| 1 |
75 |
robfinch |
`timescale 1ns / 1ps
|
| 2 |
|
|
// ============================================================================
|
| 3 |
|
|
// __
|
| 4 |
|
|
// \\__/ o\ (C) 2006-2022 Robert Finch, Waterloo
|
| 5 |
|
|
// \ __ / All rights reserved.
|
| 6 |
|
|
// \/_// robfinch@finitron.ca
|
| 7 |
|
|
// ||
|
| 8 |
|
|
//
|
| 9 |
|
|
// DFPDivide96.sv
|
| 10 |
|
|
// - decimal floating point divider
|
| 11 |
|
|
// - parameterized width
|
| 12 |
|
|
//
|
| 13 |
|
|
//
|
| 14 |
|
|
// BSD 3-Clause License
|
| 15 |
|
|
// Redistribution and use in source and binary forms, with or without
|
| 16 |
|
|
// modification, are permitted provided that the following conditions are met:
|
| 17 |
|
|
//
|
| 18 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
| 19 |
|
|
// list of conditions and the following disclaimer.
|
| 20 |
|
|
//
|
| 21 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
| 22 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
| 23 |
|
|
// and/or other materials provided with the distribution.
|
| 24 |
|
|
//
|
| 25 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
| 26 |
|
|
// contributors may be used to endorse or promote products derived from
|
| 27 |
|
|
// this software without specific prior written permission.
|
| 28 |
|
|
//
|
| 29 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 30 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 31 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 32 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
| 33 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 34 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 35 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 36 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
| 37 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 38 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 39 |
|
|
//
|
| 40 |
|
|
// Floating Point Divider
|
| 41 |
|
|
//
|
| 42 |
|
|
//Properties:
|
| 43 |
|
|
//+-inf * +-inf = -+inf (this is handled by exOver)
|
| 44 |
|
|
//+-inf * 0 = QNaN
|
| 45 |
|
|
//+-0 / +-0 = QNaN
|
| 46 |
|
|
// ============================================================================
|
| 47 |
|
|
|
| 48 |
|
|
import DFPPkg::*;
|
| 49 |
|
|
|
| 50 |
|
|
`define QINFDIV 4'd2
|
| 51 |
|
|
`define QZEROZERO 4'd3
|
| 52 |
|
|
|
| 53 |
|
|
module DFPDivide96(rst, clk, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
| 54 |
|
|
parameter N=25;
|
| 55 |
|
|
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.
|
| 56 |
|
|
input rst;
|
| 57 |
|
|
input clk;
|
| 58 |
|
|
input ce;
|
| 59 |
|
|
input ld;
|
| 60 |
|
|
input op;
|
| 61 |
|
|
input DFP96 a, b;
|
| 62 |
|
|
output DFP96UD o;
|
| 63 |
|
|
output reg done;
|
| 64 |
|
|
output sign_exe;
|
| 65 |
|
|
output overflow;
|
| 66 |
|
|
output underflow;
|
| 67 |
|
|
|
| 68 |
|
|
// registered outputs
|
| 69 |
|
|
reg sign_exe=0;
|
| 70 |
|
|
reg inf=0;
|
| 71 |
|
|
reg overflow=0;
|
| 72 |
|
|
reg underflow=0;
|
| 73 |
|
|
|
| 74 |
|
|
reg so, sxo;
|
| 75 |
|
|
reg [11:0] xo;
|
| 76 |
|
|
reg [(N+1)*4*2-1:0] mo;
|
| 77 |
|
|
|
| 78 |
|
|
DFP96U au, bu;
|
| 79 |
|
|
DFPUnpack96 u01 (a, au);
|
| 80 |
|
|
DFPUnpack96 u02 (b, bu);
|
| 81 |
|
|
|
| 82 |
|
|
// constants
|
| 83 |
|
|
wire [11:0] infXp = 12'hBFF; // infinite / NaN - all ones
|
| 84 |
|
|
wire [11:0] bias = 12'h5FF;
|
| 85 |
|
|
// The following is the value for an exponent of zero, with the offset
|
| 86 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
| 87 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
| 88 |
|
|
wire [N*4-1:0] qNaN = {4'h1,{(N-1)*4{1'b0}}};
|
| 89 |
|
|
|
| 90 |
|
|
// variables
|
| 91 |
|
|
wire [(N+2)*4*2-1:0] divo;
