1 |
48 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2019-2020 Robert Finch, Waterloo
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// fpFMA.sv
|
9 |
|
|
// - floating point fused multiplier + adder
|
10 |
|
|
// - can issue every clock cycle
|
11 |
|
|
// - parameterized FPWIDth
|
12 |
|
|
// - IEEE 754 representation
|
13 |
|
|
//
|
14 |
|
|
//
|
15 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
16 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
17 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
18 |
|
|
// (at your option) any later version.
|
19 |
|
|
//
|
20 |
|
|
// This source file is distributed in the hope that it will be useful,
|
21 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
22 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
23 |
|
|
// GNU General Public License for more details.
|
24 |
|
|
//
|
25 |
|
|
// You should have received a copy of the GNU General Public License
|
26 |
|
|
// along with this program. If not, see .
|
27 |
|
|
//
|
28 |
|
|
// ============================================================================
|
29 |
|
|
|
30 |
|
|
import fp::*;
|
31 |
|
|
|
32 |
|
|
module fpFMA (clk, ce, op, rm, a, b, c, o, under, over, inf, zero);
|
33 |
|
|
input clk;
|
34 |
|
|
input ce;
|
35 |
|
|
input op; // operation 0 = add, 1 = subtract
|
36 |
|
|
input [2:0] rm;
|
37 |
|
|
input [MSB:0] a, b, c;
|
38 |
|
|
output [EX:0] o;
|
39 |
|
|
output under;
|
40 |
|
|
output over;
|
41 |
|
|
output inf;
|
42 |
|
|
output zero;
|
43 |
|
|
|
44 |
|
|
// constants
|
45 |
|
|
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
|
46 |
|
|
// The following is the value for an exponent of zero, with the offset
|
47 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
48 |
|
|
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent
|
49 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
50 |
|
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
51 |
|
|
|
52 |
|
|
// -----------------------------------------------------------
|
53 |
|
|
// Clock #1
|
54 |
|
|
// - decode the input operands
|
55 |
|
|
// - derive basic information
|
56 |
|
|
// -----------------------------------------------------------
|
57 |
|
|
|
58 |
|
|
wire sa1, sb1, sc1; // sign bit
|
59 |
|
|
wire [EMSB:0] xa1, xb1, xc1; // exponent bits
|
60 |
|
|
wire [FMSB+1:0] fracta1, fractb1, fractc1; // includes unhidden bit
|
61 |
|
|
wire a_dn1, b_dn1, c_dn1; // a/b is denormalized
|
62 |
|
|
wire aNan1, bNan1, cNan1;
|
63 |
|
|
wire az1, bz1, cz1;
|
64 |
|
|
wire aInf1, bInf1, cInf1;
|
65 |
|
|
reg op1;
|
66 |
|
|
|
67 |
|
|
fpDecompReg u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa1), .exp(xa1), .fract(fracta1), .xz(a_dn1), .vz(az1), .inf(aInf1), .nan(aNan1) );
|
68 |
|
|
fpDecompReg u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb1), .exp(xb1), .fract(fractb1), .xz(b_dn1), .vz(bz1), .inf(bInf1), .nan(bNan1) );
|
69 |
|
|
fpDecompReg u1c (.clk(clk), .ce(ce), .i(c), .sgn(sc1), .exp(xc1), .fract(fractc1), .xz(c_dn1), .vz(cz1), .inf(cInf1), .nan(cNan1) );
|
70 |
|
|
|
71 |
|
|
always @(posedge clk)
|
72 |
|
|
if (ce) op1 <= op;
|
73 |
|
|
|
74 |
|
|
// -----------------------------------------------------------
|
75 |
|
|
// Clock #2
|
76 |
|
|
// Compute the sum of the exponents.
|
77 |
|
|
// correct the exponent for denormalized operands
|
78 |
|
|
// adjust the sum by the exponent offset (subtract 127)
|
79 |
|
|
// mul: ex1 = xa + xb, result should always be < 1ffh
|
80 |
|
|
// Form partial products (clocks 2 to 5)
|
81 |
|
|
// -----------------------------------------------------------
|
82 |
|
|
|
83 |
|
|
reg abz2;
|
84 |
|
|
reg [EMSB+2:0] ex2;
|
85 |
|
|
reg [EMSB:0] xc2;
|
86 |
|
|
reg realOp2;
|
87 |
|
|
reg xcInf2;
|
88 |
|
|
|
89 |
|
|
always @(posedge clk)
|
90 |
|
|
if (ce) abz2 <= az1|bz1;
|
91 |
|
|
always @(posedge clk)
|
92 |
|
|
if (ce) ex2 <= (xa1|a_dn1) + (xb1|b_dn1) - bias;
|
93 |
|
|
always @(posedge clk)
|
94 |
|
|
if (ce) xc2 <= (xc1|c_dn1);
|
95 |
|
|
always @(posedge clk)
|
96 |
|
|
if (ce) xcInf2 = &xc1;
|
97 |
|
|
|
98 |
|
|
// Figure out which operation is really needed an add or
|
99 |
|
|
// subtract ?
