| 1 |
57 |
robfinch |
// ============================================================================
|
| 2 |
|
|
// __
|
| 3 |
64 |
robfinch |
// \\__/ o\ (C) 2020-2022 Robert Finch, Waterloo
|
| 4 |
57 |
robfinch |
// \ __ / All rights reserved.
|
| 5 |
|
|
// \/_// robfinch@finitron.ca
|
| 6 |
|
|
// ||
|
| 7 |
|
|
//
|
| 8 |
|
|
// DFPAddsub.sv
|
| 9 |
|
|
//
|
| 10 |
|
|
// BSD 3-Clause License
|
| 11 |
|
|
// Redistribution and use in source and binary forms, with or without
|
| 12 |
|
|
// modification, are permitted provided that the following conditions are met:
|
| 13 |
|
|
//
|
| 14 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
| 15 |
|
|
// list of conditions and the following disclaimer.
|
| 16 |
|
|
//
|
| 17 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
| 18 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
| 19 |
|
|
// and/or other materials provided with the distribution.
|
| 20 |
|
|
//
|
| 21 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
| 22 |
|
|
// contributors may be used to endorse or promote products derived from
|
| 23 |
|
|
// this software without specific prior written permission.
|
| 24 |
|
|
//
|
| 25 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 26 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 27 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 28 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
| 29 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 30 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 31 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 32 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
| 33 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 34 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 35 |
|
|
//
|
| 36 |
|
|
// ============================================================================
|
| 37 |
|
|
|
| 38 |
|
|
import DFPPkg::*;
|
| 39 |
|
|
|
| 40 |
|
|
module DFPAddsub128(clk, ce, rm, op, a, b, o);
|
| 41 |
|
|
input clk;
|
| 42 |
|
|
input ce;
|
| 43 |
|
|
input [2:0] rm;
|
| 44 |
|
|
input op;
|
| 45 |
|
|
input DFP128 a;
|
| 46 |
|
|
input DFP128 b;
|
| 47 |
|
|
output DFP128UD o;
|
| 48 |
|
|
localparam N=34; // number of BCD digits
|
| 49 |
64 |
robfinch |
localparam RIP_STAGES = 3;
|
| 50 |
57 |
robfinch |
|
| 51 |
|
|
parameter TRUE = 1'b1;
|
| 52 |
|
|
parameter FALSE = 1'b0;
|
| 53 |
|
|
|
| 54 |
|
|
DFP128U au;
|
| 55 |
|
|
DFP128U bu;
|
| 56 |
|
|
|
| 57 |
|
|
DFPUnpack128 u00 (a, au);
|
| 58 |
|
|
DFPUnpack128 u01 (b, bu);
|
| 59 |
|
|
|
| 60 |
64 |
robfinch |
reg [(N+1)*4-1:0] oaa10;
|
| 61 |
|
|
reg [(N+1)*4-1:0] obb10;
|
| 62 |
57 |
robfinch |
wire [(N+1)*4-1:0] oss10;
|
| 63 |
|
|
wire oss10c;
|
| 64 |
|
|
|
| 65 |
64 |
robfinch |
BCDAdd8NClk #(.N((N+2)/2)) ubcdadn1
|
| 66 |
57 |
robfinch |
(
|
| 67 |
64 |
robfinch |
.clk(clk),
|
| 68 |
|
|
.a({8'h00,oaa10}),
|
| 69 |
|
|
.b({8'h00,obb10}),
|
| 70 |
|
|
.o(oss10),
|
| 71 |
57 |
robfinch |
.ci(1'b0),
|
| 72 |
|
|
.co(oss10c)
|
| 73 |
|
|
);
|
| 74 |
|
|
|
| 75 |
|
|
wire [(N+1)*4-1:0] odd10;
|
| 76 |
|
|
wire odd10c;
|
| 77 |
|
|
|
| 78 |
64 |
robfinch |
BCDSub8NClk #(.N((N+2)/2)) ubcdsdn1
|
| 79 |
57 |
robfinch |
(
|
| 80 |
64 |
robfinch |
.clk(clk),
|
| 81 |
|
|
.a({8'h00,oaa10}),
|
| 82 |
|
|
.b({8'h00,obb10}),
|
| 83 |
|
|
.o(odd10),
|
| 84 |
57 |
robfinch |
.ci(1'b0),
|
| 85 |
|
|
.co(odd10c)
|
| 86 |
|
|
);
|
| 87 |
|
|
|
| 88 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 89 |
|
|
// Clock #1
|
| 90 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 91 |
|
|
reg op1;
|
| 92 |
|
|
reg az, bz;
|
| 93 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 94 |
57 |
robfinch |
op1 <= op;
|
| 95 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 96 |
57 |
robfinch |
az <= au.sig==136'd0 && au.exp==14'd0;
|
| 97 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 98 |
57 |
robfinch |
bz <= bu.sig==136'd0 && bu.exp==14'd0;
|
| 99 |
|
|
|
| 100 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 101 |
|
|
// Clock #2
|
| 102 |
|
|
//
|
| 103 |
|
|
// Figure out which operation is really needed an add or subtract ?
