1 |
54 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// DFPDivide.sv
|
9 |
|
|
// - decimal floating point divider
|
10 |
|
|
// - parameterized width
|
11 |
|
|
//
|
12 |
|
|
//
|
13 |
|
|
// BSD 3-Clause License
|
14 |
|
|
// Redistribution and use in source and binary forms, with or without
|
15 |
|
|
// modification, are permitted provided that the following conditions are met:
|
16 |
|
|
//
|
17 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
18 |
|
|
// list of conditions and the following disclaimer.
|
19 |
|
|
//
|
20 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
21 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
22 |
|
|
// and/or other materials provided with the distribution.
|
23 |
|
|
//
|
24 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
25 |
|
|
// contributors may be used to endorse or promote products derived from
|
26 |
|
|
// this software without specific prior written permission.
|
27 |
|
|
//
|
28 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
29 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
30 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
31 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
32 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
33 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
34 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
35 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
36 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
37 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
38 |
|
|
//
|
39 |
|
|
// Floating Point Divider
|
40 |
|
|
//
|
41 |
|
|
//Properties:
|
42 |
|
|
//+-inf * +-inf = -+inf (this is handled by exOver)
|
43 |
|
|
//+-inf * 0 = QNaN
|
44 |
|
|
//+-0 / +-0 = QNaN
|
45 |
|
|
// ============================================================================
|
46 |
|
|
|
47 |
|
|
import fp::*;
|
48 |
|
|
|
49 |
|
|
module DFPDivide(rst, clk, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
50 |
55 |
robfinch |
parameter N=33;
|
51 |
54 |
robfinch |
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.
|
52 |
|
|
input rst;
|
53 |
|
|
input clk;
|
54 |
|
|
input ce;
|
55 |
|
|
input ld;
|
56 |
|
|
input op;
|
57 |
55 |
robfinch |
input [N*4+16+4-1:0] a, b;
|
58 |
|
|
output [(N+1)*4*2+16+4-1:0] o;
|
59 |
54 |
robfinch |
output reg done;
|
60 |
|
|
output sign_exe;
|
61 |
|
|
output overflow;
|
62 |
|
|
output underflow;
|
63 |
|
|
|
64 |
|
|
// registered outputs
|
65 |
|
|
reg sign_exe=0;
|
66 |
|
|
reg inf=0;
|
67 |
|
|
reg overflow=0;
|
68 |
|
|
reg underflow=0;
|
69 |
|
|
|
70 |
|
|
reg so, sxo;
|
71 |
|
|
reg [3:0] st;
|
72 |
|
|
reg [15:0] xo;
|
73 |
55 |
robfinch |
reg [(N+1)*4*2-1:0] mo;
|
74 |
54 |
robfinch |
assign o = {st,xo,mo};