|
100 |
|
|
// If the signs are the same, use the orignal op,
|
101 |
|
|
// otherwise flip the operation
|
102 |
|
|
// a + b = add,+
|
103 |
|
|
// a + -b = sub, so of larger
|
104 |
|
|
// -a + b = sub, so of larger
|
105 |
|
|
// -a + -b = add,-
|
106 |
|
|
// a - b = sub, so of larger
|
107 |
|
|
// a - -b = add,+
|
108 |
|
|
// -a - b = add,-
|
109 |
|
|
// -a - -b = sub, so of larger
|
110 |
|
|
always @(posedge clk)
|
111 |
|
|
if (ce) realOp2 <= op1 ^ (sa1 ^ sb1) ^ sc1;
|
112 |
|
|
|
113 |
|
|
|
114 |
|
|
reg [FX:0] fract5;
|
115 |
|
|
generate
|
116 |
|
|
if (FPWID==84) begin
|
117 |
|
|
reg [33:0] p00,p01,p02,p03;
|
118 |
|
|
reg [33:0] p10,p11,p12,p13;
|
119 |
|
|
reg [33:0] p20,p21,p22,p23;
|
120 |
|
|
reg [33:0] p30,p31,p32,p33;
|
121 |
|
|
reg [135:0] fract3a;
|
122 |
|
|
reg [135:0] fract3b;
|
123 |
|
|
reg [135:0] fract3c;
|
124 |
|
|
reg [135:0] fract3d;
|
125 |
|
|
reg [135:0] fract4a;
|
126 |
|
|
reg [135:0] fract4b;
|
127 |
|
|
|
128 |
|
|
always @(posedge clk)
|
129 |
|
|
if (ce) begin
|
130 |
|
|
p00 <= fracta1[16: 0] * fractb1[16: 0];
|
131 |
|
|
p01 <= fracta1[33:17] * fractb1[16: 0];
|
132 |
|
|
p02 <= fracta1[50:34] * fractb1[16: 0];
|
133 |
|
|
p03 <= fracta1[67:51] * fractb1[16: 0];
|
134 |
|
|
|
135 |
|
|
p10 <= fracta1[16: 0] * fractb1[33:17];
|
136 |
|
|
p11 <= fracta1[33:17] * fractb1[33:17];
|
137 |
|
|
p12 <= fracta1[50:34] * fractb1[33:17];
|
138 |
|
|
p13 <= fracta1[67:51] * fractb1[33:17];
|
139 |
|
|
|
140 |
|
|
p20 <= fracta1[16: 0] * fractb1[50:34];
|
141 |
|
|
p21 <= fracta1[33:17] * fractb1[50:34];
|
142 |
|
|
p22 <= fracta1[50:34] * fractb1[50:34];
|
143 |
|
|
p23 <= fracta1[67:51] * fractb1[50:34];
|
144 |
|
|
|
145 |
|
|
p30 <= fracta1[15: 0] * fractb1[67:51];
|
146 |
|
|
p31 <= fracta1[31:16] * fractb1[67:51];
|
147 |
|
|
p32 <= fracta1[47:32] * fractb1[67:51];
|
148 |
|
|
p33 <= fracta1[63:48] * fractb1[67:51];
|
149 |
|
|
end
|
150 |
|
|
always @(posedge clk)
|
151 |
|
|
if (ce) begin
|
152 |
|
|
fract3a <= {p33,p31,p20,p00};
|
153 |
|
|
fract3b <= {p32,p12,p10,17'b0} + {p23,p03,p01,17'b0};
|
154 |
|
|
fract3c <= {p22,p11,34'b0} + {p13,p02,34'b0};
|
155 |
|
|
fract3d <= {p12,51'b0} + {p03,51'b0};
|
156 |
|
|
end
|
157 |
|
|
always @(posedge clk)
|
158 |
|
|
if (ce) begin
|
159 |
|
|
fract4a <= fract3a + fract3b;
|
160 |
|
|
fract4b <= fract3c + fract3d;
|
161 |
|
|
end
|
162 |
|
|
always @(posedge clk)
|
163 |
|
|
if (ce) begin
|
164 |
|
|
fract5 <= fract4a + fract4b;
|
165 |
|
|
end
|
166 |
|
|
end
|
167 |
|
|
else if (FPWID==80) begin
|
168 |
|
|
reg [31:0] p00,p01,p02,p03;
|
169 |
|
|
reg [31:0] p10,p11,p12,p13;
|
170 |
|
|
reg [31:0] p20,p21,p22,p23;
|
171 |
