| 1 |
64 |
robfinch |
// ============================================================================
|
| 2 |
|
|
// __
|
| 3 |
|
|
// \\__/ o\ (C) 2020-2022 Robert Finch, Waterloo
|
| 4 |
|
|
// \ __ / All rights reserved.
|
| 5 |
|
|
// \/_// robfinch@finitron.ca
|
| 6 |
|
|
// ||
|
| 7 |
|
|
//
|
| 8 |
|
|
// DFPMultiply128.v
|
| 9 |
|
|
// - decimal floating point multiplier
|
| 10 |
|
|
// - parameterized width
|
| 11 |
|
|
//
|
| 12 |
|
|
//
|
| 13 |
|
|
// BSD 3-Clause License
|
| 14 |
|
|
// Redistribution and use in source and binary forms, with or without
|
| 15 |
|
|
// modification, are permitted provided that the following conditions are met:
|
| 16 |
|
|
//
|
| 17 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
| 18 |
|
|
// list of conditions and the following disclaimer.
|
| 19 |
|
|
//
|
| 20 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
| 21 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
| 22 |
|
|
// and/or other materials provided with the distribution.
|
| 23 |
|
|
//
|
| 24 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
| 25 |
|
|
// contributors may be used to endorse or promote products derived from
|
| 26 |
|
|
// this software without specific prior written permission.
|
| 27 |
|
|
//
|
| 28 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| 29 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| 30 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
| 31 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
| 32 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
| 33 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
| 34 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
| 35 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
| 36 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 37 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 38 |
|
|
//
|
| 39 |
|
|
//
|
| 40 |
|
|
// Floating Point Multiplier
|
| 41 |
|
|
//
|
| 42 |
|
|
// Properties:
|
| 43 |
|
|
// +-inf * +-inf = -+inf (this is handled by exOver)
|
| 44 |
|
|
// +-inf * 0 = QNaN
|
| 45 |
|
|
//
|
| 46 |
|
|
// ============================================================================
|
| 47 |
|
|
|
| 48 |
|
|
import DFPPkg::*;
|
| 49 |
|
|
|
| 50 |
|
|
//`define DFPMUL_PARALLEL 1'b1
|
| 51 |
|
|
|
| 52 |
|
|
module DFPMultiply128(clk, ce, ld, a, b, o, sign_exe, inf, overflow, underflow, done);
|
| 53 |
|
|
localparam N=34;
|
| 54 |
|
|
localparam DELAY = 2;
|
| 55 |
|
|
input clk;
|
| 56 |
|
|
input ce;
|
| 57 |
|
|
input ld;
|
| 58 |
|
|
input DFP128 a, b;
|
| 59 |
|
|
output DFP128UD o;
|
| 60 |
|
|
output sign_exe;
|
| 61 |
|
|
output inf;
|
| 62 |
|
|
output overflow;
|
| 63 |
|
|
output underflow;
|
| 64 |
|
|
output done;
|
| 65 |
|
|
|
| 66 |
|
|
reg [13:0] xo1; // extra bit for sign
|
| 67 |
|
|
reg [N*4*2-1:0] mo1;
|
| 68 |
|
|
|
| 69 |
|
|
// constants
|
| 70 |
|
|
wire [13:0] infXp = 14'h2FFF; // infinite / NaN - all ones
|
| 71 |
|
|
wire [13:0] bias = 14'h17FF;
|
| 72 |
|
|
// The following is the value for an exponent of zero, with the offset
|
| 73 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
| 74 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
| 75 |
|
|
wire [N*4-1:0] qNaN = {4'h1,{104{1'b0}}};
|
| 76 |
|
|
|
| 77 |
|
|
// variables
|
| 78 |
|
|
reg [N*4*2-1:0] sig1;
|
| 79 |
|
|
wire [13:0] ex2;
|
| 80 |
|
|
|
| 81 |
|
|
DFP128U au, bu;
|
| 82 |
|
|
DFPUnpack128 u01 (a, au);
|
| 83 |
|
|
DFPUnpack128 u02 (b, bu);
|
| 84 |
|
|
|
| 85 |
|
|
// Decompose the operands
|
| 86 |
|
|
wire sa, sb; // sign bit
|
| 87 |
|
|
wire [13:0] xa, xb; // exponent bits
|
| 88 |
|
|
wire sxa, sxb;
|
| 89 |
|
|
wire [N*4-1:0] siga, sigb;
|
| 90 |
|
|
wire a_dn, b_dn; // a/b is denormalized
|
| 91 |
|
|
wire aNan1, bNan1;
|
| 92 |
|
|
wire az, bz;
|
| 93 |
|
|
wire aInf1, bInf1;
|
| 94 |
|
|
|
| 95 |
|
|
assign siga = au.sig;
|
| 96 |
|
|
assign sigb = bu.sig;
|
| 97 |
|
|
assign az = au.exp==14'h0 && au.sig==136'd0;
|
| 98 |
|
|
assign bz = bu.exp==14'h0 && bu.sig==136'd0;
|
| 99 |
|
|
|
| 100 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 101 |
|
|
// Clock #1
|
| 102 |
|
|
// - decode the input operands
|
| 103 |
|
|
// - derive basic information
|
| 104 |
|
|
// - calculate exponent
|
| 105 |
|
|
// - calculate fraction
|
| 106 |
|
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
| 107 |
|
|
|
| 108 |
|
|
// -----------------------------------------------------------
|
| 109 |
|
|
// First clock
|
| 110 |
|
|
// Compute the sum of the exponents.
