 :
|
| 36 |
|
|
WID==96 ? 14 :
|
| 37 |
|
|
WID==80 ? 14 :
|
| 38 |
|
|
WID==64 ? 10 :
|
| 39 |
|
|
WID==52 ? 10 :
|
| 40 |
|
|
WID==48 ? 11 :
|
| 41 |
|
|
WID==44 ? 10 :
|
| 42 |
|
|
WID==42 ? 10 :
|
| 43 |
|
|
WID==40 ? 9 :
|
| 44 |
|
|
WID==32 ? 7 :
|
| 45 |
|
|
WID==24 ? 6 : 4;
|
| 46 |
|
|
localparam FMSB = WID==128 ? 111 :
|
| 47 |
|
|
WID==96 ? 79 :
|
| 48 |
|
|
WID==80 ? 63 :
|
| 49 |
|
|
WID==64 ? 51 :
|
| 50 |
|
|
WID==52 ? 39 :
|
| 51 |
|
|
WID==48 ? 34 :
|
| 52 |
|
|
WID==44 ? 31 :
|
| 53 |
|
|
WID==42 ? 29 :
|
| 54 |
|
|
WID==40 ? 28 :
|
| 55 |
|
|
WID==32 ? 22 :
|
| 56 |
|
|
WID==24 ? 15 : 9;
|
| 57 |
|
|
|
| 58 |
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
| 59 |
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
| 60 |
|
|
|
| 61 |
|
|
input clk; // system clock
|
| 62 |
|
|
input ce; // core clock enable
|
| 63 |
|
|
input [2:0] rm; // rounding mode
|
| 64 |
|
|
input op; // operation 0 = add, 1 = subtract
|
| 65 |
|
|
input [WID-1:0] a; // operand a
|
| 66 |
|
|
input [WID-1:0] b; // operand b
|
| 67 |
|
|
output [EX:0] o; // output
|
| 68 |
|
|
|
| 69 |
|
|
wire so; // sign output
|
| 70 |
|
|
wire [EMSB:0] xo; // de normalized exponent output
|
| 71 |
|
|
reg [FX:0] mo; // mantissa output
|
| 72 |
|
|
|
| 73 |
|
|
assign o = {so,xo,mo};
|
| 74 |
|
|
|
| 75 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 76 |
|
|
// Clock edge #1
|
| 77 |
|
|
// - Decompose inputs into more digestible values.
|
| 78 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 79 |
|
|
wire [WID-1:0] a1;
|
| 80 |
|
|
wire [WID-1:0] b1;
|
| 81 |
|
|
wire sa1, sb1;
|
| 82 |
|
|
wire [EMSB:0] xa1, xb1;
|
| 83 |
|
|
wire [FMSB:0] ma1, mb1;
|
| 84 |
|
|
wire [FMSB+1:0] fracta1, fractb1;
|
| 85 |
|
|
wire adn1, bdn1; // a,b denormalized ?
|
| 86 |
|
|
wire xaInf1, xbInf1;
|
| 87 |
|
|
wire aInf1, bInf1;
|
| 88 |
|
|
wire aNan1, bNan1;
|
| 89 |
|
|
wire az1, bz1; // operand a,b is zero
|
| 90 |
|
|
wire op1;
|
| 91 |
|
|
|
| 92 |
|
|
fpDecompReg #(WID) u1a (.clk(clk), .ce(ce), .i(a), .o(a1), .sgn(sa1), .exp(xa1), .man(ma1), .fract(fracta1), .xz(adn1), .vz(az1), .xinf(xaInf1), .inf(aInf1), .nan(aNan1) );
|
| 93 |
|
|
fpDecompReg #(WID) u1b (.clk(clk), .ce(ce), .i(b), .o(b1), .sgn(sb1), .exp(xb1), .man(mb1), .fract(fractb1), .xz(bdn1), .vz(bz1), .xinf(xbInf1), .inf(bInf1), .nan(bNan1) );
|