|
|
reg [31:0] p30,p31,p32,p33;
|
172 |
|
|
reg [127:0] fract3a;
|
173 |
|
|
reg [127:0] fract3b;
|
174 |
|
|
reg [127:0] fract3c;
|
175 |
|
|
reg [127:0] fract3d;
|
176 |
|
|
reg [127:0] fract4a;
|
177 |
|
|
reg [127:0] fract4b;
|
178 |
|
|
|
179 |
|
|
always @(posedge clk)
|
180 |
|
|
if (ce) begin
|
181 |
|
|
p00 <= fracta1[15: 0] * fractb1[15: 0];
|
182 |
|
|
p01 <= fracta1[31:16] * fractb1[15: 0];
|
183 |
|
|
p02 <= fracta1[47:32] * fractb1[15: 0];
|
184 |
|
|
p03 <= fracta1[63:48] * fractb1[15: 0];
|
185 |
|
|
|
186 |
|
|
p10 <= fracta1[15: 0] * fractb1[31:16];
|
187 |
|
|
p11 <= fracta1[31:16] * fractb1[31:16];
|
188 |
|
|
p12 <= fracta1[47:32] * fractb1[31:16];
|
189 |
|
|
p13 <= fracta1[63:48] * fractb1[31:16];
|
190 |
|
|
|
191 |
|
|
p20 <= fracta1[15: 0] * fractb1[47:32];
|
192 |
|
|
p21 <= fracta1[31:16] * fractb1[47:32];
|
193 |
|
|
p22 <= fracta1[47:32] * fractb1[47:32];
|
194 |
|
|
p23 <= fracta1[63:48] * fractb1[47:32];
|
195 |
|
|
|
196 |
|
|
p30 <= fracta1[15: 0] * fractb1[63:48];
|
197 |
|
|
p31 <= fracta1[31:16] * fractb1[63:48];
|
198 |
|
|
p32 <= fracta1[47:32] * fractb1[63:48];
|
199 |
|
|
p33 <= fracta1[63:48] * fractb1[63:48];
|
200 |
|
|
end
|
201 |
|
|
always @(posedge clk)
|
202 |
|
|
if (ce) begin
|
203 |
|
|
fract3a <= {p33,p31,p20,p00};
|
204 |
|
|
fract3b <= {p32,p12,p10,16'b0} + {p23,p03,p01,16'b0};
|
205 |
|
|
fract3c <= {p22,p11,32'b0} + {p13,p02,32'b0};
|
206 |
|
|
fract3d <= {p12,48'b0} + {p03,48'b0};
|
207 |
|
|
end
|
208 |
|
|
always @(posedge clk)
|
209 |
|
|
if (ce) begin
|
210 |
|
|
fract4a <= fract3a + fract3b;
|
211 |
|
|
fract4b <= fract3c + fract3d;
|
212 |
|
|
end
|
213 |
|
|
always @(posedge clk)
|
214 |
|
|
if (ce) begin
|
215 |
|
|
fract5 <= fract4a + fract4b;
|
216 |
|
|
end
|
217 |
|
|
end
|
218 |
|
|
else if (FPWID==64) begin
|
219 |
|
|
reg [35:0] p00,p01,p02;
|
220 |
|
|
reg [35:0] p10,p11,p12;
|
221 |
|
|
reg [35:0] p20,p21,p22;
|
222 |
|
|
reg [71:0] fract3a;
|
223 |
|
|
reg [89:0] fract3b;
|
224 |
|
|
reg [107:0] fract3c;
|
225 |
|
|
reg [108:0] fract4a;
|
226 |
|
|
reg [108:0] fract4b;
|
227 |
|
|
|
228 |
|
|
always @(posedge clk)
|
229 |
|
|
if (ce) begin
|
230 |
|
|
p00 <= fracta1[17: 0] * fractb1[17: 0];
|
231 |
|
|
p01 <= fracta1[35:18] * fractb1[17: 0];
|
232 |
|
|
p02 <= fracta1[52:36] * fractb1[17: 0];
|
233 |
|
|
p10 <= fracta1[17: 0] * fractb1[35:18];
|
234 |
|
|
p11 <= fracta1[35:18] * fractb1[35:18];
|
235 |
|
|
p12 <= fracta1[52:36] * fractb1[35:18];
|
236 |
|
|
p20 <= fracta1[17: 0] * fractb1[52:36];
|
237 |
|
|
p21 <= fracta1[35:18] * fractb1[52:36];
|
238 |
|
|
p22 <= fracta1[52:36] * fractb1[52:36];
|
239 |
|
|
end
|
240 |
|
|
always @(posedge clk)