|
75 |
|
|
|
76 |
|
|
// constants
|
77 |
|
|
wire [15:0] infXp = 16'h9999; // infinite / NaN - all ones
|
78 |
|
|
// The following is the value for an exponent of zero, with the offset
|
79 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
80 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
81 |
55 |
robfinch |
wire [N*4-1:0] qNaN = {4'h1,{(N-1)*4{1'b0}}};
|
82 |
54 |
robfinch |
|
83 |
|
|
// variables
|
84 |
55 |
robfinch |
wire [(N+2)*4*2-1:0] divo;
|
85 |
54 |
robfinch |
|
86 |
|
|
// Operands
|
87 |
|
|
wire sa, sb; // sign bit
|
88 |
|
|
wire sxa, sxb;
|
89 |
|
|
wire [15:0] xa, xb; // exponent bits
|
90 |
55 |
robfinch |
wire [N*4-1:0] siga, sigb;
|
91 |
54 |
robfinch |
wire a_dn, b_dn; // a/b is denormalized
|
92 |
|
|
wire az, bz;
|
93 |
|
|
wire aInf, bInf;
|
94 |
|
|
wire aNan,bNan;
|
95 |
|
|
wire done1;
|
96 |
|
|
wire signed [7:0] lzcnt;
|
97 |
|
|
|
98 |
|
|
// -----------------------------------------------------------
|
99 |
|
|
// Clock #1
|
100 |
|
|
// - decode the input operands
|
101 |
|
|
// - derive basic information
|
102 |
|
|
// - calculate fraction
|
103 |
|
|
// -----------------------------------------------------------
|
104 |
|
|
reg ld1;
|
105 |
|
|
DFPDecomposeReg u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa), .sx(sxa), .exp(xa), .sig(siga), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );
|
106 |
|
|
DFPDecomposeReg u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb), .sx(sxb), .exp(xb), .sig(sigb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );
|
107 |
|
|
delay #(.WID(1), .DEP(1)) udly1 (.clk(clk), .ce(ce), .i(ld), .o(ld1));
|
108 |
|
|
|
109 |
|
|
// -----------------------------------------------------------
|
110 |
|
|
// Clock #2 to N
|
111 |
|
|
// - calculate fraction
|
112 |
|
|
// -----------------------------------------------------------
|
113 |
|
|
wire done3a,done3;
|
114 |
|
|
// Perform divide
|
115 |
55 |
robfinch |
dfdiv #(N+2) u2 (.clk(clk), .ld(ld1), .a({siga,8'b0}), .b({sigb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
116 |
54 |
robfinch |
wire [7:0] lzcnt_bin = lzcnt[3:0] + (lzcnt[7:4] * 10);
|
117 |
55 |
robfinch |
wire [(N+2)*4*2-1:0] divo1 = divo[(N+2)*4*2-1:0] << ({lzcnt_bin,2'b0}+(N*4));//WAS FPWID=128?+44
|
118 |
54 |
robfinch |
delay #(.WID(1), .DEP(3)) u3 (.clk(clk), .ce(ce), .i(done1), .o(done3a));
|
119 |
|
|
assign done3 = done1&done3a;
|
120 |
|
|
|
121 |
|
|
// -----------------------------------------------------------
|
122 |
|
|
// Clock #N+1
|
123 |
|
|
// - calculate exponent
|
124 |
|
|
// - calculate fraction
|
125 |
|
|
// - determine when a NaN is output
|
126 |
|
|
// -----------------------------------------------------------
|
127 |
|
|
// Compute the exponent.
|
