1 |
8 |
robfinch |
`timescale 1ns / 1ps
|
2 |
6 |
robfinch |
// ============================================================================
|
3 |
|
|
// __
|
4 |
8 |
robfinch |
// \\__/ o\ (C) 2006-2016 Robert Finch, Waterloo
|
5 |
6 |
robfinch |
// \ __ / All rights reserved.
|
6 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
7 |
|
|
// ||
|
8 |
|
|
//
|
9 |
8 |
robfinch |
// fpNormalize.v
|
10 |
|
|
// - floating point normalization unit
|
11 |
|
|
// - two cycle latency
|
12 |
|
|
// - parameterized width
|
13 |
|
|
// - IEEE 754 representation
|
14 |
|
|
//
|
15 |
|
|
//
|
16 |
6 |
robfinch |
// This source file is free software: you can redistribute it and/or modify
|
17 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
18 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
19 |
|
|
// (at your option) any later version.
|
20 |
|
|
//
|
21 |
|
|
// This source file is distributed in the hope that it will be useful,
|
22 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
23 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
24 |
|
|
// GNU General Public License for more details.
|
25 |
|
|
//
|
26 |
|
|
// You should have received a copy of the GNU General Public License
|
27 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
28 |
8 |
robfinch |
//
|
29 |
6 |
robfinch |
// This unit takes a floating point number in an intermediate
|
30 |
|
|
// format and normalizes it. No normalization occurs
|
31 |
|
|
// for NaN's or infinities. The unit has a two cycle latency.
|
32 |
|
|
//
|
33 |
8 |
robfinch |
// The mantissa is assumed to start with two whole bits on
|
34 |
|
|
// the left. The remaining bits are fractional.
|
35 |
6 |
robfinch |
//
|
36 |
|
|
// The width of the incoming format is reduced via a generation
|
37 |
|
|
// of sticky bit in place of the low order fractional bits.
|
38 |
|
|
//
|
39 |
|
|
// On an underflowed input, the incoming exponent is assumed
|
40 |
|
|
// to be negative. A right shift is needed.
|
41 |
|
|
// ============================================================================
|
42 |
8 |
robfinch |
|
43 |
6 |
robfinch |
module fpNormalize(clk, ce, under, i, o);
|
44 |
8 |
robfinch |
parameter WID = 128;
|
45 |
6 |
robfinch |
localparam MSB = WID-1;
|
46 |
8 |
robfinch |
localparam EMSB = WID==128 ? 14 :
|
47 |
|
|
WID==96 ? 14 :
|
48 |
|
|
WID==80 ? 14 :
|
49 |
|
|
WID==64 ? 10 :
|
50 |
6 |
robfinch |
WID==52 ? 10 :
|
51 |
|
|
WID==48 ? 10 :
|
52 |
|
|
WID==44 ? 10 :
|
53 |
|
|
WID==42 ? 10 :
|
54 |
|
|
WID==40 ? 9 :
|
55 |
|
|
WID==32 ? 7 :
|
56 |
|
|
WID==24 ? 6 : 4;
|
57 |
8 |
robfinch |
localparam FMSB = WID==128 ? 111 :
|
58 |
|
|
WID==96 ? 79 :
|
59 |
|
|
WID==80 ? 63 :
|
60 |
|
|
WID==64 ? 51 :
|
61 |
6 |
robfinch |
WID==52 ? 39 :
|
62 |
|
|
WID==48 ? 35 :
|
63 |
|
|
WID==44 ? 31 :
|
64 |
|
|
WID==42 ? 29 :
|
65 |
|
|
WID==40 ? 28 :
|
66 |
|
|
WID==32 ? 22 :
|
67 |
|
|
WID==24 ? 15 : 9;
|
68 |
|
|
|
69 |
8 |
robfinch |
localparam FX = (FMSB+2)*2-1; // the MSB of the expanded fraction
|
70 |
|
|
localparam EX = FX + 1 + EMSB + 1 + 1 - 1;
|
71 |
6 |
robfinch |
|
72 |
|
|
input clk;
|
73 |
|
|
input ce;
|
74 |
|
|
input under;
|
75 |
8 |
robfinch |
input [EX:0] i; // expanded format input
|
76 |
|
|
output [WID+2:0] o; // normalized output + guard, sticky and round bits, + 1 whole digit
|
77 |
6 |
robfinch |
|
78 |
|
|
// variables
|
79 |
|
|
wire so;
|
80 |
|
|
|
81 |
8 |
robfinch |
wire so1 = i[EX]; // sign doesn't change
|
82 |
6 |
robfinch |
|
83 |
8 |
robfinch |
// Since the there are *two* whole digits in the incoming format
|
84 |
6 |
robfinch |
// the number of whole digits needs to be reduced. If the MSB is
|
85 |
8 |
robfinch |
// set, then increment the exponent and no shift is needed.
