OpenCores
URL https://opencores.org/ocsvn/ft816float/ft816float/trunk

Subversion Repositories ft816float

[/] [ft816float/] [trunk/] [rtl/] [verilog/] [fpNormalize.v] - Blame information for rev 7

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 6 robfinch
// ============================================================================
2
//        __
3
//   \\__/ o\    (C) 2006-2016  Robert Finch, Stratford
4
//    \  __ /    All rights reserved.
5
//     \/_//     robfinch<remove>@finitron.ca
6
//       ||
7
//
8
// This source file is free software: you can redistribute it and/or modify 
9
// it under the terms of the GNU Lesser General Public License as published 
10
// by the Free Software Foundation, either version 3 of the License, or     
11
// (at your option) any later version.                                      
12
//                                                                          
13
// This source file is distributed in the hope that it will be useful,      
14
// but WITHOUT ANY WARRANTY; without even the implied warranty of           
15
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            
16
// GNU General Public License for more details.                             
17
//                                                                          
18
// You should have received a copy of the GNU General Public License        
19
// along with this program.  If not, see <http://www.gnu.org/licenses/>.    
20
//
21
//      fpNormalize.v
22
//  - floating point normalization unit
23
//  - two cycle latency
24
//  - parameterized width
25
//
26
//      This unit takes a floating point number in an intermediate
27
// format and normalizes it. No normalization occurs
28
// for NaN's or infinities. The unit has a two cycle latency.
29
//
30
// The mantissa is assumed to start with three whole bits on
31
// the left. The remaining bits are fractional. The three whole bits
32
// result from a MAC (multiply accumulate) operation. The result from
33
// a MAC can vary from 0 to 8 which requires three whole digits.
34
//
35
// The width of the incoming format is reduced via a generation
36
// of sticky bit in place of the low order fractional bits.
37
//
38
// On an underflowed input, the incoming exponent is assumed
39
// to be negative. A right shift is needed.
40
// ============================================================================
41
//
42
module fpNormalize(clk, ce, under, i, o);
43
parameter WID = 32;
44
localparam MSB = WID-1;
45
localparam EMSB =
46
          WID==80 ? 14 :
47
          WID==64 ? 10 :
48
                                  WID==52 ? 10 :
49
                                  WID==48 ? 10 :
50
                                  WID==44 ? 10 :
51
                                  WID==42 ? 10 :
52
                                  WID==40 ?  9 :
53
                                  WID==32 ?  7 :
54
                                  WID==24 ?  6 : 4;
55
localparam FMSB =
56
          WID==80 ? 63 :
57
          WID==64 ? 51 :
58
                                  WID==52 ? 39 :
59
                                  WID==48 ? 35 :
60
                                  WID==44 ? 31 :
61
                                  WID==42 ? 29 :
62
                                  WID==40 ? 28 :
63
                                  WID==32 ? 22 :
64
                                  WID==24 ? 15 : 9;
65
 
66
localparam WX = 3;            // Three whole digits
67
localparam FX = (FMSB+1)*2-1;   // the MSB of the expanded fraction
68
// Fraction + Three whole bits 
69
localparam EX = FX + WX + EMSB + 1; // The MSB of the exponent
70
 
71
input clk;
72
input ce;
73
input under;
74
input [EX+1:0] i;                 // expanded format input
75
output [WID+3:0] o;              // normalized output + guard, sticky and round bits, + 1 whole digit
76
 
77
wire [EMSB:0] infXp = {EMSB+1{1'b1}};    // simple constant - value of exp for inifinity
78
 
79
// variables
80
wire so;
81
 
82
wire so1 = i[EX+1];             // sign doesn't change
83
 
84
// Since the there are *three* whole digits in the incoming format
85
// the number of whole digits needs to be reduced. If the MSB is
86
// set, then increment the exponent by two and no shift is needed.
87
// Otherwise if the next MSB is set, increment the exponent by one,
88
// and shift left once.
89
wire [EMSB:0] xo;
90
wire [EMSB:0] xo1a = i[EX:FX+WX+1];
91
 
92
wire incExp2 = i[FX+WX-1]|i[FX+WX-2];
93
// Allow an extra bit for exponent overflow
94
// Add two to exponent to shift the decimal place left twice.
95
// (Gives 1 leading whole digit).
96
wire [EMSB+1:0] xo1b = xo1a + 2;
97
wire [EMSB:0] xo1;
98
wire [EMSB:0] xo2;
99
wire xInf1a = &xo1a[EMSB:0];
100
 
101
// If there was a carry from the addition and we were in the underflow
102
// state, then the number became normal again. Clear the carry bit.
103
// Otherwise if the exponent overflowed and it's not the underflow
104
// state, then set the exponent to infinity. Othwerise just keep the
105
// remaining exponent bits - the result is still underflowed.
106
assign xo1 = (under & xo1b[EMSB+1]) ? xo1b[EMSB:0] :
107
              (xInf1a & !under) ? infXp : xo1b[EMSB+1] ? infXp : xo1b;
108
wire xInf = &xo1 & !under;
109
wire under1 = under & !xo1b[EMSB+1];  // keep trakc of renormallzation
110
 