|
| 92 |
|
|
|
| 93 |
|
|
// Operands
|
| 94 |
|
|
reg sa, sb; // sign bit
|
| 95 |
|
|
reg [N*4-1:0] siga, sigb;
|
| 96 |
|
|
reg az, bz;
|
| 97 |
|
|
reg aInf, bInf;
|
| 98 |
|
|
reg aNan,bNan;
|
| 99 |
|
|
wire done1;
|
| 100 |
|
|
wire signed [7:0] lzcnt;
|
| 101 |
|
|
|
| 102 |
|
|
// -----------------------------------------------------------
|
| 103 |
|
|
// Clock #1
|
| 104 |
|
|
// - decode the input operands
|
| 105 |
|
|
// - derive basic information
|
| 106 |
|
|
// - calculate fraction
|
| 107 |
|
|
// -----------------------------------------------------------
|
| 108 |
|
|
reg ld1;
|
| 109 |
|
|
always @(posedge clk)
|
| 110 |
|
|
if (ce) sa <= au.sign;
|
| 111 |
|
|
always @(posedge clk)
|
| 112 |
|
|
if (ce) sb <= bu.sign;
|
| 113 |
|
|
always @(posedge clk)
|
| 114 |
|
|
if (ce) siga <= au.sig;
|
| 115 |
|
|
always @(posedge clk)
|
| 116 |
|
|
if (ce) sigb <= bu.sig;
|
| 117 |
|
|
always @(posedge clk)
|
| 118 |
|
|
if (ce) az <= au.exp==12'd0 && au.sig==100'd0;
|
| 119 |
|
|
always @(posedge clk)
|
| 120 |
|
|
if (ce) bz <= bu.exp==12'd0 && bu.sig==100'd0;
|
| 121 |
|
|
always @(posedge clk)
|
| 122 |
|
|
if (ce) aInf <= au.infinity;
|
| 123 |
|
|
always @(posedge clk)
|
| 124 |
|
|
if (ce) bInf <= bu.infinity;
|
| 125 |
|
|
always @(posedge clk)
|
| 126 |
|
|
if (ce) aNan <= au.nan;
|
| 127 |
|
|
always @(posedge clk)
|
| 128 |
|
|
if (ce) bNan <= bu.nan;
|
| 129 |
|
|
ft_delay #(.WID(1), .DEP(1)) udly1 (.clk(clk), .ce(ce), .i(ld), .o(ld1));
|
| 130 |
|
|
|
| 131 |
|
|
// -----------------------------------------------------------
|
| 132 |
|
|
// Clock #2 to N
|
| 133 |
|
|
// - calculate fraction
|
| 134 |
|
|
// -----------------------------------------------------------
|
| 135 |
|
|
wire done3a,done3;
|
| 136 |
|
|
// Perform divide
|
| 137 |
80 |
robfinch |
dfdiv2 #(N+2) u2 (.clk(clk), .ld(ld1), .a({siga,8'b0}), .b({sigb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
| 138 |
|
|
//wire [7:0] lzcnt_bin = lzcnt[3:0] + (lzcnt[7:4] * 10);
|
| 139 |
|
|
wire [(N+2)*4*2-1:0] divo1 = divo[(N+2)*4*2-1:0] << ({lzcnt-1,2'b0});//WAS FPWID=128?+44
|
| 140 |
75 |
robfinch |
ft_delay #(.WID(1), .DEP(3)) u3 (.clk(clk), .ce(ce), .i(done1), .o(done3a));
|
| 141 |
|
|
assign done3 = done1&done3a;
|
| 142 |
|
|
|
| 143 |
|
|
// -----------------------------------------------------------
|
| 144 |
|
|
// Clock #N+1
|
| 145 |
|
|
// - calculate exponent
|
| 146 |
|
|
// - calculate fraction
|
| 147 |
|
|
// - determine when a NaN is output
|
| 148 |
|
|
// -----------------------------------------------------------
|
| 149 |
|
|
// Compute the exponent.
|
| 150 |
|
|
// - correct the exponent for denormalized operands
|
| 151 |
|
|
// - adjust the difference by the bias (add 127)
|
| 152 |
|
|
// - also factor in the different decimal position for division
|
| 153 |
|
|
reg [13:0] ex1; // sum of exponents
|
| 154 |
|
|
reg qNaNOut;
|
| 155 |
|
|
|
| 156 |
|
|
always @(posedge clk)
|
| 157 |
80 |
robfinch |
if (ce) ex1 <= au.exp - bu.exp + bias - (({lzcnt,2'b00} > N+2) ? lzcnt-(N+2) : 0);
|
| 158 |
75 |
robfinch |
|
| 159 |
|
|
always @(posedge clk)
|
| 160 |
|
|
if (ce) qNaNOut <= (az&bz)|(aInf&bInf);
|
| 161 |
|
|
|
| 162 |
|
|
wire over = 1'b0;
|
| 163 |
|
|
wire under = &ex1[13:12];
|
| 164 |
|
|
reg [3:0] st;
|
| 165 |
|
|
|
| 166 |
|
|
// -----------------------------------------------------------
|
| 167 |
|
|
// Clock #N+3
|
| 168 |
|
|
// -----------------------------------------------------------
|
| 169 |
|
|
always_ff @(posedge clk)
|
| 170 |
|
|
// Simulation likes to see these values reset to zero on reset. Otherwise the
|
| 171 |
|
|
// values propagate in sim as X's.