|
| 111 |
|
|
// -----------------------------------------------------------
|
| 112 |
|
|
|
| 113 |
|
|
wire under, over;
|
| 114 |
|
|
wire [15:0] sum_ex = au.exp + bu.exp - bias;
|
| 115 |
|
|
reg [15:0] sum_ex;
|
| 116 |
|
|
reg sx0;
|
| 117 |
|
|
wire done1;
|
| 118 |
|
|
assign under = &sum_ex[15:14];
|
| 119 |
|
|
assign over = sum_ex > 16'h2FFF;
|
| 120 |
|
|
|
| 121 |
|
|
wire [N*4*2-1:0] sigoo;
|
| 122 |
|
|
`ifdef DFPMUL_PARALLEL
|
| 123 |
|
|
BCDMul32 u1f (.a({20'h0,siga}),.b({20'h0,sigb}),.o(sigoo));
|
| 124 |
|
|
`else
|
| 125 |
|
|
dfmul #(.N(N)) u1g
|
| 126 |
|
|
(
|
| 127 |
|
|
.clk(clk),
|
| 128 |
|
|
.ld(ld),
|
| 129 |
|
|
.a(siga),
|
| 130 |
|
|
.b(sigb),
|
| 131 |
|
|
.p(sigoo),
|
| 132 |
|
|
.done(done1)
|
| 133 |
|
|
);
|
| 134 |
|
|
`endif
|
| 135 |
|
|
|
| 136 |
|
|
always @(posedge clk)
|
| 137 |
|
|
if (ce) sig1 <= sigoo[N*4*2-1:0];
|
| 138 |
|
|
|
| 139 |
|
|
// Status
|
| 140 |
|
|
wire under1, over1;
|
| 141 |
|
|
|
| 142 |
|
|
ft_delay #(.WID(14),.DEP(DELAY)) u3 (.clk(clk), .ce(ce), .i(sum_ex[13:0]), .o(ex2) );
|
| 143 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u2a (.clk(clk), .ce(ce), .i(au.infinity), .o(aInf1) );
|
| 144 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u2b (.clk(clk), .ce(ce), .i(bu.infinity), .o(bInf1) );
|
| 145 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u6 (.clk(clk), .ce(ce), .i(under), .o(under1) );
|
| 146 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u7 (.clk(clk), .ce(ce), .i(over), .o(over1) );
|
| 147 |
|
|
|
| 148 |
|
|
// determine when a NaN is output
|
| 149 |
|
|
wire qNaNOut;
|
| 150 |
|
|
wire DFP128U a1,b1;
|
| 151 |
|
|
wire asnan, bsnan, aqnan, bqnan;
|
| 152 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u5 (.clk(clk), .ce(ce), .i((au.infinity&bz)|(bu.infinity&az)), .o(qNaNOut) );
|
| 153 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u14 (.clk(clk), .ce(ce), .i(au.nan), .o(aNan1) );
|
| 154 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u15 (.clk(clk), .ce(ce), .i(bu.nan), .o(bNan1) );
|
| 155 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u18 (.clk(clk), .ce(ce), .i(au.snan), .o(asnan) );
|
| 156 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u19 (.clk(clk), .ce(ce), .i(bu.snan), .o(bsnan) );
|
| 157 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u18a (.clk(clk), .ce(ce), .i(au.qnan), .o(aqnan) );
|
| 158 |
|
|
ft_delay #(.WID(1),.DEP(DELAY)) u19a (.clk(clk), .ce(ce), .i(bu.qnan), .o(bqnan) );
|
| 159 |
|
|
ft_delay #(.WID($bits(a1)),.DEP(DELAY)) u16 (.clk(clk), .ce(ce), .i(a), .o(a1) );
|
| 160 |
|
|
ft_delay #(.WID($bits(b1)),.DEP(DELAY)) u17 (.clk(clk), .ce(ce), .i(b), .o(b1) );
|
| 161 |
|
|
|
| 162 |
|
|
// -----------------------------------------------------------
|
| 163 |
|
|
// Second clock
|
| 164 |
|
|
// - correct xponent and mantissa for exceptional conditions
|
| 165 |
|
|
// -----------------------------------------------------------
|
| 166 |
|
|
|
| 167 |
|
|
wire so1, sx1;
|
| 168 |
|
|
reg [3:0] st;
|
| 169 |
|
|
wire done1a;
|
| 170 |
|
|
|
| 171 |
|
|
ft_delay #(.WID(1),.DEP(1)) u8 (.clk(clk), .ce(ce), .i(au.sign ^ bu.sign), .o(so1) );// two clock delay!
