| 1 |
8 |
robfinch |
`timescale 1ns / 1ps
|
| 2 |
6 |
robfinch |
// ============================================================================
|
| 3 |
|
|
// __
|
| 4 |
10 |
robfinch |
// \\__/ o\ (C) 2006-2018 Robert Finch, Waterloo
|
| 5 |
6 |
robfinch |
// \ __ / All rights reserved.
|
| 6 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
| 7 |
|
|
// ||
|
| 8 |
|
|
//
|
| 9 |
8 |
robfinch |
// fpMul.v
|
| 10 |
|
|
// - floating point multiplier
|
| 11 |
|
|
// - two cycle latency
|
| 12 |
|
|
// - can issue every clock cycle
|
| 13 |
|
|
// - parameterized width
|
| 14 |
|
|
// - IEEE 754 representation
|
| 15 |
|
|
//
|
| 16 |
|
|
//
|
| 17 |
6 |
robfinch |
// This source file is free software: you can redistribute it and/or modify
|
| 18 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
| 19 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
| 20 |
|
|
// (at your option) any later version.
|
| 21 |
|
|
//
|
| 22 |
|
|
// This source file is distributed in the hope that it will be useful,
|
| 23 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 24 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 25 |
|
|
// GNU General Public License for more details.
|
| 26 |
|
|
//
|
| 27 |
|
|
// You should have received a copy of the GNU General Public License
|
| 28 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 29 |
8 |
robfinch |
//
|
| 30 |
|
|
// Floating Point Multiplier / Divider
|
| 31 |
6 |
robfinch |
//
|
| 32 |
8 |
robfinch |
// This multiplier/divider handles denormalized numbers.
|
| 33 |
|
|
// The output format is of an internal expanded representation
|
| 34 |
|
|
// in preparation to be fed into a normalization unit, then
|
| 35 |
|
|
// rounding. Basically, it's the same as the regular format
|
| 36 |
|
|
// except the mantissa is doubled in size, the leading two
|
| 37 |
|
|
// bits of which are assumed to be whole bits.
|
| 38 |
6 |
robfinch |
//
|
| 39 |
8 |
robfinch |
//
|
| 40 |
6 |
robfinch |
// Floating Point Multiplier
|
| 41 |
|
|
//
|
| 42 |
|
|
// Properties:
|
| 43 |
|
|
// +-inf * +-inf = -+inf (this is handled by exOver)
|
| 44 |
|
|
// +-inf * 0 = QNaN
|
| 45 |
|
|
//
|
| 46 |
8 |
robfinch |
// 1 sign number
|
| 47 |
|
|
// 8 exponent
|
| 48 |
|
|
// 48 mantissa
|
| 49 |
|
|
//
|
| 50 |
6 |
robfinch |
// ============================================================================
|
| 51 |
8 |
robfinch |
|
| 52 |
6 |
robfinch |
module fpMul (clk, ce, a, b, o, sign_exe, inf, overflow, underflow);
|
| 53 |
26 |
robfinch |
parameter WID = 32;
|
| 54 |
|
|
`include "fpSize.sv"
|
| 55 |
6 |
robfinch |
|
| 56 |
|
|
input clk;
|
| 57 |
|
|
input ce;
|
| 58 |
|
|
input [WID:1] a, b;
|
| 59 |
8 |
robfinch |
output [EX:0] o;
|
| 60 |
6 |
robfinch |
output sign_exe;
|
| 61 |
|
|
output inf;
|
| 62 |
|
|
output overflow;
|
| 63 |
|
|
output underflow;
|
| 64 |
|
|
|
| 65 |
|
|
reg [EMSB:0] xo1; // extra bit for sign
|
| 66 |
8 |
robfinch |
reg [FX:0] mo1;
|
| 67 |
6 |
robfinch |
|
| 68 |
|
|
// constants
|
| 69 |
|
|
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
|
| 70 |
|
|
// The following is the value for an exponent of zero, with the offset
|
| 71 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
| 72 |
|
|
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent
|
| 73 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
| 74 |
|
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
| 75 |
|
|
|
| 76 |
|
|
// variables
|
| 77 |
8 |
robfinch |
reg [FX:0] fract1,fract1a;
|
| 78 |
|
|
wire [FX:0] fracto;
|
| 79 |
6 |
robfinch |
wire [EMSB+2:0] ex1; // sum of exponents
|
| 80 |
|
|
wire [EMSB :0] ex2;
|
| 81 |
|
|
|
| 82 |
|
|
// Decompose the operands
|
| 83 |
|
|
wire sa, sb; // sign bit
|
| 84 |
|
|
wire [EMSB:0] xa, xb; // exponent bits
|
| 85 |
|
|
wire [FMSB+1:0] fracta, fractb;
|
| 86 |
|
|
wire a_dn, b_dn; // a/b is denormalized
|
| 87 |
8 |
robfinch |
wire aNan, bNan, aNan1, bNan1;
|
| 88 |
6 |
robfinch |
wire az, bz;
|
| 89 |
|
|
wire aInf, bInf, aInf1, bInf1;
|
| 90 |
|
|
|
| 91 |
|
|
|
| 92 |
|
|
// -----------------------------------------------------------
|
| 93 |
|
|
// First clock
|
| 94 |
|
|
// - decode the input operands
|
| 95 |
|
|
// - derive basic information
|
| 96 |
|
|
// - calculate exponent
|
| 97 |
|
|
// - calculate fraction
|
| 98 |
|
|
// -----------------------------------------------------------
|
| 99 |
|
|
|
| 100 |
8 |
robfinch |
fpDecomp #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );
|
| 101 |
|
|
fpDecomp #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );
|
| 102 |
6 |
robfinch |
|
| 103 |
|
|
// Compute the sum of the exponents.