|
| 172 |
|
|
if (rst) begin
|
| 173 |
|
|
xo <= 1'd0;
|
| 174 |
|
|
mo <= 1'd0;
|
| 175 |
|
|
so <= 1'd0;
|
| 176 |
|
|
sign_exe <= 1'd0;
|
| 177 |
|
|
overflow <= 1'd0;
|
| 178 |
|
|
underflow <= 1'd0;
|
| 179 |
|
|
done <= 1'b1;
|
| 180 |
|
|
end
|
| 181 |
|
|
else if (ce) begin
|
| 182 |
|
|
done <= 1'b0;
|
| 183 |
|
|
if (done3&done1) begin
|
| 184 |
|
|
done <= 1'b1;
|
| 185 |
|
|
|
| 186 |
|
|
casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
|
| 187 |
|
|
5'b1????: xo <= infXp; // NaN exponent value
|
| 188 |
|
|
5'b01???: xo <= 1'd0; // divide by inf
|
| 189 |
|
|
5'b001??: xo <= infXp; // divide by zero
|
| 190 |
|
|
5'b0001?: xo <= infXp; // overflow
|
| 191 |
|
|
5'b00001: xo <= 1'd0; // underflow
|
| 192 |
|
|
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
|
| 193 |
|
|
endcase
|
| 194 |
|
|
|
| 195 |
|
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
| 196 |
|
|
8'b1???????: begin mo <= {4'h1,au[N*4-1:0],{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
| 197 |
|
|
8'b01??????: begin mo <= {4'h1,bu[N*4-1:0],{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
| 198 |
|
|
8'b001?????: begin mo <= {4'h1,qNaN[N*4-1:0]|{aInf,1'b0}|{az,bz},{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end
|
| 199 |
|
|
8'b0001????: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // div by inf
|
| 200 |
|
|
8'b00001???: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // div by zero
|
| 201 |
|
|
8'b000001??: begin mo <= {(N+1)*4*2-1{1'd0}}; st[3] <= 1'b0; end // Inf exponent
|
| 202 |
|
|
8'b0000001?: begin mo <= {4'h1,qNaN|`QINFDIV,{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end // infinity / infinity
|
| 203 |
|
|
8'b00000001: begin mo <= {4'h1,qNaN|`QZEROZERO,{(N+1)*4-1{1'b0}}}; st[3] <= 1'b1; end // zero / zero
|
| 204 |
|
|
default: begin mo <= divo1[(N+2)*4*2-1:8]; st[3] <= 1'b0; end // plain div
|
| 205 |
|
|
endcase
|
| 206 |
|
|
|
| 207 |
|
|
sign_exe <= sa & sb;
|
| 208 |
|
|
overflow <= over;
|
| 209 |
|
|
underflow <= under;
|
| 210 |
|
|
|
| 211 |
|
|
o.nan <= aNan|bNan|qNaNOut;
|
| 212 |
|
|
o.snan <= aNan|bNan|qNaNOut;
|
| 213 |
|
|
o.qnan <= 1'b0;
|
| 214 |
|
|
o.infinity <= over|aInf;
|
| 215 |
|
|
o.sign <= sa ^ sb;
|
| 216 |
|
|
o.exp <= xo;
|
| 217 |
|
|
o.sig <= mo;
|
| 218 |
|
|
end
|
| 219 |
|
|
end
|
| 220 |
|
|
|
| 221 |
|
|
endmodule
|
| 222 |
|
|
|
| 223 |
|
|
module DFPDivide96nr(rst, clk, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
| 224 |
|
|
parameter N=25;
|
| 225 |
|
|
input rst;
|
| 226 |
|
|
input clk;
|
| 227 |
|
|
input ce;
|
| 228 |
|
|
input ld;
|
| 229 |
|
|
input op;
|
| 230 |
|
|
input DFP96 a, b;
|
| 231 |
|
|
output DFP96 o;
|
| 232 |
|
|
input [2:0] rm;
|
| 233 |
|
|
output sign_exe;
|
| 234 |
|
|
output done;
|
| 235 |
|
|
output inf;
|
| 236 |
|
|
output overflow;
|
| 237 |
|
|
output underflow;
|
| 238 |
|
|
|
| 239 |
|
|
DFP96UD o1;
|
| 240 |
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
| 241 |
|
|
DFP96UN fpn0;
|
| 242 |
|
|
wire done1, done1a;
|
| 243 |
|
|
|
| 244 |
|
|
DFPDivide96 #(.N(N)) u1 (rst, clk, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
| 245 |
|
|
DFPNormalize96 #(.N(N)) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
|
| 246 |
|
|
DFPRound96 #(.N(N)) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
| 247 |
|
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
| 248 |
|
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
| 249 |
|
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
| 250 |
|
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
| 251 |
81 |
robfinch |
ft_delay #(.WID(1),.DEP(14)) u8(.clk(clk), .ce(ce), .i(done1), .o(done1a));
|
| 252 |
75 |
robfinch |
assign done = done1&done1a;
|
| 253 |
|
|
|
| 254 |
|
|
endmodule
|
| 255 |
|
|
|