| 1 |
29 |
robfinch |
// ============================================================================
|
| 2 |
|
|
// __
|
| 3 |
34 |
robfinch |
// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo
|
| 4 |
29 |
robfinch |
// \ __ / All rights reserved.
|
| 5 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
| 6 |
|
|
// ||
|
| 7 |
|
|
//
|
| 8 |
|
|
// fpDiv.v
|
| 9 |
|
|
// - floating point divider
|
| 10 |
34 |
robfinch |
// - parameterized FPWIDth
|
| 11 |
29 |
robfinch |
// - IEEE 754 representation
|
| 12 |
|
|
//
|
| 13 |
|
|
//
|
| 14 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
| 15 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
| 16 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
| 17 |
|
|
// (at your option) any later version.
|
| 18 |
|
|
//
|
| 19 |
|
|
// This source file is distributed in the hope that it will be useful,
|
| 20 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 21 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 22 |
|
|
// GNU General Public License for more details.
|
| 23 |
|
|
//
|
| 24 |
|
|
// You should have received a copy of the GNU General Public License
|
| 25 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 26 |
|
|
//
|
| 27 |
|
|
// Floating Point Multiplier / Divider
|
| 28 |
|
|
//
|
| 29 |
|
|
//Properties:
|
| 30 |
|
|
//+-inf * +-inf = -+inf (this is handled by exOver)
|
| 31 |
|
|
//+-inf * 0 = QNaN
|
| 32 |
|
|
//+-0 / +-0 = QNaN
|
| 33 |
|
|
// ============================================================================
|
| 34 |
|
|
|
| 35 |
|
|
`include "fpConfig.sv"
|
| 36 |
34 |
robfinch |
`include "fpDefines.v"
|
| 37 |
29 |
robfinch |
//`define GOLDSCHMIDT 1'b1
|
| 38 |
|
|
|
| 39 |
|
|
module fpDiv(rst, clk, clk4x, ce, ld, op, a, b, o, done, sign_exe, overflow, underflow);
|
| 40 |
|
|
|
| 41 |
32 |
robfinch |
parameter FPWID = 64;
|
| 42 |
29 |
robfinch |
`include "fpSize.sv"
|
| 43 |
32 |
robfinch |
// FADD is a constant that makes the divider width a multiple of four and includes eight extra bits.
|
| 44 |
|
|
localparam FADD = FPWID==128 ? 9 :
|
| 45 |
|
|
FPWID==96 ? 9 :
|
| 46 |
|
|
FPWID==84 ? 9 :
|
| 47 |
|
|
FPWID==80 ? 9 :
|
| 48 |
|
|
FPWID==64 ? 13 :
|
| 49 |
34 |
robfinch |
FPWID==52 ? 13 :
|
| 50 |
32 |
robfinch |
FPWID==48 ? 10 :
|
| 51 |
|
|
FPWID==44 ? 9 :
|
| 52 |
|
|
FPWID==42 ? 11 :
|
| 53 |
|
|
FPWID==40 ? 8 :
|
| 54 |
|
|
FPWID==32 ? 10 :
|
| 55 |
|
|
FPWID==24 ? 9 : 11;
|
| 56 |
29 |
robfinch |
|
| 57 |
|
|
input rst;
|
| 58 |
|
|
input clk;
|
| 59 |
|
|
input clk4x;
|
| 60 |
|
|
input ce;
|
| 61 |
|
|
input ld;
|
| 62 |
|
|
input op;
|
| 63 |
|
|
input [MSB:0] a, b;
|
| 64 |
|
|