| 94 |
|
|
delay1 #(1) dop1(.clk(clk), .ce(ce), .i(op), .o(op1) );
|
| 95 |
|
|
|
| 96 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 97 |
|
|
// Clock edge #2
|
| 98 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 99 |
|
|
reg xabeq2;
|
| 100 |
|
|
reg mabeq2;
|
| 101 |
|
|
reg anbz2;
|
| 102 |
|
|
reg xabInf2;
|
| 103 |
|
|
reg anbInf2;
|
| 104 |
|
|
wire [EMSB:0] xa2, xb2;
|
| 105 |
|
|
wire [FMSB:0] ma2, mb2;
|
| 106 |
|
|
// operands sign,exponent,mantissa
|
| 107 |
|
|
wire [FMSB+1:0] fracta2, fractb2;
|
| 108 |
|
|
wire az2, bz2; // operand a,b is zero
|
| 109 |
|
|
reg xa_gt_xb2;
|
| 110 |
|
|
reg var2;
|
| 111 |
|
|
reg [EMSB:0] xad2;
|
| 112 |
|
|
reg [EMSB:0] xbd2;
|
| 113 |
|
|
reg realOp2;
|
| 114 |
|
|
|
| 115 |
|
|
delay1 #(EMSB+1) dxa2(.clk(clk), .ce(ce), .i(xa1), .o(xa2) );
|
| 116 |
|
|
delay1 #(EMSB+1) dxb2(.clk(clk), .ce(ce), .i(xb1), .o(xb2) );
|
| 117 |
|
|
delay1 #(FMSB+1) dma2(.clk(clk), .ce(ce), .i(ma1), .o(ma2) );
|
| 118 |
|
|
delay1 #(FMSB+1) dmb2(.clk(clk), .ce(ce), .i(mb1), .o(mb2) );
|
| 119 |
|
|
delay1 #(1) daz2(.clk(clk), .ce(ce), .i(az1), .o(az2) );
|
| 120 |
|
|
delay1 #(1) dbz2(.clk(clk), .ce(ce), .i(bz1), .o(bz2) );
|
| 121 |
|
|
delay1 #(FMSB+2) dfracta2(.clk(clk), .ce(ce), .i(fracta1), .o(fracta2) );
|
| 122 |
|
|
delay1 #(FMSB+2) dfractb2(.clk(clk), .ce(ce), .i(fractb1), .o(fractb2) );
|
| 123 |
|
|
|
| 124 |
|
|
always @(posedge clk)
|
| 125 |
|
|
if (ce) xa_gt_xb2 <= xa1 > xb1;
|
| 126 |
|
|
always @(posedge clk)
|
| 127 |
|
|
if (ce) var2 <= (xa1==xb1 && ma1 > mb1);
|
| 128 |
|
|
always @(posedge clk)
|
| 129 |
|
|
if (ce) xad2 <= xa1|adn1; // operand a exponent, compensated for denormalized numbers
|
| 130 |
|
|
always @(posedge clk)
|
| 131 |
|
|
if (ce) xbd2 <= xb1|bdn1; // operand b exponent, compensated for denormalized numbers
|
| 132 |
|
|
always @(posedge clk)
|
| 133 |
|
|
if (ce) xabeq2 <= xa1==xb1;
|
| 134 |
|
|
always @(posedge clk)
|
| 135 |
|
|
if (ce) mabeq2 <= ma1==mb1;
|
| 136 |
|
|
always @(posedge clk)
|
| 137 |
|
|
if (ce) anbz2 <= az1 & bz1;
|
| 138 |
|
|
always @(posedge clk)
|
| 139 |
|
|
if (ce) xabInf2 <= xaInf1 & xbInf1;
|
| 140 |
|
|
always @(posedge clk)
|
| 141 |
|
|
if (ce) anbInf2 <= aInf1 & bInf1;
|
| 142 |
|
|
|
| 143 |
|
|
// Figure out which operation is really needed an add or
|
| 144 |
|
|
// subtract ?