|
| 104 |
|
|
// If the signs are the same, use the orignal op,
|
| 105 |
|
|
// otherwise flip the operation
|
| 106 |
|
|
// a + b = add,+
|
| 107 |
|
|
// a + -b = sub, so of larger
|
| 108 |
|
|
// -a + b = sub, so of larger
|
| 109 |
|
|
// -a + -b = add,-
|
| 110 |
|
|
// a - b = sub, so of larger
|
| 111 |
|
|
// a - -b = add,+
|
| 112 |
|
|
// -a - b = add,-
|
| 113 |
|
|
// -a - -b = sub, so of larger
|
| 114 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 115 |
|
|
reg realOp2;
|
| 116 |
|
|
reg op2;
|
| 117 |
|
|
reg [15:0] xa2, xb2;
|
| 118 |
|
|
reg az2, bz2;
|
| 119 |
|
|
reg xa_gt_xb2;
|
| 120 |
|
|
reg [N*4-1:0] siga2, sigb2;
|
| 121 |
|
|
reg sigeq, siga_gt_sigb;
|
| 122 |
|
|
reg expeq;
|
| 123 |
|
|
reg sxo2;
|
| 124 |
|
|
|
| 125 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 126 |
57 |
robfinch |
if (ce) realOp2 = op1 ^ au.sign ^ bu.sign;
|
| 127 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 128 |
57 |
robfinch |
if (ce) op2 <= op1;
|
| 129 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 130 |
57 |
robfinch |
if (ce) xa2 <= au.exp;
|
| 131 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 132 |
57 |
robfinch |
if (ce) xb2 <= bu.exp;
|
| 133 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 134 |
57 |
robfinch |
if (ce) siga2 <= au.sig;
|
| 135 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 136 |
57 |
robfinch |
if (ce) sigb2 <= bu.sig;
|
| 137 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 138 |
57 |
robfinch |
if (ce) az2 <= az;
|
| 139 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 140 |
57 |
robfinch |
if (ce) bz2 <= bz;
|
| 141 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 142 |
57 |
robfinch |
if (ce)
|
| 143 |
|
|
xa_gt_xb2 <= au.exp > bu.exp;
|
| 144 |
|
|
|
| 145 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 146 |
57 |
robfinch |
if (ce) sigeq <= au.sig==bu.sig;
|
| 147 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 148 |
57 |
robfinch |
if (ce) siga_gt_sigb <= au.sig > bu.sig;
|
| 149 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 150 |
57 |
robfinch |
if (ce) expeq <= au.exp==bu.exp;
|
| 151 |
|
|
|
| 152 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 153 |
|
|
// Clock #3
|
| 154 |
|
|
//
|
| 155 |
|
|
// Find out if the result will be zero.