111
// shift mantissa left by one to reduce to a single whole digit
112
// if there is no exponent increment
113
wire [FMSB+1+3:0] mo; //GRS+1whole digit
114
wire [FX+WX:0] mo1 = xInf & incExp2 ? 0 :  // set mantissa to zero for infinity
115
           i[FX+WX:0];
116
wire [FX+WX:0] mo2;
117
wire [7:0] leadingZeros2;
118
 
119
// Adjust the operand to the leading zero counter by left aligning it
120
// by padding trailing zeros. This is a constant shift that doesn't take
121
// any hardware.
122
generate
123
begin
124
if (WID==64) begin
125
wire [127:0] mo1a = {mo1,{127-(FX+3){1'b0}}};
126
cntlz128Reg clz0 (.clk(clk), .ce(ce), .i(mo1a), .o(leadingZeros2) );
127
end
128
else begin  // 32 bits
129
wire [63:0] mo1a = {mo1,{63-(FX+3){1'b0}}};
130
cntlz64Reg clz0 (.clk(clk), .ce(ce), .i(mo1a), .o(leadingZeros2) );
131
assign leadingZeros2[7] = 1'b0;
132
end
133
end
134
endgenerate
135
 
136
// compensate for leadingZeros delay
137
wire xInf2;
138
delay1 #(EMSB+1) d2(.clk(clk), .ce(ce), .i(xo1), .o(xo2) );
139
delay1 #(1)      d3(.clk(clk), .ce(ce), .i(xInf), .o(xInf2) );
140
 
141
// If the exponent underflowed, then the shift direction must be to the
142
// right regardless of mantissa bits; the number is denormalized.
143
// Otherwise the shift direction must be to the left.
144
wire rightOrLeft2;      // 0=left,1=right
145
delay1 #(1) d8(.clk(clk), .ce(ce), .i(under1), .o(rightOrLeft2) );
146
 
147
// Compute how much we want to decrement by. We can't decrement by
148
// more than the exponent as the number becomes denormal when the
149
// exponent reaches zero.
150
wire [7:0] lshiftAmt2 = leadingZeros2 > xo2 ? xo2 : leadingZeros2;
151
 
152
// compute amount to shift right
153
// at infinity the exponent can't be incremented, so we can't shift right
154
// otherwise it was an underflow situation so the exponent was negative
155
// shift amount needs to be negated for shift register
156
wire [EMSB:0] nxo2 = -xo2;
157
wire [7:0] rshiftAmt2 = xInf2 ? 0 : nxo2 > FMSB+WX ? FMSB+WX+1 : nxo2;    // xo2 is negative !
158
 
159
 
160
// sign
161
// the output sign is the same as the input sign
162
delay1 #(1)      d7(.clk(clk), .ce(ce), .i(so1), .o(so) );
163
 
164
// exponent
165
//      always @(posedge clk)
166
//              if (ce)
167
assign xo =
168
                xInf2 ? xo2 :           // an infinite exponent is either a NaN or infinity; no need to change
169
                rightOrLeft2 ? 0 :       // on a right shift, the exponent was negative, it's being made to zero
170
                xo2 - lshiftAmt2;       // on a left shift, the exponent can't be decremented below zero
171
 
172
// mantissa
173
delay1 #(FX+WX+1) d4(.clk(clk), .ce(ce), .i(mo1), .o(mo2) );
174
 
175
wire [FX+WX:0] mo2a;
176
// Now do the shifting
177
assign mo2a = rightOrLeft2 ? mo2 >> rshiftAmt2 : mo2 << lshiftAmt2;
178
 
179
//      always @(posedge clk)
180
//              if (ce)
181
// If infinity is reached then set the mantissa to zero
182
wire gbit =  mo2a[FMSB+3];
183
wire rbit =  mo2a[FMSB+2];
184
wire sbit = |mo2a[FMSB+1:0];
185
assign mo = {mo2a[FX+WX:FMSB+3],gbit,rbit,sbit};
186
 
187
assign o = {so,xo,mo};
188
 
189
endmodule
190
 
191
module fpNormalize_tb();
192
reg clk;
193
wire [35:0] o1,o2,o3,o4,o5,o6;
194
initial begin
195
  clk = 0;
196
end
197
 
198
always #10 clk = ~clk;
199
// input =
200
// 23*2 + 3 + 8 + 1 = 58 bits
201
fpNormalize #(32) u1 (clk, 1'b1, 1'b0, 58'h0, o1);  // zeor should result in a zero
202
fpNormalize #(32) u2 (clk, 1'b1, 1'b0, 58'h1FE123456781234, o2);  // Nan should be a Nan
203
fpNormalize #(32) u3 (clk, 1'b1, 1'b1, 58'h000001234567890, o3);  // denomral should be denormal
204
fpNormalize #(32) u4 (clk, 1'b1, 1'b1, 58'h1F0001234567890, o4);  // denomral should be denormal (underflow exp is neg)
205
fpNormalize #(32) u5 (clk, 1'b1, 1'b0, 58'h0FF000000000000, o5);  // the value 4
206
fpNormalize #(32) u6 (clk, 1'b1, 1'b0, 58'h104900000000000, o6);  // the value 100
207
 
208
endmodule

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.