|
86 |
6 |
robfinch |
wire [EMSB:0] xo;
|
87 |
8 |
robfinch |
wire [EMSB:0] xo1a = i[EX-1:FX+1];
|
88 |
|
|
wire xInf = &xo1a & !under;
|
89 |
|
|
wire incExp1 = !xInf & i[FX];
|
90 |
|
|
wire [EMSB:0] xo1 = xo1a + incExp1;
|
91 |
6 |
robfinch |
wire [EMSB:0] xo2;
|
92 |
8 |
robfinch |
wire xInf1 = &xo1;
|
93 |
6 |
robfinch |
|
94 |
8 |
robfinch |
// If infinity is reached then set the mantissa to zero
|
95 |
|
|
wire gbit = i[FMSB];
|
96 |
|
|
wire rbit = i[FMSB-1];
|
97 |
|
|
wire sbit = |i[FMSB-2:0];
|
98 |
6 |
robfinch |
// shift mantissa left by one to reduce to a single whole digit
|
99 |
|
|
// if there is no exponent increment
|
100 |
8 |
robfinch |
wire [FMSB+4:0] mo;
|
101 |
|
|
wire [FMSB+4:0] mo1 = xInf1 & incExp1 ? 0 :
|
102 |
|
|
incExp1 ? {i[FX:FMSB+2],gbit,rbit,sbit} : // reduce mantissa size
|
103 |
|
|
{i[FX-1:FMSB+1],gbit,rbit,sbit}; // reduce mantissa size
|
104 |
|
|
wire [FMSB+3:0] mo2;
|
105 |
6 |
robfinch |
wire [7:0] leadingZeros2;
|
106 |
|
|
|
107 |
|
|
generate
|
108 |
|
|
begin
|
109 |
8 |
robfinch |
if (WID==32)
|
110 |
|
|
cntlz32Reg clz0 (.clk(clk), .ce(ce), .i({mo1,5'b0}), .o(leadingZeros2) );
|
111 |
|
|
else if (WID==128)
|
112 |
|
|
cntlz128Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
113 |
|
|
else if (WID==96)
|
114 |
|
|
cntlz96Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
115 |
|
|
else if (WID==80)
|
116 |
|
|
cntlz80Reg clz0 (.clk(clk), .ce(ce), .i({mo1,12'b0}), .o(leadingZeros2) );
|
117 |
|
|
else if (WID==64)
|
118 |
|
|
cntlz64Reg clz0 (.clk(clk), .ce(ce), .i({mo1,8'h0}), .o(leadingZeros2) );
|
119 |
6 |
robfinch |
end
|
120 |
|
|
endgenerate
|
121 |
|
|
|
122 |
|
|
// compensate for leadingZeros delay
|
123 |
|
|
wire xInf2;
|
124 |
|
|
delay1 #(EMSB+1) d2(.clk(clk), .ce(ce), .i(xo1), .o(xo2) );
|
125 |
8 |
robfinch |
delay1 #(1) d3(.clk(clk), .ce(ce), .i(xInf1), .o(xInf2) );
|
126 |
6 |
robfinch |
|
127 |
|
|
// If the exponent underflowed, then the shift direction must be to the
|
128 |
|
|
// right regardless of mantissa bits; the number is denormalized.
|
129 |
|
|
// Otherwise the shift direction must be to the left.
|
130 |
|
|
wire rightOrLeft2; // 0=left,1=right
|
131 |
8 |
robfinch |
delay1 #(1) d8(.clk(clk), .ce(ce), .i(under), .o(rightOrLeft2) );
|
132 |
6 |
robfinch |
|
133 |
8 |
robfinch |
// Compute how much we want to decrement by
|
134 |
6 |
robfinch |
wire [7:0] lshiftAmt2 = leadingZeros2 > xo2 ? xo2 : leadingZeros2;
|
135 |
|
|
|
136 |
|
|
// compute amount to shift right
|
137 |
|
|
// at infinity the exponent can't be incremented, so we can't shift right
|
138 |
|
|
// otherwise it was an underflow situation so the exponent was negative
|
139 |
|
|
// shift amount needs to be negated for shift register
|
140 |
8 |
robfinch |
wire [7:0] rshiftAmt2 = xInf2 ? 0 : -xo2 > FMSB+3 ? FMSB+4 : FMSB+4+xo2; // xo2 is negative !
|
141 |
6 |
robfinch |
|
142 |
|
|
|
143 |
|
|
// sign
|
144 |
|
|
// the output sign is the same as the input sign
|
145 |
|
|
delay1 #(1) d7(.clk(clk), .ce(ce), .i(so1), .o(so) );
|
146 |
|
|
|
147 |
|
|
// exponent
|
148 |
|
|
// always @(posedge clk)
|
149 |
|
|
// if (ce)
|
150 |
|
|
assign xo =
|
151 |
|
|
xInf2 ? xo2 : // an infinite exponent is either a NaN or infinity; no need to change
|
152 |
|
|
rightOrLeft2 ? 0 : // on a right shift, the exponent was negative, it's being made to zero
|
153 |
|
|
xo2 - lshiftAmt2; // on a left shift, the exponent can't be decremented below zero
|
154 |
|
|
|
155 |
|
|
// mantissa
|
156 |
8 |
robfinch |
delay1 #(FMSB+5) d4(.clk(clk), .ce(ce), .i(mo1), .o(mo2) );
|
157 |
6 |
robfinch |
|
158 |
8 |
robfinch |
wire [FMSB+3:0] mo2a;
|
159 |
|
|
//shiftAndMask #(FMSB+4) u1 (.op({rightOrLeft2,1'b0}), .a(mo2), .b(rightOrLeft2 ? lshiftAmt2 : rshiftAmt2), .mb(6'd0), .me(FMSB+3), .o(mo2a) );
|
160 |
6 |
robfinch |
|
161 |
|
|
// always @(posedge clk)
|
162 |
|
|
// if (ce)
|
163 |
8 |
robfinch |
assign mo = rightOrLeft2 ? mo2 >> rshiftAmt2 : mo2 << lshiftAmt2;
|
164 |
6 |
robfinch |
|
165 |
8 |
robfinch |
assign o = {so,xo,mo[FMSB+4:1]};
|
166 |
6 |
robfinch |
|
167 |
|
|
endmodule
|
168 |
8 |
robfinch |
|