|
| 145 |
|
|
// If the signs are the same, use the orignal op,
|
| 146 |
|
|
// otherwise flip the operation
|
| 147 |
|
|
// a + b = add,+
|
| 148 |
|
|
// a + -b = sub, so of larger
|
| 149 |
|
|
// -a + b = sub, so of larger
|
| 150 |
|
|
// -a + -b = add,-
|
| 151 |
|
|
// a - b = sub, so of larger
|
| 152 |
|
|
// a - -b = add,+
|
| 153 |
|
|
// -a - b = add,-
|
| 154 |
|
|
// -a - -b = sub, so of larger
|
| 155 |
|
|
always @(posedge clk)
|
| 156 |
|
|
if (ce) realOp2 <= op1 ^ sa1 ^ sb1;
|
| 157 |
|
|
|
| 158 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 159 |
|
|
// Clock edge #3
|
| 160 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 161 |
|
|
wire [EMSB:0] xa3, xb3;
|
| 162 |
|
|
wire xa_gt_xb3;
|
| 163 |
|
|
reg x_gt_b3;
|
| 164 |
|
|
wire xabInf3;
|
| 165 |
|
|
wire sa3,sb3;
|
| 166 |
|
|
wire op3;
|
| 167 |
|
|
wire [2:0] rm3;
|
| 168 |
|
|
reg [EMSB:0] xdiff3;
|
| 169 |
|
|
// which has greater magnitude ? Used for sign calc
|
| 170 |
|
|
reg a_gt_b3;
|
| 171 |
|
|
reg resZero3;
|
| 172 |
|
|
reg [FMSB+1:0] mfs3;
|
| 173 |
|
|
|
| 174 |
|
|
delay1 #(EMSB+1) dxa3(.clk(clk), .ce(ce), .i(xa2), .o(xa3));
|
| 175 |
|
|
delay1 #(EMSB+1) dxb3(.clk(clk), .ce(ce), .i(xb2), .o(xb3));
|
| 176 |
|
|
delay1 #(1) dxabInf2(.clk(clk), .ce(ce), .i(xabInf2), .o(xabInf3));
|
| 177 |
|
|
delay1 #(1) dxagtxb2(.clk(clk), .ce(ce), .i(xa_gt_xb2), .o(xa_gt_xb3));
|
| 178 |
|
|
delay2 #(1) dsa2(.clk(clk), .ce(ce), .i(sa1), .o(sa3));
|
| 179 |
|
|
delay2 #(1) dsb2(.clk(clk), .ce(ce), .i(sb1), .o(sb3));
|
| 180 |
|
|
delay2 #(1) dop2(.clk(clk), .ce(ce), .i(op1), .o(op3));
|
| 181 |
|
|
delay3 #(3) drm2(.clk(clk), .ce(ce), .i(rm), .o(rm3));
|
| 182 |
|
|
|
| 183 |
|
|
always @(posedge clk)
|
| 184 |
|
|
if (ce) a_gt_b3 <= xa_gt_xb2 || var2;
|
| 185 |
|
|
// Find out if the result will be zero.
|
| 186 |
|
|
always @(posedge clk)
|
| 187 |
|
|
if (ce) resZero3 <= (realOp2 & xabeq2 & mabeq2) | anbz2; // subtract, same magnitude, both a,b zero
|
| 188 |
|
|
|
| 189 |
|
|
// Compute the difference in exponents, provides shift amount
|
| 190 |
|
|
always @(posedge clk)
|
| 191 |
|
|
if (ce) xdiff3 <= xa_gt_xb2 ? xad2 - xbd2 : xbd2 - xad2;
|
| 192 |
|
|
// determine which fraction to denormalize
|
| 193 |
|
|
always @(posedge clk)
|
| 194 |
|
|
if (ce) mfs3 <= xa_gt_xb2 ? fractb2 : fracta2;
|
| 195 |
|
|
|
| 196 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 197 |
|
|
// Clock edge #4
|
| 198 |
|
|
// Compute output exponent
|
| 199 |
|
|
//
|
| 200 |
|
|
// The output exponent is the larger of the two exponents, unless a subtract
|
| 201 |
|
|
// operation is in progress and the two numbers are equal, in which case the
|
| 202 |
|
|
// exponent should be zero.
