OpenCores
URL https://opencores.org/ocsvn/ft816float/ft816float/trunk

Subversion Repositories ft816float

[/] [ft816float/] [trunk/] [rtl/] [verilog/] [fpMul.v] - Blame information for rev 7

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 6 robfinch
// ============================================================================
2
//        __
3
//   \\__/ o\    (C) 2006-2016  Robert Finch, Stratford
4
//    \  __ /    All rights reserved.
5
//     \/_//     robfinch<remove>@finitron.ca
6
//       ||
7
//
8
// This source file is free software: you can redistribute it and/or modify 
9
// it under the terms of the GNU Lesser General Public License as published 
10
// by the Free Software Foundation, either version 3 of the License, or     
11
// (at your option) any later version.                                      
12
//                                                                          
13
// This source file is distributed in the hope that it will be useful,      
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of           
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            
16
// GNU General Public License for more details.                             
17
//                                                                          
18
// You should have received a copy of the GNU General Public License        
19
// along with this program.  If not, see <http://www.gnu.org/licenses/>.    
20
//
21
//      fpMul.v
22
//              - floating point multiplier
23
//              - two cycle latency
24
//              - can issue every clock cycle
25
//              - parameterized width
26
//              - IEEE 754 representation
27
//
28
//      Floating Point Multiplier
29
//
30
//      Properties:
31
//      +-inf * +-inf = -+inf   (this is handled by exOver)
32
//      +-inf * 0     = QNaN
33
//      
34
// ============================================================================
35
//
36
module fpMul (clk, ce, a, b, o, sign_exe, inf, overflow, underflow);
37
parameter WID = 32;
38
localparam MSB = WID-1;
39
localparam EMSB =
40
          WID==80 ? 14 :
41
          WID==64 ? 10 :
42
                                  WID==52 ? 10 :
43
                                  WID==48 ? 10 :
44
                                  WID==44 ? 10 :
45
                                  WID==42 ? 10 :
46
                                  WID==40 ?  9 :
47
                                  WID==32 ?  7 :
48
                                  WID==24 ?  6 : 4;
49
localparam FMSB =
50
          WID==80 ? 63 :
51
          WID==64 ? 51 :
52
                                  WID==52 ? 39 :
53
                                  WID==48 ? 35 :
54
                                  WID==44 ? 31 :
55
                                  WID==42 ? 29 :
56
                                  WID==40 ? 28 :
57
                                  WID==32 ? 22 :
58
                                  WID==24 ? 15 : 9;
59
 
60
localparam WX = 3;
61
localparam FX = (FMSB+1)*2-1;   // the MSB of the expanded fraction
62
localparam EX = FX + WX + EMSB + 1;
63
 
64
input clk;
65
input ce;
66
input  [WID:1] a, b;
67
output [EX+1:0] o;
68
output sign_exe;
69
output inf;
70
output overflow;
71
output underflow;
72
 
73
reg [EMSB:0] xo1;                // extra bit for sign
74
reg [FX+WX:0] mo1;
75
 
76
// constants
77
wire [EMSB:0] infXp = {EMSB+1{1'b1}};    // infinite / NaN - all ones
78
// The following is the value for an exponent of zero, with the offset
79
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
80
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}};        //2^0 exponent
81
// The following is a template for a quiet nan. (MSB=1)
82
wire [FMSB:0] qNaN  = {1'b1,{FMSB{1'b0}}};
83
 
84
// variables
85
reg [FX+WX:0] fract1,fract1a;
86
wire [FX+WX:0] fracto;
87
wire [EMSB+2:0] ex1;     // sum of exponents
88
wire [EMSB  :0] ex2;
89
 
90
// Decompose the operands
91
wire sa, sb;                    // sign bit
92
wire [EMSB:0] xa, xb;    // exponent bits
93
wire [FMSB+1:0] fracta, fractb;
94
wire a_dn, b_dn;                        // a/b is denormalized
95
wire az, bz;
96
wire aInf, bInf, aInf1, bInf1;
97
 
98
 
99
// -----------------------------------------------------------
100
// First clock
101
// - decode the input operands
102
// - derive basic information
103
// - calculate exponent
104
// - calculate fraction
105
// -----------------------------------------------------------
106
 
107
fpDecompose #(WID) u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf) );
108
fpDecompose #(WID) u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf) );
109
 
110
// Compute the sum of the exponents.
111
// correct the exponent for denormalized operands
112
// adjust the sum by the exponent offset (subtract 127)
113
// mul: ex1 = xa + xb,  result should always be < 1ffh
114
assign ex1 = (az|bz) ? 0 : (xa|a_dn) + (xb|b_dn) - bias;
115
generate
116
if (WID==64) begin
117
        reg [35:0] p00,p01,p02;
118
        reg [35:0] p10,p11,p12;
119
        reg [35:0] p20,p21,p22;
120
        always @(posedge clk)
121
        if (ce) begin
122
                p00 <= fracta[17: 0] * fractb[17: 0];
123
                p01 <= fracta[35:18] * fractb[17: 0];
124
                p02 <= fracta[52:36] * fractb[17: 0];
125
                p10 <= fracta[17: 0] * fractb[35:18];
126
                p11 <= fracta[35:18] * fractb[35:18];
127
                p12 <= fracta[52:36] * fractb[35:18];
128
                p20 <= fracta[17: 0] * fractb[52:36];
129
                p21 <= fracta[35:18] * fractb[52:36];
130
                p22 <= fracta[52:36] * fractb[52:36];
131
                fract1 <=                                   {p02,36'b0} + {p01,18'b0} + p00 +
132
                                                                  {p12,54'b0} + {p11,36'b0} + {p10,18'b0} +
133
                                        {p22,72'b0} + {p21,54'b0} + {p20,36'b0}
134
                                ;
135
        end
136
end
137
else if (WID==32) begin
138
        reg [35:0] p00,p01;
139
        reg [35:0] p10,p11;
140
        always @(posedge clk)
141
        if (ce) begin
142
                p00 <= fracta[17: 0] * fractb[17: 0];
143
                p01 <= fracta[23:18] * fractb[17: 0];
144
                p10 <= fracta[17: 0] * fractb[23:18];
145
                p11 <= fracta[23:18] * fractb[23:18];
146
                fract1 <= {p11,p00} + {p01,18'b0} + {p10,18'b0};
147
        end
148
end
149
endgenerate
150
 