output [EX:0] o;
|
| 65 |
|
|
output done;
|
| 66 |
|
|
output sign_exe;
|
| 67 |
|
|
output overflow;
|
| 68 |
|
|
output underflow;
|
| 69 |
|
|
|
| 70 |
|
|
// registered outputs
|
| 71 |
|
|
reg sign_exe=0;
|
| 72 |
|
|
reg inf=0;
|
| 73 |
|
|
reg overflow=0;
|
| 74 |
|
|
reg underflow=0;
|
| 75 |
|
|
|
| 76 |
|
|
reg so;
|
| 77 |
|
|
reg [EMSB:0] xo;
|
| 78 |
|
|
reg [FX:0] mo;
|
| 79 |
|
|
assign o = {so,xo,mo};
|
| 80 |
|
|
|
| 81 |
|
|
// constants
|
| 82 |
|
|
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
|
| 83 |
|
|
// The following is the value for an exponent of zero, with the offset
|
| 84 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
| 85 |
|
|
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent
|
| 86 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
| 87 |
|
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
| 88 |
|
|
|
| 89 |
|
|
// variables
|
| 90 |
35 |
robfinch |
reg [EMSB+2:0] ex1; // sum of exponents
|
| 91 |
29 |
robfinch |
`ifndef GOLDSCHMIDT
|
| 92 |
|
|
wire [(FMSB+FADD)*2-1:0] divo;
|
| 93 |
|
|
`else
|
| 94 |
|
|
wire [(FMSB+5)*2-1:0] divo;
|
| 95 |
|
|
`endif
|
| 96 |
|
|
|
| 97 |
|
|
// Operands
|
| 98 |
|
|
wire sa, sb; // sign bit
|
| 99 |
|
|
wire [EMSB:0] xa, xb; // exponent bits
|
| 100 |
|
|
wire [FMSB+1:0] fracta, fractb;
|
| 101 |
|
|
wire a_dn, b_dn; // a/b is denormalized
|
| 102 |
|
|
wire az, bz;
|
| 103 |
|
|
wire aInf, bInf;
|
| 104 |
|
|
wire aNan,bNan;
|
| 105 |
|
|
wire done1;
|
| 106 |
|
|
wire signed [7:0] lzcnt;
|
| 107 |
|
|
|
| 108 |
|
|
// -----------------------------------------------------------
|
| 109 |
|
|
// - decode the input operands
|
| 110 |
|
|
// - derive basic information
|
| 111 |
|
|
// - calculate exponent
|
| 112 |
|
|
// - calculate fraction
|
| 113 |
|
|
// -----------------------------------------------------------
|
| 114 |
|
|
|
| 115 |
35 |
robfinch |
wire ld1;
|
| 116 |
|
|
fpDecompReg #(FPWID) u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );
|
| 117 |
|
|
fpDecompReg #(FPWID) u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );
|
| 118 |
|
|
delay1 #(1) u5 (.clk(clk), .ce(ce), .i(ld), .o(ld1));
|
| 119 |
29 |
robfinch |
|
| 120 |
|
|
// Compute the exponent.
|
| 121 |
|
|
// - correct the exponent for denormalized operands
|
| 122 |
|
|
// - adjust the difference by the bias (add 127)
|
| 123 |
|
|
// - also factor in the different decimal position for division
|
| 124 |
35 |
robfinch |
reg [EMSB+2:0] ex1a;
|
| 125 |
|
|
always @(posedge clk)
|
| 126 |
|
|
if (ce) ex1a = (xa|a_dn) - (xb|b_dn) + bias;
|
| 127 |
|
|
|
| 128 |
29 |
robfinch |
`ifndef GOLDSCHMIDT
|
| 129 |
35 |
robfinch |