|
| 203 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 204 |
|
|
reg [EMSB:0] xdif4;
|
| 205 |
|
|
wire [FMSB+1:0] mfs4;
|
| 206 |
|
|
reg [EMSB:0] xo4; // de normalized exponent output
|
| 207 |
|
|
reg so4;
|
| 208 |
|
|
|
| 209 |
|
|
always @(posedge clk)
|
| 210 |
|
|
if (ce) xo4 <= xabInf3 ? xa3 : resZero3 ? {EMSB+1{1'b0}} : xa_gt_xb3 ? xa3 : xb3;
|
| 211 |
|
|
|
| 212 |
|
|
// Compute output sign
|
| 213 |
|
|
always @(posedge clk)
|
| 214 |
|
|
if (ce)
|
| 215 |
|
|
case ({resZero3,sa3,op3,sb3}) // synopsys full_case parallel_case
|
| 216 |
|
|
4'b0000: so4 <= 0; // + + + = +
|
| 217 |
|
|
4'b0001: so4 <= !a_gt_b3; // + + - = sign of larger
|
| 218 |
|
|
4'b0010: so4 <= !a_gt_b3; // + - + = sign of larger
|
| 219 |
|
|
4'b0011: so4 <= 0; // + - - = +
|
| 220 |
|
|
4'b0100: so4 <= a_gt_b3; // - + + = sign of larger
|
| 221 |
|
|
4'b0101: so4 <= 1; // - + - = -
|
| 222 |
|
|
4'b0110: so4 <= 1; // - - + = -
|
| 223 |
|
|
4'b0111: so4 <= a_gt_b3; // - - - = sign of larger
|
| 224 |
|
|
4'b1000: so4 <= 0; // A + B, sign = +
|
| 225 |
|
|
4'b1001: so4 <= rm3==3'd3; // A + -B, sign = + unless rounding down
|
| 226 |
|
|
4'b1010: so4 <= rm3==3'd3; // A - B, sign = + unless rounding down
|
| 227 |
|
|
4'b1011: so4 <= 0; // +A - -B, sign = +
|
| 228 |
|
|
4'b1100: so4 <= rm3==3'd3; // -A + B, sign = + unless rounding down
|
| 229 |
|
|
4'b1101: so4 <= 1; // -A + -B, sign = -
|
| 230 |
|
|
4'b1110: so4 <= 1; // -A - +B, sign = -
|
| 231 |
|
|
4'b1111: so4 <= rm3==3'd3; // -A - -B, sign = + unless rounding down
|
| 232 |
|
|
endcase
|
| 233 |
|
|
|
| 234 |
|
|
always @(posedge clk)
|
| 235 |
|
|
if (ce) xdif4 <= xdiff3 > FMSB+3 ? FMSB+3 : xdiff3;
|
| 236 |
|
|
delay1 #(FMSB+2) dmsf3(.clk(clk), .ce(ce), .i(mfs3), .o(mfs4));
|
| 237 |
|
|
|
| 238 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 239 |
|
|
// Clock edge #5
|
| 240 |
|
|
// Determine the sticky bit
|
| 241 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 242 |
|
|
wire [EMSB:0] xdif5;
|
| 243 |
|
|
wire [FMSB+1:0] mfs5;
|
| 244 |
|
|
wire sticky, sticky5;
|
| 245 |
|
|
|
| 246 |
|
|
// register inputs to shifter and shift
|
| 247 |
|
|
delay1 #(1) dstky4(.clk(clk), .ce(ce), .i(sticky), .o(sticky5) );
|
| 248 |
|
|
delay1 #(EMSB+1) dxdif4(.clk(clk), .ce(ce), .i(xdif4), .o(xdif5) );
|
| 249 |
|
|
delay1 #(FMSB+2) dmsf4(.clk(clk), .ce(ce), .i(mfs4), .o(mfs5));
|
| 250 |
|
|
|
| 251 |
|
|
generate
|
| 252 |
|
|
begin
|
| 253 |
|
|
if (WID==128)
|
| 254 |
|
|
redor128 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
| 255 |
|
|
else if (WID==96)
|
| 256 |
|
|
redor96 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
| 257 |
|
|
else if (WID==80)
|
| 258 |
|
|
redor80 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
| 259 |
|
|
else if (WID==64)
|
| 260 |
|
|
redor64 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
| 261 |
|
|
else if (WID==40)
|
| 262 |
|
|
redor40 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
| 263 |
|
|