|
241 |
|
|
if (ce) begin
|
242 |
|
|
fract3a <= {p02,p00};
|
243 |
|
|
fract3b <= {p21,p10,18'b0} + {p12,p01,18'b0};
|
244 |
|
|
fract3c <= {p22,p20,36'b0} + {p11,36'b0};
|
245 |
|
|
end
|
246 |
|
|
always @(posedge clk)
|
247 |
|
|
if (ce) begin
|
248 |
|
|
fract4a <= fract3a + fract3b;
|
249 |
|
|
fract4b <= fract3c;
|
250 |
|
|
end
|
251 |
|
|
always @(posedge clk)
|
252 |
|
|
if (ce) begin
|
253 |
|
|
fract5 <= fract4a + fract4b;
|
254 |
|
|
end
|
255 |
|
|
end
|
256 |
|
|
else if (FPWID==40) begin
|
257 |
|
|
reg [27:0] p00,p01,p02;
|
258 |
|
|
reg [27:0] p10,p11,p12;
|
259 |
|
|
reg [27:0] p20,p21,p22;
|
260 |
|
|
reg [79:0] fract3a;
|
261 |
|
|
reg [79:0] fract3b;
|
262 |
|
|
reg [79:0] fract3c;
|
263 |
|
|
reg [79:0] fract4a;
|
264 |
|
|
reg [79:0] fract4b;
|
265 |
|
|
always @(posedge clk)
|
266 |
|
|
if (ce) begin
|
267 |
|
|
p00 <= fracta1[13: 0] * fractb1[13: 0];
|
268 |
|
|
p01 <= fracta1[27:14] * fractb1[13: 0];
|
269 |
|
|
p02 <= fracta1[39:28] * fractb1[13: 0];
|
270 |
|
|
p10 <= fracta1[13: 0] * fractb1[27:14];
|
271 |
|
|
p11 <= fracta1[27:14] * fractb1[27:14];
|
272 |
|
|
p12 <= fracta1[39:28] * fractb1[27:14];
|
273 |
|
|
p20 <= fracta1[13: 0] * fractb1[39:28];
|
274 |
|
|
p21 <= fracta1[27:14] * fractb1[39:28];
|
275 |
|
|
p22 <= fracta1[39:28] * fractb1[39:28];
|
276 |
|
|
end
|
277 |
|
|
always @(posedge clk)
|
278 |
|
|
if (ce) begin
|
279 |
|
|
fract3a <= {p02,p00};
|
280 |
|
|
fract3b <= {p21,p10,18'b0} + {p12,p01,18'b0};
|
281 |
|
|
fract3c <= {p22,p20,36'b0} + {p11,36'b0};
|
282 |
|
|
end
|
283 |
|
|
always @(posedge clk)
|
284 |
|
|
if (ce) begin
|
285 |
|
|
fract4a <= fract3a + fract3b;
|
286 |
|
|
fract4b <= fract3c;
|
287 |
|
|
end
|
288 |
|
|
always @(posedge clk)
|
289 |
|
|
if (ce) begin
|
290 |
|
|
fract5 <= fract4a + fract4b;
|
291 |
|
|
end
|
292 |
|
|
end
|
293 |
|
|
else if (FPWID==32) begin
|
294 |
|
|
reg [23:0] p00,p01,p02;
|
295 |
|
|
reg [23:0] p10,p11,p12;
|
296 |
|
|
reg [23:0] p20,p21,p22;
|
297 |
|
|
reg [63:0] fract3a;
|
298 |
|
|
reg [63:0] fract3b;
|
299 |
|
|
reg [63:0] fract4;
|
300 |
|
|
|
301 |
|
|
always @(posedge clk)
|
302 |
|
|
if (ce) begin
|
303 |
|
|
p00 <= fracta1[11: 0] * fractb1[11: 0];
|
304 |
|
|
p01 <= fracta1[23:12] * fractb1[11: 0];
|
305 |
|
|
p10 <= fracta1[11: 0] * fractb1[23:12];
|
306 |
|
|
p11 <= fracta1[23:12] * fractb1[23:12];
|
307 |
|
|
end
|
308 |
|
|
always @(posedge clk)
|
309 |
|
|
if (ce) begin
|
310 |
|
|
fract3a <= {p11,p00};
|
311 |
|
|
fract3b <= {p01,12'b0} + {p10,12'b0};
|
312 |
|
|
end
|
313 |
|
|
always @(posedge clk)
|
314 |
|
|
if (ce) begin
|
315 |
|
|
fract4 <= fract3a + fract3b;
|
316 |
|
|
end
|
317 |