151
// Status
152
wire under1, over1;
153
wire under = ex1[EMSB+2];       // exponent underflow
154
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
155
 
156
delay2 #(EMSB+1) u3 (.clk(clk), .ce(ce), .i(ex1[EMSB:0]), .o(ex2) );
157
delay2 #(FX+WX+1) u4 (.clk(clk), .ce(ce), .i(fract1), .o(fracto) );
158
delay2 u2a (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
159
delay2 u2b (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
160
delay2 u6  (.clk(clk), .ce(ce), .i(under), .o(under1) );
161
delay2 u7  (.clk(clk), .ce(ce), .i(over), .o(over1) );
162
 
163
// determine when a NaN is output
164
wire qNaNOut;
165
delay2 u5 (.clk(clk), .ce(ce), .i((aInf&bz)|(bInf&az)), .o(qNaNOut) );
166
 
167
 
168
// -----------------------------------------------------------
169
// Second clock
170
// - correct xponent and mantissa for exceptional conditions
171
// -----------------------------------------------------------
172
 
173
wire so1;
174
delay3 u8 (.clk(clk), .ce(ce), .i(sa ^ sb), .o(so1) );// two clock delay!
175
 
176
always @(posedge clk)
177
        if (ce)
178
                casex({qNaNOut,aInf1,bInf1,over1,under1})
179
                5'b1xxxx:       xo1 = infXp;    // qNaN - infinity * zero
180
                5'b01xxx:       xo1 = infXp;    // 'a' infinite
181
                5'b001xx:       xo1 = infXp;    // 'b' infinite
182
                5'b0001x:       xo1 = infXp;    // result overflow
183
                5'b00001:       xo1 = 0;         // underflow
184
                default:        xo1 = ex2[EMSB:0];       // situation normal
185
                endcase
186
 
187
always @(posedge clk)
188
        if (ce)
189
                casex({qNaNOut,aInf1,bInf1,over1})
190
                4'b1xxx:        mo1 = {1'b0,qNaN|3'd4,{FMSB+1{1'b0}}};  // multiply inf * zero
191
                4'b01xx:        mo1 = 0; // mul inf's
192
                4'b001x:        mo1 = 0; // mul inf's
193
                4'b0001:        mo1 = 0; // mul overflow
194
                default:        mo1 = fracto;
195
                endcase
196
 
197
delay3 u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) );
198
delay1 u11 (.clk(clk), .ce(ce), .i(over1),  .o(overflow) );
199
delay1 u12 (.clk(clk), .ce(ce), .i(over1),  .o(inf) );
200
delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) );
201
 
202
assign o = {so1,xo1,mo1};
203
 
204
endmodule
205
 
206
module fpMul_tb();
207
reg clk;
208
wire ce = 1'b1;
209
wire sgnx1,sgnx2,sgnx3,sgnx4,sgnx5,sgnx6;
210
wire inf1,inf2,inf3,inf4,inf5,inf6;
211
wire of1,of2,of3,of4,of5,of6;
212
wire uf1,uf2,uf3,uf4,uf5,uf6;
213
wire [57:0] o1,o2,o3,o4,o5,o6;
214
wire [35:0] o11,o12,o13;
215
wire [31:0] o21,o22,o23;
216
 
217
initial begin
218
        clk = 0;
219
end
220
always #10 clk <= ~clk;
221
 
222
fpMul u1 (.clk(clk), .ce(1'b1), .a(0), .b(0), .o(o1), .sign_exe(sgnx1), .inf(inf1), .overflow(of1), .underflow(uf1));
223
fpMul u2 (.clk(clk), .ce(1'b1), .a(0), .b(0), .o(o2), .sign_exe(sgnx2), .inf(inf2), .overflow(of2), .underflow(uf2));
224
// 10x10
225
fpMul u3 (.clk(clk), .ce(1'b1), .a(32'h41200000), .b(32'h41200000), .o(o3), .sign_exe(sgnx2), .inf(inf2), .overflow(of2), .underflow(uf2));
226
// 21*-17
227
fpMul u4 (.clk(clk), .ce(1'b1), .a(32'h41a80000), .b(32'hc1880000), .o(o4), .sign_exe(sgnx2), .inf(inf2), .overflow(of2), .underflow(uf2));
228
// -17*-15
229
fpMul u5 (.clk(clk), .ce(1'b1), .a(32'hc1880000), .b(32'hc1700000), .o(o5), .sign_exe(sgnx2), .inf(inf2), .overflow(of2), .underflow(uf2));
230
 
231
fpNormalize u11 (clk, ce, 1'b0, o3, o11);
232
fpNormalize u12 (clk, ce, 1'b0, o4, o12);
233
fpNormalize u13 (clk, ce, 1'b0, o5, o13);
234
 
235
fpRound u21 (3'd1, o11, o21);         // zero for zero
236
fpRound u22 (3'd1, o12, o22); // 
237
fpRound u23 (3'd1, o13, o23); // 
238
 
239
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.