else if (WID==32)
|
| 264 |
|
|
redor32 u1 (.a(xdif4), .b({mfs4,2'b0}), .o(sticky) );
|
| 265 |
|
|
end
|
| 266 |
|
|
endgenerate
|
| 267 |
|
|
|
| 268 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 269 |
|
|
// Clock edge #6
|
| 270 |
|
|
// Shift (denormalize)
|
| 271 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 272 |
|
|
reg [FMSB+3:0] md6;
|
| 273 |
|
|
wire xa_gt_xb6;
|
| 274 |
|
|
wire [FMSB+1:0] fracta6, fractb6;
|
| 275 |
|
|
|
| 276 |
|
|
delay3 #(1) dxagtxb5(.clk(clk), .ce(ce), .i(xa_gt_xb3), .o(xa_gt_xb6));
|
| 277 |
|
|
delay4 #(FMSB+2) dfracta5(.clk(clk), .ce(ce), .i(fracta2), .o(fracta6) );
|
| 278 |
|
|
delay4 #(FMSB+2) dfractb5(.clk(clk), .ce(ce), .i(fractb2), .o(fractb6) );
|
| 279 |
|
|
|
| 280 |
|
|
always @(posedge clk)
|
| 281 |
|
|
if (ce) md6 <= ({mfs5,2'b0} >> xdif5)|sticky5;
|
| 282 |
|
|
|
| 283 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 284 |
|
|
// Clock edge #7
|
| 285 |
|
|
// Sort operands
|
| 286 |
|
|
// addition can generate an extra bit, subtract can't go negative
|
| 287 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 288 |
|
|
reg [FMSB+3:0] oa7;
|
| 289 |
|
|
reg [FMSB+3:0] ob7;
|
| 290 |
|
|
wire a_gt_b7;
|
| 291 |
|
|
|
| 292 |
|
|
delay4 #(1) dagtb5(.clk(clk), .ce(ce), .i(a_gt_b3), .o(a_gt_b7));
|
| 293 |
|
|
|
| 294 |
|
|
always @(posedge clk)
|
| 295 |
|
|
if (ce) oa7 <= xa_gt_xb6 ? {fracta6,2'b0} : md6;
|
| 296 |
|
|
always @(posedge clk)
|
| 297 |
|
|
if (ce) ob7 <= xa_gt_xb6 ? md6 : {fractb6,2'b0};
|
| 298 |
|
|
|
| 299 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 300 |
|
|
// Clock edge #8
|
| 301 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 302 |
|
|
reg [FMSB+3:0] oaa8;
|
| 303 |
|
|
reg [FMSB+3:0] obb8;
|
| 304 |
|
|
wire [EMSB:0] xo8;
|
| 305 |
|
|
wire realOp8;
|
| 306 |
|
|
vtdl #(.WID(1)) drealop7 (.clk(clk), .ce(ce), .a(4'd5), .d(realOp2), .q(realOp8));
|
| 307 |
|
|
vtdl #(.WID(EMSB+1)) dxo7(.clk(clk), .ce(ce), .a(4'd3), .d(xo4), .q(xo8));
|
| 308 |
|
|
always @(posedge clk)
|
| 309 |
|
|
if (ce) oaa8 <= a_gt_b7 ? oa7 : ob7;
|
| 310 |
|
|
always @(posedge clk)
|
| 311 |
|
|
if (ce) obb8 <= a_gt_b7 ? ob7 : oa7;
|
| 312 |
|
|
|
| 313 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 314 |
|
|
// Clock edge #9
|
| 315 |
|
|
// perform add/subtract
|
| 316 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 317 |
|
|
reg [FMSB+4:0] mab9;
|
| 318 |
|
|
wire anbInf9;
|
| 319 |
|
|
wire aNan9, bNan9;
|
| 320 |
|
|
wire op9;
|
| 321 |
|
|
wire [FMSB+1:0] fracta9, fractb9;
|
| 322 |
|
|
wire xo9;
|
| 323 |
|
|
reg xinf9;
|
| 324 |
|
|
|
| 325 |
|
|
vtdl #(1) danbInf7(.clk(clk), .ce(ce), .a(4'd6), .d(anbInf2), .q(anbInf9));
|
| 326 |
|
|
vtdl #(1) danan8(.clk(clk), .ce(ce), .a(4'd7), .d(aNan1), .q(aNan9));
|
| 327 |
|
|
vtdl #(1) dbnan8(.clk(clk), .ce(ce), .a(4'd7), .d(bNan1), .q(bNan9));
|
| 328 |
|
|
vtdl #(1) dop6(.clk(clk), .ce(ce), .a(4'd5), .d(op3), .q(op9));
|
| 329 |
|
|
delay3 #(FMSB+2) dfracta8(.clk(clk), .ce(ce), .i(fracta6), .o(fracta9) );