|
| 172 |
|
|
|
| 173 |
|
|
always @(posedge clk)
|
| 174 |
|
|
if (ce)
|
| 175 |
|
|
casez({qNaNOut|aNan1|bNan1,aInf1,bInf1,over1,under1})
|
| 176 |
|
|
5'b1????: xo1 = infXp; // qNaN - infinity * zero
|
| 177 |
|
|
5'b01???: xo1 = infXp; // 'a' infinite
|
| 178 |
|
|
5'b001??: xo1 = infXp; // 'b' infinite
|
| 179 |
|
|
5'b0001?: xo1 = infXp; // result overflow
|
| 180 |
|
|
5'b00001: xo1 = ex2[13:0];//0; // underflow
|
| 181 |
|
|
default: xo1 = ex2[13:0]; // situation normal
|
| 182 |
|
|
endcase
|
| 183 |
|
|
|
| 184 |
|
|
// Force mantissa to zero when underflow or zero exponent when not supporting denormals.
|
| 185 |
|
|
always @(posedge clk)
|
| 186 |
|
|
if (ce)
|
| 187 |
|
|
casez({aNan1,bNan1,qNaNOut,aInf1,bInf1,over1|under1})
|
| 188 |
|
|
6'b1?????: mo1 = {4'h1,a1[N*4-4-1:0],{N*4{1'b0}}};
|
| 189 |
|
|
6'b01????: mo1 = {4'h1,b1[N*4-4-1:0],{N*4{1'b0}}};
|
| 190 |
|
|
6'b001???: mo1 = {4'h1,qNaN|3'd4,{N*4{1'b0}}}; // multiply inf * zero
|
| 191 |
|
|
6'b0001??: mo1 = 0; // mul inf's
|
| 192 |
|
|
6'b00001?: mo1 = 0; // mul inf's
|
| 193 |
|
|
6'b000001: mo1 = 0; // mul overflow
|
| 194 |
|
|
default: mo1 = sig1;
|
| 195 |
|
|
endcase
|
| 196 |
|
|
|
| 197 |
|
|
ft_delay #(.WID(1),.DEP(DELAY+1)) u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) );
|
| 198 |
|
|
delay1 u11 (.clk(clk), .ce(ce), .i(over1), .o(overflow) );
|
| 199 |
|
|
delay1 u12 (.clk(clk), .ce(ce), .i(over1), .o(inf) );
|
| 200 |
|
|
delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) );
|
| 201 |
|
|
ft_delay #(.WID(1),.DEP(3)) u18b (.clk(clk), .ce(ce), .i(done1), .o(done1a) );
|
| 202 |
|
|
|
| 203 |
|
|
assign o.nan = aNan1|bNan1|qNaNOut;
|
| 204 |
|
|
assign o.qnan = qNaNOut|aqnan|bqnan;
|
| 205 |
|
|
assign o.snan = qNaNOut ? 1'b0 : asnan|bsnan;
|
| 206 |
|
|
assign o.infinity = aInf1|bInf1|over;
|
| 207 |
|
|
assign o.sign = so1;
|
| 208 |
|
|
assign o.exp = xo1;
|
| 209 |
|
|
assign o.sig = {mo1,8'h00};
|
| 210 |
|
|
assign done = done1&done1a;
|
| 211 |
|
|
|
| 212 |
|
|
endmodule
|
| 213 |
|
|
|
| 214 |
|
|
|
| 215 |
|
|
// Multiplier with normalization and rounding.
|
| 216 |
|
|
|
| 217 |
|
|
module DFPMultiply128nr(clk, ce, ld, a, b, o, rm, sign_exe, inf, overflow, underflow, done);
|
| 218 |
|
|
localparam N=34;
|
| 219 |
|
|
input clk;
|
| 220 |
|
|
input ce;
|
| 221 |
|
|
input ld;
|
| 222 |
|
|
input DFP128 a, b;
|
| 223 |
|
|
output DFP128 o;
|
| 224 |
|
|
input [2:0] rm;
|
| 225 |
|
|
output sign_exe;
|
| 226 |
|
|
output inf;
|
| 227 |
|
|
output overflow;
|
| 228 |
|
|
output underflow;
|
| 229 |
|
|
output done;
|
| 230 |
|
|
|
| 231 |
|
|
wire done1, done1a;
|
| 232 |
|
|
DFP128UD o1;
|
| 233 |
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
| 234 |
|
|
DFP128UN fpn0;
|
| 235 |
|
|
|
| 236 |
|
|
DFPMultiply128 u1 (clk, ce, ld, a, b, o1, sign_exe1, inf1, overflow1, underflow1, done1);
|
| 237 |
|
|
DFPNormalize128 u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
|
| 238 |
|
|
DFPRound128 u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
| 239 |
|
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
| 240 |
|
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
| 241 |
|
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
| 242 |
|
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
| 243 |
|
|
ft_delay #(.WID(1),.DEP(12)) u10 (.clk(clk), .ce(ce), .i(done1), .o(done1a) );
|
| 244 |
|
|
assign done = done1 & done1a;
|
| 245 |
|
|
|
| 246 |
|
|
endmodule
|