|
| 104 |
|
|
// correct the exponent for denormalized operands
|
| 105 |
|
|
// adjust the sum by the exponent offset (subtract 127)
|
| 106 |
|
|
// mul: ex1 = xa + xb, result should always be < 1ffh
|
| 107 |
|
|
assign ex1 = (az|bz) ? 0 : (xa|a_dn) + (xb|b_dn) - bias;
|
| 108 |
8 |
robfinch |
|
| 109 |
10 |
robfinch |
generate
|
| 110 |
26 |
robfinch |
if (WID==80) begin
|
| 111 |
|
|
reg [31:0] p00,p01,p02,p03;
|
| 112 |
|
|
reg [31:0] p10,p11,p12,p13;
|
| 113 |
|
|
reg [31:0] p20,p21,p22,p23;
|
| 114 |
|
|
reg [31:0] p30,p31,p32,p33;
|
| 115 |
|
|
always @(posedge clk)
|
| 116 |
|
|
if (ce) begin
|
| 117 |
|
|
p00 <= fracta[15: 0] * fractb[15: 0];
|
| 118 |
|
|
p01 <= fracta[31:16] * fractb[15: 0];
|
| 119 |
|
|
p02 <= fracta[47:32] * fractb[15: 0];
|
| 120 |
|
|
p03 <= fracta[63:48] * fractb[15: 0];
|
| 121 |
|
|
|
| 122 |
|
|
p10 <= fracta[15: 0] * fractb[31:16];
|
| 123 |
|
|
p11 <= fracta[31:16] * fractb[31:16];
|
| 124 |
|
|
p12 <= fracta[47:32] * fractb[31:16];
|
| 125 |
|
|
p13 <= fracta[63:48] * fractb[31:16];
|
| 126 |
|
|
|
| 127 |
|
|
p20 <= fracta[15: 0] * fractb[47:32];
|
| 128 |
|
|
p21 <= fracta[31:16] * fractb[47:32];
|
| 129 |
|
|
p22 <= fracta[47:32] * fractb[47:32];
|
| 130 |
|
|
p23 <= fracta[63:48] * fractb[47:32];
|
| 131 |
|
|
|
| 132 |
|
|
p30 <= fracta[15: 0] * fractb[63:48];
|
| 133 |
|
|
p31 <= fracta[31:16] * fractb[63:48];
|
| 134 |
|
|
p32 <= fracta[47:32] * fractb[63:48];
|
| 135 |
|
|
p33 <= fracta[63:48] * fractb[63:48];
|
| 136 |
|
|
|
| 137 |
|
|
fract1 <= {p03,48'b0} + {p02,32'b0} + {p01,16'b0} + p00 +
|
| 138 |
|
|
{p13,64'b0} + {p12,48'b0} + {p11,32'b0} + {p10,16'b0} +
|
| 139 |
|
|
{p23,80'b0} + {p22,64'b0} + {p21,48'b0} + {p20,32'b0} +
|
| 140 |
|
|
{p33,96'b0} + {p32,80'b0} + {p31,64'b0} + {p30,48'b0}
|
| 141 |
|
|
;
|
| 142 |
|
|
end
|
| 143 |
|
|
end
|
| 144 |
|
|
else if (WID==64) begin
|
| 145 |
8 |
robfinch |
reg [35:0] p00,p01,p02;
|
| 146 |
|
|
reg [35:0] p10,p11,p12;
|
| 147 |
|
|
reg [35:0] p20,p21,p22;
|
| 148 |
6 |
robfinch |
always @(posedge clk)
|
| 149 |
|
|
if (ce) begin
|
| 150 |
|
|
p00 <= fracta[17: 0] * fractb[17: 0];
|
| 151 |
|
|
p01 <= fracta[35:18] * fractb[17: 0];
|
| 152 |
|
|
p02 <= fracta[52:36] * fractb[17: 0];
|
| 153 |
|
|
p10 <= fracta[17: 0] * fractb[35:18];
|
| 154 |
|
|
p11 <= fracta[35:18] * fractb[35:18];
|
| 155 |
|
|
p12 <= fracta[52:36] * fractb[35:18];
|
| 156 |
|
|
p20 <= fracta[17: 0] * fractb[52:36];
|
| 157 |
|
|
p21 <= fracta[35:18] * fractb[52:36];
|
| 158 |
|
|
p22 <= fracta[52:36] * fractb[52:36];
|
| 159 |
|
|