|
| 330 |
|
|
delay3 #(FMSB+2) dfractb8(.clk(clk), .ce(ce), .i(fractb6), .o(fractb9) );
|
| 331 |
|
|
|
| 332 |
|
|
always @(posedge clk)
|
| 333 |
|
|
if (ce) mab9 <= realOp8 ? oaa8 - obb8 : oaa8 + obb8;
|
| 334 |
|
|
always @(posedge clk)
|
| 335 |
|
|
if (ce) xinf9 <= xo8 == {EMSB+1{1'b1}};
|
| 336 |
|
|
|
| 337 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 338 |
|
|
// Clock edge #10
|
| 339 |
|
|
// Final outputs
|
| 340 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 341 |
|
|
vtdl #(1) dso6(.clk(clk), .ce(ce), .a(4'd5), .d(so4), .q(so));
|
| 342 |
|
|
vtdl #(.WID(EMSB+1)) dxo6(.clk(clk), .ce(ce), .a(4'd1), .d(xo8), .q(xo));
|
| 343 |
|
|
|
| 344 |
|
|
always @(posedge clk)
|
| 345 |
|
|
if (ce)
|
| 346 |
20 |
robfinch |
casez({anbInf9,aNan9,bNan9,xinf9})
|
| 347 |
|
|
4'b1???: mo <= {1'b0,op9,{FMSB-1{1'b0}},op9,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
| 348 |
|
|
4'b01??: mo <= {1'b0,fracta9[FMSB+1:0],{FMSB{1'b0}}};
|
| 349 |
|
|
4'b001?: mo <= {1'b0,fractb9[FMSB+1:0],{FMSB{1'b0}}};
|
| 350 |
|
|
4'b0001: mo <= 1'd0; // exponent hit infinity -> force mantissa to zero
|
| 351 |
19 |
robfinch |
default: mo <= {mab9,{FMSB-1{1'b0}}}; // mab has an extra lead bit and two trailing bits
|
| 352 |
|
|
endcase
|
| 353 |
|
|
|
| 354 |
|
|
endmodule
|
| 355 |
|
|
|
| 356 |
|
|
module fpAddsubnr_L10(clk, ce, rm, op, a, b, o);
|
| 357 |
|
|
parameter WID = 128;
|
| 358 |
|
|
localparam MSB = WID-1;
|
| 359 |
|
|
localparam EMSB = WID==128 ? 14 :
|
| 360 |
|
|
WID==96 ? 14 :
|
| 361 |
|
|
WID==80 ? 14 :
|
| 362 |
|
|
WID==64 ? 10 :
|
| 363 |
|
|
WID==52 ? 10 :
|
| 364 |
|
|
WID==48 ? 11 :
|
| 365 |
|
|
WID==44 ? 10 :
|
| 366 |
|
|
WID==42 ? 10 :
|
| 367 |
|
|
WID==40 ? 9 :
|
| 368 |
|
|
WID==32 ? 7 :
|
| 369 |
|
|
WID==24 ? 6 : 4;
|
| 370 |
|
|
localparam FMSB = WID==128 ? 111 :
|
| 371 |
|
|
WID==96 ? 79 :
|
| 372 |
|
|
WID==80 ? 63 :
|
| 373 |
|
|
WID==64 ? 51 :
|
| 374 |
|
|
WID==52 ? 39 :
|
| 375 |
|
|
WID==48 ? 34 :
|
| 376 |
|
|
WID==44 ? 31 :
|
| 377 |
|
|
WID==42 ? 29 :
|
| 378 |
|
|
WID==40 ? 28 :
|
| 379 |
|
|
WID==32 ? 22 :
|
| 380 |
|
|
WID==24 ? 15 : 9;
|
| 381 |
|
|
|
| 382 |
|
|
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
| 383 |
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
| 384 |
|
|
|
| 385 |
|
|
input clk; // system clock
|
| 386 |
|
|
input ce; // core clock enable
|
| 387 |
|
|
input [2:0] rm; // rounding mode
|
| 388 |
|
|
input op; // operation 0 = add, 1 = subtract
|
| 389 |
|
|
input [MSB:0] a; // operand a
|
| 390 |
|
|
input [MSB:0] b; // operand b
|
| 391 |
|
|
output [MSB:0] o; // output
|
| 392 |
|
|
|
| 393 |
|
|
wire [EX:0] o1;
|
| 394 |
|
|
wire [MSB+3:0] fpn0;
|
| 395 |
|
|
|
| 396 |
|
|
fpAddsub_L10 #(WID) u1 (clk, ce, rm, op, a, b, o1);
|
| 397 |
|
|
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(1'b0), .i(o1), .o(fpn0) );
|
| 398 |
|
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
| 399 |
|
|
|
| 400 |
|
|
endmodule
|