always @(posedge clk)
|
| 130 |
|
|
if (ce) ex1 = ex1a + FMSB + (FADD-1) - lzcnt - 8'd1;
|
| 131 |
29 |
robfinch |
`else
|
| 132 |
35 |
robfinch |
if (ce) ex1 = ex1a + FMSB - lzcnt + 8'd4;
|
| 133 |
29 |
robfinch |
`endif
|
| 134 |
|
|
|
| 135 |
35 |
robfinch |
|
| 136 |
29 |
robfinch |
// check for exponent underflow/overflow
|
| 137 |
|
|
wire under = ex1[EMSB+2]; // MSB set = negative exponent
|
| 138 |
|
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
| 139 |
|
|
|
| 140 |
|
|
// Perform divide
|
| 141 |
32 |
robfinch |
// Divider width must be a multiple of four
|
| 142 |
29 |
robfinch |
`ifndef GOLDSCHMIDT
|
| 143 |
35 |
robfinch |
`ifdef DIV_RADIX4
|
| 144 |
|
|
fpdivr4 #(FMSB+FADD) u2 (.clk(clk), .ld(ld1), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
| 145 |
|
|
`endif
|
| 146 |
|
|
`ifdef DIV_RADIX16
|
| 147 |
|
|
fpdivr16 #(FMSB+FADD) u2 (.clk(clk), .ld(ld1), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
| 148 |
|
|
`endif
|
| 149 |
29 |
robfinch |
//fpdivr2 #(FMSB+FADD) u2 (.clk4x(clk4x), .ld(ld), .a({3'b0,fracta,8'b0}), .b({3'b0,fractb,8'b0}), .q(divo), .r(), .done(done1), .lzcnt(lzcnt));
|
| 150 |
35 |
robfinch |
reg [(FMSB+FADD)*2-1:0] divo1, divo2;
|
| 151 |
|
|
reg [7:0] lzcnts;
|
| 152 |
34 |
robfinch |
always @(posedge clk)
|
| 153 |
35 |
robfinch |
if (ce) lzcnts = lzcnt - 2;
|
| 154 |
|
|
always @(posedge clk)
|
| 155 |
|
|
if (ce) divo2 = divo[(FMSB+FADD)*2-1:0];
|
| 156 |
|
|
|
| 157 |
|
|
always @(posedge clk)
|
| 158 |
|
|
if (ce) divo1 = divo2 << lzcnts;
|
| 159 |
29 |
robfinch |
`else
|
| 160 |
34 |
robfinch |
DivGoldschmidt #(.FPWID(FMSB+6),.WHOLE(1),.POINTS(FMSB+5))
|
| 161 |
35 |
robfinch |
u2 (.rst(rst), .clk(clk), .ld(ld1), .a({fracta,4'b0}), .b({fractb,4'b0}), .q(divo), .done(done1), .lzcnt(lzcnt));
|
| 162 |
|
|
reg [(FMSB+6)*2+1:0] divo1, divo2;
|
| 163 |
34 |
robfinch |
always @(posedge clk)
|
| 164 |
35 |
robfinch |
if (ce) divo2 = divo;
|
| 165 |
|
|
always @(posedge clk)
|
| 166 |
34 |
robfinch |
if (ce) divo1 =
|
| 167 |
35 |
robfinch |
lzcnt > 8'd5 ? divo2 << (lzcnt-8'd6) :
|
| 168 |
|
|
divo2 >> (8'd6-lzcnt);
|
| 169 |
34 |
robfinch |
;
|
| 170 |
29 |
robfinch |
`endif
|
| 171 |
35 |
robfinch |
delay2 #(1) u3 (.clk(clk), .ce(ce), .i(done1), .o(done2));
|
| 172 |
|
|
delay3 #(1) u4 (.clk(clk), .ce(ce), .i(done1), .o(done));
|
| 173 |
29 |
robfinch |
|
| 174 |
|
|
|
| 175 |
|
|
// determine when a NaN is output
|
| 176 |
|
|
wire qNaNOut = (az&bz)|(aInf&bInf);
|
| 177 |
|
|
|
| 178 |
|
|
always @(posedge clk)
|
| 179 |
|
|
// Simulation likes to see these values reset to zero on reset. Otherwise the
|
| 180 |
|
|
// values propagate in sim as X's.