fract1 <= {p02,36'b0} + {p01,18'b0} + p00 +
|
| 160 |
|
|
{p12,54'b0} + {p11,36'b0} + {p10,18'b0} +
|
| 161 |
|
|
{p22,72'b0} + {p21,54'b0} + {p20,36'b0}
|
| 162 |
|
|
;
|
| 163 |
|
|
end
|
| 164 |
|
|
end
|
| 165 |
|
|
else if (WID==32) begin
|
| 166 |
10 |
robfinch |
reg [23:0] p00,p01,p02;
|
| 167 |
|
|
reg [23:0] p10,p11,p12;
|
| 168 |
|
|
reg [23:0] p20,p21,p22;
|
| 169 |
6 |
robfinch |
always @(posedge clk)
|
| 170 |
|
|
if (ce) begin
|
| 171 |
10 |
robfinch |
p00 <= fracta[11: 0] * fractb[11: 0];
|
| 172 |
|
|
p01 <= fracta[23:12] * fractb[11: 0];
|
| 173 |
|
|
p10 <= fracta[11: 0] * fractb[23:12];
|
| 174 |
|
|
p11 <= fracta[23:12] * fractb[23:12];
|
| 175 |
|
|
fract1 <= {p11,p00} + {p01,12'b0} + {p10,12'b0};
|
| 176 |
6 |
robfinch |
end
|
| 177 |
|
|
end
|
| 178 |
8 |
robfinch |
else begin
|
| 179 |
|
|
always @(posedge clk)
|
| 180 |
10 |
robfinch |
if (ce) begin
|
| 181 |
|
|
fract1a <= fracta * fractb;
|
| 182 |
|
|
fract1 <= fract1a;
|
| 183 |
|
|
end
|
| 184 |
8 |
robfinch |
end
|
| 185 |
6 |
robfinch |
endgenerate
|
| 186 |
|
|
|
| 187 |
|
|
// Status
|
| 188 |
|
|
wire under1, over1;
|
| 189 |
|
|
wire under = ex1[EMSB+2]; // exponent underflow
|
| 190 |
|
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
| 191 |
|
|
|
| 192 |
|
|
delay2 #(EMSB+1) u3 (.clk(clk), .ce(ce), .i(ex1[EMSB:0]), .o(ex2) );
|
| 193 |
|
|
delay2 u2a (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
|
| 194 |
|
|
delay2 u2b (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
|
| 195 |
|
|
delay2 u6 (.clk(clk), .ce(ce), .i(under), .o(under1) );
|
| 196 |
|
|
delay2 u7 (.clk(clk), .ce(ce), .i(over), .o(over1) );
|
| 197 |
|
|
|
| 198 |
|
|
// determine when a NaN is output
|
| 199 |
|
|
wire qNaNOut;
|
| 200 |
8 |
robfinch |
wire [WID-1:0] a1,b1;
|
| 201 |
6 |
robfinch |
delay2 u5 (.clk(clk), .ce(ce), .i((aInf&bz)|(bInf&az)), .o(qNaNOut) );
|
| 202 |
8 |
robfinch |
delay2 u14 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) );
|
| 203 |
|
|
delay2 u15 (.clk(clk), .ce(ce), .i(bNan), .o(bNan1) );
|
| 204 |
|
|
delay2 #(WID) u16 (.clk(clk), .ce(ce), .i(a), .o(a1) );
|
| 205 |
|
|
delay2 #(WID) u17 (.clk(clk), .ce(ce), .i(b), .o(b1) );
|
| 206 |
6 |
robfinch |
|
| 207 |
|
|
// -----------------------------------------------------------
|
| 208 |
|
|
// Second clock
|
| 209 |
|
|
// - correct xponent and mantissa for exceptional conditions
|
| 210 |
|
|
// -----------------------------------------------------------
|
| 211 |
|
|
|
| 212 |
|
|
wire so1;
|
| 213 |
|
|
delay3 u8 (.clk(clk), .ce(ce), .i(sa ^ sb), .o(so1) );// two clock delay!