|
| 156 |
|
|
// Determine which fraction to denormalize
|
| 157 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 158 |
|
|
//
|
| 159 |
|
|
reg [13:0] xa3, xb3;
|
| 160 |
|
|
reg resZero3;
|
| 161 |
|
|
wire xaInf3, xbInf3;
|
| 162 |
|
|
reg xa_gt_xb3;
|
| 163 |
|
|
reg a_gt_b3;
|
| 164 |
|
|
reg op3;
|
| 165 |
|
|
wire sa3, sb3;
|
| 166 |
|
|
wire [2:0] rm3;
|
| 167 |
|
|
reg [N*4-1:0] mfs3;
|
| 168 |
|
|
|
| 169 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 170 |
57 |
robfinch |
if (ce) resZero3 <= (realOp2 & expeq & sigeq) || // subtract, same magnitude
|
| 171 |
|
|
(az2 & bz2); // both a,b zero
|
| 172 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 173 |
57 |
robfinch |
if (ce) xa3 <= xa2;
|
| 174 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 175 |
57 |
robfinch |
if (ce) xb3 <= xb2;
|
| 176 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 177 |
57 |
robfinch |
if (ce) xa_gt_xb3 <= xa_gt_xb2;
|
| 178 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 179 |
57 |
robfinch |
if (ce) a_gt_b3 <= xa_gt_xb2 | (expeq & siga_gt_sigb);
|
| 180 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 181 |
57 |
robfinch |
if (ce) op3 <= op2;
|
| 182 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 183 |
57 |
robfinch |
if (ce) mfs3 = xa_gt_xb2 ? sigb2 : siga2;
|
| 184 |
|
|
|
| 185 |
64 |
robfinch |
ft_delay #(.WID(1), .DEP(2)) udly3c (.clk(clk), .ce(ce), .i(au.sign), .o(sa3));
|
| 186 |
|
|
ft_delay #(.WID(1), .DEP(2)) udly3d (.clk(clk), .ce(ce), .i(bu.sign), .o(sb3));
|
| 187 |
|
|
ft_delay #(.WID(3), .DEP(3)) udly3e (.clk(clk), .ce(ce), .i(rm), .o(rm3));
|
| 188 |
|
|
ft_delay #(.WID(1), .DEP(2)) udly3f (.clk(clk), .ce(ce), .i(aInf), .o(aInf3));
|
| 189 |
|
|
ft_delay #(.WID(1), .DEP(2)) udly3g (.clk(clk), .ce(ce), .i(bInf), .o(bInf3));
|
| 190 |
57 |
robfinch |
|
| 191 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 192 |
|
|
// Clock #4
|
| 193 |
|
|
//
|
| 194 |
|
|
// Compute output exponent
|
| 195 |
|
|
//
|
| 196 |
|
|
// The output exponent is the larger of the two exponents,
|
| 197 |
|
|
// unless a subtract operation is in progress and the two
|
| 198 |
|
|
// numbers are equal, in which case the exponent should be
|
| 199 |
|
|
// zero.