128 |
|
|
// - correct the exponent for denormalized operands
|
129 |
|
|
// - adjust the difference by the bias (add 127)
|
130 |
|
|
// - also factor in the different decimal position for division
|
131 |
|
|
reg [15:0] ex2, ex1, ex2a, ex2b; // sum of exponents
|
132 |
|
|
reg qNaNOut;
|
133 |
|
|
reg under1, under;
|
134 |
|
|
reg over1, over;
|
135 |
|
|
wire [15:0] xapxb, xamxb, xbmxa;
|
136 |
|
|
wire xapxbc, xamxbc, xbmxac;
|
137 |
|
|
reg sxo0;
|
138 |
|
|
|
139 |
|
|
BCDAddN #(.N(4)) u5 (.ci(1'b0), .a(xa), .b(xb), .o(xapxb), .co(xapxbc) );
|
140 |
|
|
BCDSubN #(.N(4)) u6 (.ci(1'b0), .a(xa), .b(xb), .o(xamxb), .co(xamxbc) );
|
141 |
|
|
BCDSubN #(.N(4)) u7 (.ci(1'b0), .a(xb), .b(xa), .o(xbmxa), .co(xbmxac) );
|
142 |
|
|
BCDSubN #(.N(5)) u10 (.ci(1'b0), .a(20'h10000), .b(ex2a), .o(ex2b), .co() );
|
143 |
|
|
|
144 |
|
|
always @*
|
145 |
|
|
case ({sxa,sxb})
|
146 |
|
|
2'b11: begin ex2a <= xbmxa; sxo0 <= ~xbmxac; over1 <= 1'b0; under1 <= 1'b0; end
|
147 |
|
|
2'b10: begin ex2a <= xapxb; sxo0 <= 1'b1; over1 <= xapxbc; under1 <= 1'b0; end
|
148 |
|
|
2'b01: begin ex2a <= xapxb; sxo0 <= 1'b0; over1 <= 1'b0; under1 <= xapxbc; end
|
149 |
|
|
2'b00: begin ex2a <= xamxb; sxo0 <= ~xamxbc; over1 <= 1'b0; under1 <= 1'b0; end
|
150 |
|
|
endcase
|
151 |
|
|
|
152 |
|
|
always @*
|
153 |
|
|
if (~sxo0 && ~(sa^sb))
|
154 |
|
|
ex2 <= ex2b;
|
155 |
|
|
else
|
156 |
|
|
ex2 <= ex2a;
|
157 |
|
|
|
158 |
|
|
wire [15:0] ex1a, ex1b, ex1d;
|
159 |
|
|
reg [15:0] ex1c;
|
160 |
|
|
wire sxoa, sxob, sxoc;
|
161 |
|
|
|
162 |
|
|
BCDAddN #(.N(4)) u8 (.ci(1'b0), .a(ex2), .b({8'h00,lzcnt}), .o(ex1a), .co(sxoa) );
|
163 |
|
|
BCDSubN #(.N(4)) u9 (.ci(1'b0), .a(ex2), .b({8'h00,lzcnt}), .o(ex1b), .co(sxob) );
|
164 |
|
|
BCDSubN #(.N(5)) u11 (.ci(1'b0), .a(20'h10000), .b(ex1c), .o(ex1d), .co() );
|
165 |
|
|
|
166 |
|
|
always @(posedge clk)
|
167 |
|
|
case(sxo0)
|
168 |
|
|
2'd1: begin ex1c <= ex1b; sxo <= ~sxob; over <= over1; under <= under1; end
|
169 |
|
|
2'd0: begin ex1c <= ex1a; sxo <= 1'b0; over <= over1; under <= under1|sxob; end
|
170 |
|
|
endcase
|
171 |
|
|
|
172 |
|
|
always @*
|
173 |
|
|
if (sxo0 & sxob) // There was a borrow on a subtract, making the number negative
|
174 |
|
|
ex1 <= ex1d;
|
175 |
|
|
else
|
176 |
|
|
ex1 <= ex1c;
|
177 |
|
|
|
178 |
|
|
|
179 |
|
|
always @(posedge clk)
|
180 |
|
|
if (ce) qNaNOut <= (az&bz)|(aInf&bInf);
|
181 |
|
|
|
182 |
|
|
// -----------------------------------------------------------
|
183 |
|
|
// Clock #N+3
|
184 |
|
|
// -----------------------------------------------------------
|
185 |
|
|
always @(posedge clk)
|
186 |
|
|
// Simulation likes to see these values reset to zero on reset. Otherwise the
|
187 |
|
|
// values propagate in sim as X's.