|
| 181 |
|
|
if (rst) begin
|
| 182 |
|
|
xo <= 1'd0;
|
| 183 |
|
|
mo <= 1'd0;
|
| 184 |
|
|
so <= 1'd0;
|
| 185 |
|
|
sign_exe <= 1'd0;
|
| 186 |
|
|
overflow <= 1'd0;
|
| 187 |
|
|
underflow <= 1'd0;
|
| 188 |
|
|
end
|
| 189 |
|
|
else if (ce) begin
|
| 190 |
34 |
robfinch |
if (done2) begin
|
| 191 |
29 |
robfinch |
casez({qNaNOut|aNan|bNan,bInf,bz,over,under})
|
| 192 |
|
|
5'b1????: xo <= infXp; // NaN exponent value
|
| 193 |
|
|
5'b01???: xo <= 1'd0; // divide by inf
|
| 194 |
|
|
5'b001??: xo <= infXp; // divide by zero
|
| 195 |
|
|
5'b0001?: xo <= infXp; // overflow
|
| 196 |
|
|
5'b00001: xo <= 1'd0; // underflow
|
| 197 |
|
|
default: xo <= ex1; // normal or underflow: passthru neg. exp. for normalization
|
| 198 |
|
|
endcase
|
| 199 |
|
|
|
| 200 |
|
|
casez({aNan,bNan,qNaNOut,bInf,bz,over,aInf&bInf,az&bz})
|
| 201 |
34 |
robfinch |
8'b1???????: mo <= {1'b1,1'b1,a[FMSB-1:0],{FMSB+1{1'b0}}};
|
| 202 |
|
|
8'b01??????: mo <= {1'b1,1'b1,b[FMSB-1:0],{FMSB+1{1'b0}}};
|
| 203 |
29 |
robfinch |
8'b001?????: mo <= {1'b1,qNaN[FMSB:0]|{aInf,1'b0}|{az,bz},{FMSB+1{1'b0}}};
|
| 204 |
|
|
8'b0001????: mo <= 1'd0; // div by inf
|
| 205 |
|
|
8'b00001???: mo <= 1'd0; // div by zero
|
| 206 |
|
|
8'b000001??: mo <= 1'd0; // Inf exponent
|
| 207 |
|
|
8'b0000001?: mo <= {1'b1,qNaN|`QINFDIV,{FMSB+1{1'b0}}}; // infinity / infinity
|
| 208 |
|
|
8'b00000001: mo <= {1'b1,qNaN|`QZEROZERO,{FMSB+1{1'b0}}}; // zero / zero
|
| 209 |
|
|
`ifndef GOLDSCHMIDT
|
| 210 |
|
|
default: mo <= divo1[(FMSB+FADD)*2-1:(FADD-2)*2-2]; // plain div
|
| 211 |
|
|
`else
|
| 212 |
|
|
default: mo <= divo1[(FMSB+6)*2+1:2]; // plain div
|
| 213 |
|
|
`endif
|
| 214 |
|
|
endcase
|
| 215 |
|
|
|
| 216 |
|
|
so <= sa ^ sb;
|
| 217 |
|
|
sign_exe <= sa & sb;
|
| 218 |
|
|
overflow <= over;
|
| 219 |
|
|
underflow <= under;
|
| 220 |
|
|
end
|
| 221 |
|
|
end
|
| 222 |
|
|
|
| 223 |
|
|
endmodule
|
| 224 |
|
|
|
| 225 |
|
|
module fpDivnr(rst, clk, clk4x, ce, ld, op, a, b, o, rm, done, sign_exe, inf, overflow, underflow);
|
| 226 |
32 |
robfinch |
parameter FPWID=64;
|
| 227 |
29 |
robfinch |
`include "fpSize.sv"
|
| 228 |
|
|
|
| 229 |
|
|
input rst;
|
| 230 |
|
|
input clk;
|
| 231 |
|
|
input clk4x;
|
| 232 |
|
|
input ce;
|
| 233 |
|
|
input ld;
|
| 234 |
|
|
input op;
|
| 235 |
|
|
input [MSB:0] a, b;
|
| 236 |
|
|
output [MSB:0] o;
|
| 237 |
|
|
input [2:0] rm;
|
| 238 |
|
|
output sign_exe;
|
| 239 |
|
|
output done;
|
| 240 |
|
|
output inf;
|
| 241 |
|
|
output overflow;
|
| 242 |
|
|
output underflow;
|
| 243 |
|
|
|
| 244 |
|
|
wire [EX:0] o1;
|
| 245 |
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
| 246 |
|
|
wire [MSB+3:0] fpn0;
|
| 247 |
|
|
wire done1;
|
| 248 |
|
|
|
| 249 |
|
|
fpDiv #(FPWID) u1 (rst, clk, clk4x, ce, ld, op, a, b, o1, done1, sign_exe1, overflow1, underflow1);
|
| 250 |
32 |
robfinch |
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
|
| 251 |
34 |
robfinch |
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
| 252 |
29 |
robfinch |
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
| 253 |
|
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
| 254 |
|
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
| 255 |
|
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
| 256 |
34 |
robfinch |
delay2 #(1) u8(.clk(clk), .ce(ce), .i(done1), .o(done));
|
| 257 |
29 |
robfinch |
endmodule
|
| 258 |
|
|
|