|
| 200 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 201 |
|
|
|
| 202 |
|
|
reg [13:0] xa4, xb4;
|
| 203 |
|
|
reg [13:0] xo4;
|
| 204 |
|
|
reg xa_gt_xb4;
|
| 205 |
|
|
|
| 206 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 207 |
57 |
robfinch |
if (ce) xa4 <= xa3;
|
| 208 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 209 |
57 |
robfinch |
if (ce) xb4 <= xb3;
|
| 210 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 211 |
57 |
robfinch |
if (ce) xo4 <= resZero3 ? 14'd0 : xa_gt_xb3 ? xa3 : xb3;
|
| 212 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 213 |
57 |
robfinch |
if (ce) xa_gt_xb4 <= xa_gt_xb3;
|
| 214 |
|
|
|
| 215 |
|
|
// Compute output sign
|
| 216 |
|
|
reg so4;
|
| 217 |
64 |
robfinch |
always_comb
|
| 218 |
57 |
robfinch |
case ({resZero3,sa3,op3,sb3}) // synopsys full_case parallel_case
|
| 219 |
|
|
4'b0000: so4 <= 0; // + + + = +
|
| 220 |
|
|
4'b0001: so4 <= !a_gt_b3; // + + - = sign of larger
|
| 221 |
|
|
4'b0010: so4 <= !a_gt_b3; // + - + = sign of larger
|
| 222 |
|
|
4'b0011: so4 <= 0; // + - - = +
|
| 223 |
|
|
4'b0100: so4 <= a_gt_b3; // - + + = sign of larger
|
| 224 |
|
|
4'b0101: so4 <= 1; // - + - = -
|
| 225 |
|
|
4'b0110: so4 <= 1; // - - + = -
|
| 226 |
|
|
4'b0111: so4 <= a_gt_b3; // - - - = sign of larger
|
| 227 |
|
|
4'b1000: so4 <= 0; // A + B, sign = +
|
| 228 |
|
|
4'b1001: so4 <= (rm3==3'd3); // A + -B, sign = + unless rounding down
|
| 229 |
|
|
4'b1010: so4 <= (rm3==3'd3); // A - B, sign = + unless rounding down
|
| 230 |
|
|
4'b1011: so4 <= 0; // A - -B, sign = +
|
| 231 |
|
|
4'b1100: so4 <= (rm3==3'd3); // -A - -B, sign = + unless rounding down
|
| 232 |
|
|
4'b1101: so4 <= 1; // -A + -B, sign = -
|
| 233 |
|
|
4'b1110: so4 <= 1; // -A - +B, sign = -
|
| 234 |
|
|
4'b1111: so4 <= (rm3==3'd3); // A - B, sign = + unless rounding down
|
| 235 |
|
|
endcase
|
| 236 |
|
|
|
| 237 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 238 |
|
|
// Clock #5
|
| 239 |
|
|
//
|
| 240 |
|
|
// Compute the difference in exponents, provides shift amount
|
| 241 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 242 |
|
|
reg [13:0] xdiff5;
|
| 243 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 244 |
57 |
robfinch |
if (ce) xdiff5 <= xa_gt_xb4 ? xa4 - xb4 : xb4 - xa4;
|
| 245 |
|
|
|
| 246 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 247 |
|
|
// Clock #6
|
| 248 |
|
|
//
|
| 249 |
|
|
// Compute the difference in exponents, provides shift amount
|
| 250 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 251 |
|
|
// If the difference in the exponent is 24 or greater (assuming 24 nybble dfp or
|
| 252 |
|
|
// less) then all of the bits will be shifted out to zero. There is no need to
|
| 253 |
|
|
// keep track of a difference more than 24.
|
| 254 |
|
|
reg [6:0] xdif6;
|
| 255 |
|
|
wire [N*4-1:0] mfs6;
|
| 256 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 257 |
57 |
robfinch |
if (ce) xdif6 <= xdiff5 > N ? N : xdiff5[6:0];
|
| 258 |
64 |
robfinch |
ft_delay #(.WID(N*4), .DEP(3)) udly6a (.clk(clk), .ce(ce), .i(mfs3), .o(mfs6));
|
| 259 |
57 |
robfinch |
|
| 260 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 261 |
|
|
// Clock #7
|
| 262 |
|
|
//
|
| 263 |
|
|
// Determine the sticky bit. The sticky bit is the bitwise or of all the bits
|
| 264 |
|
|
// being shifted out the right side. The sticky bit is computed here to
|
| 265 |
|
|
// reduce the number of regs required.