|
| 214 |
|
|
|
| 215 |
|
|
always @(posedge clk)
|
| 216 |
|
|
if (ce)
|
| 217 |
10 |
robfinch |
casez({qNaNOut|aNan1|bNan1,aInf1,bInf1,over1,under1})
|
| 218 |
|
|
5'b1????: xo1 = infXp; // qNaN - infinity * zero
|
| 219 |
|
|
5'b01???: xo1 = infXp; // 'a' infinite
|
| 220 |
|
|
5'b001??: xo1 = infXp; // 'b' infinite
|
| 221 |
|
|
5'b0001?: xo1 = infXp; // result overflow
|
| 222 |
|
|
5'b00001: xo1 = ex2[EMSB:0];//0; // underflow
|
| 223 |
6 |
robfinch |
default: xo1 = ex2[EMSB:0]; // situation normal
|
| 224 |
|
|
endcase
|
| 225 |
|
|
|
| 226 |
|
|
always @(posedge clk)
|
| 227 |
|
|
if (ce)
|
| 228 |
10 |
robfinch |
casez({aNan1,bNan1,qNaNOut,aInf1,bInf1,over1})
|
| 229 |
11 |
robfinch |
6'b1?????: mo1 = {1'b1,a1[FMSB:0],{FMSB+1{1'b0}}};
|
| 230 |
|
|
6'b01????: mo1 = {1'b1,b1[FMSB:0],{FMSB+1{1'b0}}};
|
| 231 |
|
|
6'b001???: mo1 = {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero
|
| 232 |
10 |
robfinch |
6'b0001??: mo1 = 0; // mul inf's
|
| 233 |
|
|
6'b00001?: mo1 = 0; // mul inf's
|
| 234 |
8 |
robfinch |
6'b000001: mo1 = 0; // mul overflow
|
| 235 |
10 |
robfinch |
default: mo1 = fract1;
|
| 236 |
6 |
robfinch |
endcase
|
| 237 |
|
|
|
| 238 |
|
|
delay3 u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) );
|
| 239 |
|
|
delay1 u11 (.clk(clk), .ce(ce), .i(over1), .o(overflow) );
|
| 240 |
|
|
delay1 u12 (.clk(clk), .ce(ce), .i(over1), .o(inf) );
|
| 241 |
|
|
delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) );
|
| 242 |
|
|
|
| 243 |
|
|
assign o = {so1,xo1,mo1};
|
| 244 |
|
|
|
| 245 |
|
|
endmodule
|
| 246 |
|
|
|
| 247 |
26 |
robfinch |
|
| 248 |
|
|
// Multiplier with normalization and rounding.
|
| 249 |
|
|
|
| 250 |
10 |
robfinch |
module fpMulnr(clk, ce, a, b, o, rm, sign_exe, inf, overflow, underflow);
|
| 251 |
|
|
parameter WID=32;
|
| 252 |
26 |
robfinch |
`include "fpSize.sv"
|
| 253 |
10 |
robfinch |
|
| 254 |
|
|
input clk;
|
| 255 |
|
|
input ce;
|
| 256 |
|
|
input [MSB:0] a, b;
|
| 257 |
|
|
output [MSB:0] o;
|
| 258 |
|
|
input [2:0] rm;
|
| 259 |
|
|
output sign_exe;
|
| 260 |
|
|
output inf;
|
| 261 |
|
|
output overflow;
|
| 262 |
|
|
output underflow;
|
| 263 |
|
|
|
| 264 |
|
|
wire [EX:0] o1;
|
| 265 |
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
| 266 |
|
|
wire [MSB+3:0] fpn0;
|
| 267 |
|
|
|
| 268 |
|
|
fpMul #(WID) u1 (clk, ce, a, b, o1, sign_exe1, inf1, overflow1, underflow1);
|
| 269 |
|
|
fpNormalize #(WID) u2(.clk(clk), .ce(ce), .under(underflow1), .i(o1), .o(fpn0) );
|
| 270 |
|
|
fpRoundReg #(WID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
| 271 |
|
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
| 272 |
|
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
| 273 |
|
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
| 274 |
|
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
| 275 |
|
|
endmodule
|
| 276 |
|
|
|