|
188 |
|
|
if (rst) begin
|
189 |
|
|
xo <= 1'd0;
|
190 |
|
|
mo <= 1'd0;
|
191 |
|
|
so <= 1'd0;
|
192 |
|
|
sign_exe <= 1'd0;
|
193 |
|
|
overflow <= 1'd0;
|
194 |
|
|
underflow <= 1'd0;
|
195 |
|
|
done <= 1'b1;
|
196 |
|
|
end
|
197 |
|
|
else if (ce) begin
|
198 |
|
|
done <= 1'b0;
|
199 |
|
|
if (done3&done1) begin
|
200 |
|
|
done <= 1'b1;
|
201 |
|
|
|
202 |
|
|
casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
|
203 |
|
|
5'b1????: xo <= infXp; // NaN exponent value
|
204 |
|
|
5'b01???: xo <= 1'd0; // divide by inf
|
205 |
|
|
5'b001??: xo <= infXp; // divide by zero
|
206 |
|
|
5'b0001?: xo <= infXp; // overflow
|
207 |
|
|
5'b00001: xo <= 1'd0; // underflow
|
208 |
|
|
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
|
209 |
|
|
endcase
|
210 |
|
|
|
211 |
|
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
212 |
55 |
robfinch |
8'b1???????: begin mo <= {4'h1,a[N*4-1:0],{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
213 |
|
|
8'b01??????: begin mo <= {4'h1,b[N*4-1:0],{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
214 |
|
|
8'b001?????: begin mo <= {4'h1,qNaN[N*4-1:0]|{aInf,1'b0}|{az,bz},{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
215 |
|
|
8'b0001????: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // div by inf
|
216 |
|
|
8'b00001???: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // div by zero
|
217 |
|
|
8'b000001??: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // Inf exponent
|
218 |
|
|
8'b0000001?: begin mo <= {4'h1,qNaN|`QINFDIV,{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end // infinity / infinity
|
219 |
|
|
8'b00000001: begin mo <= {4'h1,qNaN|`QZEROZERO,{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end // zero / zero
|
220 |
|
|
default: begin mo <= divo1[(N+2)*4*2-1:8]; st[3] <= 1'b0; end // plain div
|
221 |
54 |
robfinch |
endcase
|
222 |
|
|
|
223 |
|
|
st[0] <= sxo;
|
224 |
|
|
st[1] <= aInf;
|
225 |
|
|
st[2] <= ~(sa ^ sb);
|
226 |
|
|
so <= ~(sa ^ sb);
|
227 |
|
|
sign_exe <= sa & sb;
|
228 |
|
|
overflow <= over;
|
229 |
|
|
underflow <= under;
|
230 |
|
|
end
|
231 |
|
|
end
|
232 |
|
|
|
233 |
|
|
endmodule
|
234 |
|
|
|
235 |
|
|
module DFPDividenr(rst, clk, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
236 |
55 |
robfinch |
parameter N=33;
|
237 |
54 |
robfinch |
input rst;
|
238 |
|
|
input clk;
|
239 |
|
|
input ce;
|
240 |
|
|
input ld;
|
241 |
|
|
input op;
|
242 |
55 |
robfinch |
input [N*4+16+4-1:0] a, b;
|
243 |
|
|
output [N*4+16+4-1:0] o;
|
244 |
54 |
robfinch |
input [2:0] rm;
|
245 |
|
|
output sign_exe;
|
246 |
|
|
output done;
|
247 |
|
|
output inf;
|
248 |
|
|
output overflow;
|
249 |
|
|
output underflow;
|
250 |
|
|
|
251 |
55 |
robfinch |
wire [(N+1)*4*2+16+4-1:0] o1;
|
252 |
54 |
robfinch |
wire sign_exe1, inf1, overflow1, underflow1;
|
253 |
55 |
robfinch |
wire [N*4+16+4-1+4:0] fpn0;
|
254 |
54 |
robfinch |
wire done1, done1a;
|
255 |
|
|
|
256 |
55 |
robfinch |
DFPDivide #(.N(N)) u1 (rst, clk, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
257 |
|
|
DFPNormalize #(.N(N)) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
|
258 |
|
|
DFPRound #(.N(N)) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
259 |
54 |
robfinch |
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
260 |
|
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
261 |
|
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
262 |
|
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
263 |
|
|
delay #(.WID(1),.DEP(11)) u8(.clk(clk), .ce(ce), .i(done1), .o(done1a));
|
264 |
|
|
assign done = done1&done1a;
|
265 |
|
|
|
266 |
|
|
endmodule
|
267 |
|
|
|