|
| 266 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 267 |
|
|
reg sticky6;
|
| 268 |
|
|
wire sticky7;
|
| 269 |
|
|
wire [7:0] xdif7;
|
| 270 |
|
|
wire [N*4-1:0] mfs7;
|
| 271 |
|
|
wire [8:0] xdif6a = {xdif6,2'b00}; // *4
|
| 272 |
|
|
integer n;
|
| 273 |
64 |
robfinch |
always @*
|
| 274 |
|
|
begin
|
| 275 |
57 |
robfinch |
sticky6 = 1'b0;
|
| 276 |
|
|
for (n = 0; n < N*4; n = n + 4)
|
| 277 |
|
|
if (n <= xdif6a)
|
| 278 |
|
|
sticky6 = sticky6| mfs6[n]|mfs6[n+1]|mfs6[n+2]|mfs6[n+3]; // non-zero nybble
|
| 279 |
|
|
end
|
| 280 |
|
|
|
| 281 |
|
|
// register inputs to shifter and shift
|
| 282 |
|
|
delay1 #(1) d16(.clk(clk), .ce(ce), .i(sticky6), .o(sticky7) );
|
| 283 |
|
|
delay1 #(9) d15(.clk(clk), .ce(ce), .i(xdif6a), .o(xdif7) );
|
| 284 |
|
|
delay1 #(N*4) d14(.clk(clk), .ce(ce), .i(mfs6), .o(mfs7) );
|
| 285 |
|
|
|
| 286 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 287 |
|
|
// Clock #8
|
| 288 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 289 |
|
|
reg [(N+1)*4-1:0] md8;
|
| 290 |
|
|
wire [N*4-1:0] siga8, sigb8;
|
| 291 |
|
|
wire xa_gt_xb8;
|
| 292 |
|
|
wire a_gt_b8;
|
| 293 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 294 |
57 |
robfinch |
if (ce) md8 <= ({mfs7,4'b0} >> xdif7)|sticky7; // xdif7 is a multiple of four
|
| 295 |
|
|
|
| 296 |
|
|
// sync control signals
|
| 297 |
64 |
robfinch |
ft_delay #(.WID(1), .DEP(4)) udly8a (.clk(clk), .ce(ce), .i(xa_gt_xb4), .o(xa_gt_xb8));
|
| 298 |
|
|
ft_delay #(.WID(1), .DEP(5)) udly8b (.clk(clk), .ce(ce), .i(a_gt_b3), .o(a_gt_b8));
|
| 299 |
|
|
ft_delay #(.WID(N*4), .DEP(6)) udly8d (.clk(clk), .ce(ce), .i(siga2), .o(siga8));
|
| 300 |
|
|
ft_delay #(.WID(N*4), .DEP(6)) udly8e (.clk(clk), .ce(ce), .i(sigb2), .o(sigb8));
|
| 301 |
|
|
ft_delay #(.WID(1), .DEP(5)) udly8j (.clk(clk), .ce(ce), .i(op3), .o(op8));
|
| 302 |
57 |
robfinch |
|
| 303 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 304 |
|
|
// Clock #9
|
| 305 |
|
|
// Sort operands and perform add/subtract
|
| 306 |
|
|
// addition can generate an extra bit, subtract can't go negative
|
| 307 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 308 |
|
|
reg [(N+1)*4-1:0] oa9, ob9;
|
| 309 |
|
|
reg a_gt_b9;
|
| 310 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 311 |
57 |
robfinch |
if (ce) oa9 <= xa_gt_xb8 ? {siga8,4'b0} : md8;
|
| 312 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 313 |
57 |
robfinch |
if (ce) ob9 <= xa_gt_xb8 ? md8 : {sigb8,4'b0};
|
| 314 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 315 |
57 |
robfinch |
if (ce) a_gt_b9 <= a_gt_b8;
|
| 316 |
|
|
|
| 317 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 318 |
|
|
// Clock #10
|
| 319 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 320 |
|
|
wire realOp10;
|
| 321 |
|
|
reg [13:0] xo10;
|
| 322 |
|
|
|
| 323 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 324 |
57 |
robfinch |
if (ce) oaa10 <= a_gt_b9 ? oa9 : ob9;
|
| 325 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 326 |
57 |
robfinch |
if (ce) obb10 <= a_gt_b9 ? ob9 : oa9;
|
| 327 |
64 |
robfinch |
ft_delay #(.WID(1), .DEP(8)) udly10a (.clk(clk), .ce(ce), .i(realOp2), .o(realOp10));
|
| 328 |
|
|
ft_delay #(.WID(14), .DEP(6)) udly10b (.clk(clk), .ce(ce), .i(xo4), .o(xo10));
|
| 329 |
57 |
robfinch |
|
| 330 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 331 |
|
|
// Clock #11
|
| 332 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 333 |
64 |
robfinch |
wire [(N+1)*4-1:0] mab11;
|
| 334 |
|
|
wire mab11c;
|
| 335 |
57 |
robfinch |
wire [N*4-1:0] siga11, sigb11;
|
| 336 |
|
|
wire abInf11;
|
| 337 |
|
|
wire aNan11, bNan11;
|
| 338 |
64 |
robfinch |
wire xoinf11;
|
| 339 |
57 |
robfinch |
wire op11;
|
| 340 |
|
|
|
| 341 |
64 |
robfinch |
ft_delay #(.WID(1), .DEP(8+RIP_STAGES)) udly11a (.clk(clk), .ce(ce), .i(aInf3&bInf3), .o(abInf11));
|
| 342 |
|
|
ft_delay #(.WID(1), .DEP(10+RIP_STAGES)) udly11c (.clk(clk), .ce(ce), .i(au.nan), .o(aNan11));
|
| 343 |
|
|
ft_delay #(.WID(1), .DEP(10+RIP_STAGES)) udly11d (.clk(clk), .ce(ce), .i(bu.nan), .o(bNan11));
|
| 344 |
|
|
ft_delay #(.WID(1), .DEP(3+RIP_STAGES)) udly11e (.clk(clk), .ce(ce), .i(op8), .o(op11));
|
| 345 |
|
|
ft_delay #(.WID(N*4), .DEP(3+RIP_STAGES)) udly11f (.clk(clk), .ce(ce), .i(siga8), .o(siga11));
|
| 346 |
|
|
ft_delay #(.WID(N*4), .DEP(3+RIP_STAGES)) udly11g (.clk(clk), .ce(ce), .i(sigb8), .o(sigb11));
|
| 347 |
|
|
ft_delay #(.WID(1), .DEP(1+RIP_STAGES)) udly11h (.clk(clk), .ce(ce), .i(xo10==14'h2FFF), .o(xoinf11));
|
| 348 |
|
|
ft_delay #(.WID((N+1)*4+1), .DEP(1+RIP_STAGES)) udly11i (.clk(clk), .ce(ce), .i(realOp10 ? {odd10c,odd10} : {oss10c,oss10}), .o({mab11c,mab11}));
|
| 349 |
57 |
robfinch |
|
| 350 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 351 |
64 |
robfinch |
// Clock #12+RIP_STAGES
|
| 352 |
57 |
robfinch |
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 353 |
|
|
reg [(N+1)*4*2-1:0] mo12; // mantissa output
|
| 354 |
|
|
reg nan12;
|
| 355 |
|
|
reg qnan12;
|
| 356 |
|
|
reg infinity12;
|
| 357 |
|
|
wire sxo11;
|
| 358 |
|
|
wire so11;
|
| 359 |
64 |
robfinch |
ft_delay #(.WID(1), .DEP(9)) udly12a (.clk(clk), .ce(ce), .i(sxo2), .o(sxo11));
|
| 360 |
|
|
ft_delay #(.WID(1), .DEP(7)) udly12b (.clk(clk), .ce(ce), .i(so4), .o(so11));
|
| 361 |
57 |
robfinch |
|
| 362 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 363 |
57 |
robfinch |
if (ce)
|
| 364 |
|
|
nan12 <= aNan11|bNan11;
|
| 365 |
|
|
|
| 366 |
64 |
robfinch |
always_ff @(posedge clk)
|
| 367 |
57 |
robfinch |
if (ce) begin
|
| 368 |
|
|
infinity12 <= 1'b0;
|
| 369 |
|
|
qnan12 <= 1'b0;
|
| 370 |
|
|
casez({abInf11,aNan11,bNan11,xoinf11})
|
| 371 |
|
|
4'b1???: // inf +/- inf - generate QNaN on subtract, inf on add
|
| 372 |
|
|
if (op11) begin
|
| 373 |
|
|
mo12 <= {4'h9,{(N+1)*4*2-4{1'd0}}};
|
| 374 |
|
|
qnan12 <= 1'b1;
|
| 375 |
|
|
end
|
| 376 |
|
|
else begin
|
| 377 |
|
|
mo12 <= {(N+1)*2{4'h9}};
|
| 378 |
|
|
infinity12 <= 1'b1;
|
| 379 |
|
|
end
|
| 380 |
|
|
4'b01??: mo12 <= {4'b0,siga11[107:0],{(N+1)*4{1'd0}}};
|
| 381 |
|
|
4'b001?: mo12 <= {4'b0,sigb11[107:0],{(N+1)*4{1'd0}}};
|
| 382 |
|
|
4'b0001: begin mo12 <= {(N+1)*4*2{1'd0}}; infinity12 <= 1'b1; end
|
| 383 |
|
|
default: mo12 <= {3'b0,mab11c,mab11,{N*4{1'd0}}}; // mab has an extra lead bit and four trailing bits
|
| 384 |
|
|
endcase
|
| 385 |
|
|
end
|
| 386 |
|
|
|
| 387 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 388 |
|
|
// Clock #13
|
| 389 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 390 |
|
|
wire so; // sign output
|
| 391 |
|
|
wire [15:0] xo; // de normalized exponent output
|
| 392 |
|
|
wire [(N+1)*4*2-1:0] mo; // mantissa output
|
| 393 |
|
|
|
| 394 |
64 |
robfinch |
ft_delay #(.WID(1), .DEP(1)) u13c (.clk(clk), .ce(ce), .i(nan12), .o(o.nan) );
|
| 395 |
|
|
ft_delay #(.WID(1), .DEP(1)) u13d (.clk(clk), .ce(ce), .i(qnan12), .o(o.qnan) );
|
| 396 |
|
|
ft_delay #(.WID(1), .DEP(1)) u13e (.clk(clk), .ce(ce), .i(infinity12), .o(o.infinity) );
|
| 397 |
|
|
ft_delay #(.WID(1), .DEP(9)) udly13a (.clk(clk), .ce(ce), .i(so4), .o(o.sign));
|
| 398 |
|
|
ft_delay #(.WID(14), .DEP(3)) udly13b (.clk(clk), .ce(ce), .i(xo10), .o(o.exp));
|
| 399 |
|
|
ft_delay #(.WID((N+1)*4*2), .DEP(1)) u13f (.clk(clk), .ce(ce), .i(mo12), .o(o.sig));
|
| 400 |
|
|
ft_delay #(.WID(1), .DEP(1)) udly13g (.clk(clk), .ce(ce), .i(1'b0), .o(o.snan));
|
| 401 |
57 |
robfinch |
|
| 402 |
|
|
endmodule
|
| 403 |
|
|
|
| 404 |
|
|
|
| 405 |
|
|
module DFPAddsub128nr(clk, ce, rm, op, a, b, o);
|
| 406 |
|
|
input clk; // system clock
|
| 407 |
|
|
input ce; // core clock enable
|
| 408 |
|
|
input [2:0] rm; // rounding mode
|
| 409 |
|
|
input op; // operation 0 = add, 1 = subtract
|
| 410 |
|
|
input DFP128 a; // operand a
|
| 411 |
|
|
input DFP128 b; // operand b
|
| 412 |
|
|
output DFP128 o; // output
|
| 413 |
|
|
|
| 414 |
|
|
wire DFP128UD o1;
|
| 415 |
|
|
wire DFP128UN fpn0;
|
| 416 |
|
|
|
| 417 |
|
|
DFPAddsub128 u1 (clk, ce, rm, op, a, b, o1);
|
| 418 |
|
|
DFPNormalize128 u2(.clk(clk), .ce(ce), .under_i(1'b0), .i(o1), .o(fpn0) );
|
| 419 |
|
|
DFPRound128 u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
| 420 |
|
|
|
| 421 |
|
|
endmodule
|