|
|
always @(posedge clk)
|
318 |
|
|
if (ce) begin
|
319 |
|
|
fract5 <= fract4;
|
320 |
|
|
end
|
321 |
|
|
end
|
322 |
|
|
else begin
|
323 |
|
|
reg [FX:0] p00;
|
324 |
|
|
reg [FX:0] fract3;
|
325 |
|
|
reg [FX:0] fract4;
|
326 |
|
|
always @(posedge clk)
|
327 |
|
|
if (ce) begin
|
328 |
|
|
p00 <= fracta1 * fractb1;
|
329 |
|
|
end
|
330 |
|
|
always @(posedge clk)
|
331 |
|
|
if (ce)
|
332 |
|
|
fract3 <= p00;
|
333 |
|
|
always @(posedge clk)
|
334 |
|
|
if (ce)
|
335 |
|
|
fract4 <= fract3;
|
336 |
|
|
always @(posedge clk)
|
337 |
|
|
if (ce)
|
338 |
|
|
fract5 <= fract4;
|
339 |
|
|
end
|
340 |
|
|
endgenerate
|
341 |
|
|
|
342 |
|
|
// -----------------------------------------------------------
|
343 |
|
|
// Clock #3
|
344 |
|
|
// Select zero exponent
|
345 |
|
|
// -----------------------------------------------------------
|
346 |
|
|
|
347 |
|
|
reg [EMSB+2:0] ex3;
|
348 |
|
|
reg [EMSB:0] xc3;
|
349 |
|
|
always @(posedge clk)
|
350 |
|
|
if (ce) ex3 <= abz2 ? 1'd0 : ex2;
|
351 |
|
|
always @(posedge clk)
|
352 |
|
|
if (ce) xc3 <= xc2;
|
353 |
|
|
|
354 |
|
|
// -----------------------------------------------------------
|
355 |
|
|
// Clock #4
|
356 |
|
|
// Generate partial products.
|
357 |
|
|
// -----------------------------------------------------------
|
358 |
|
|
|
359 |
|
|
reg [EMSB+2:0] ex4;
|
360 |
|
|
reg [EMSB:0] xc4;
|
361 |
|
|
|
362 |
|
|
always @(posedge clk)
|
363 |
|
|
if (ce) ex4 <= ex3;
|
364 |
|
|
always @(posedge clk)
|
365 |
|
|
if (ce) xc4 <= xc3;
|
366 |
|
|
|
367 |
|
|
// -----------------------------------------------------------
|
368 |
|
|
// Clock #5
|
369 |
|
|
// Sum partial products (above)
|
370 |
|
|
// compute multiplier overflow and underflow
|
371 |
|
|
// -----------------------------------------------------------
|
372 |
|
|
|
373 |
|
|
// Status
|
374 |
|
|
reg under5;
|
375 |
|
|
reg over5;
|
376 |
|
|
reg [EMSB+2:0] ex5;
|
377 |
|
|
reg [EMSB:0] xc5;
|
378 |
|
|
wire aInf5, bInf5;
|
379 |
|
|
wire aNan5, bNan5;
|
380 |
|
|
wire qNaNOut5;
|
381 |
|
|
|
382 |
|
|
always @(posedge clk)
|
383 |
|
|
if (ce) under5 <= ex4[EMSB+2];
|
384 |
|
|
always @(posedge clk)
|
385 |
|
|
if (ce) over5 <= (&ex4[EMSB:0] | ex4[EMSB+1]) & !ex4[EMSB+2];
|
386 |
|
|
always @(posedge clk)
|
387 |
|
|
if (ce) ex5 <= ex4;
|
388 |
|
|
always @(posedge clk)
|
389 |
|
|
if (ce) xc5 <= xc4;
|
390 |
|
|
|
391 |
|
|
delay4 u2a (.clk(clk), .ce(ce), .i(aInf1), .o(aInf5) );
|
392 |
|
|
delay4 u2b (.clk(clk), .ce(ce), .i(bInf1), .o(bInf5) );
|
393 |
|
|
|
394 |
|
|
// determine when a NaN is output
|
395 |
|
|
wire [MSB:0] a5,b5;
|
396 |
|
|
delay4 u5 (.clk(clk), .ce(ce), .i((aInf1&bz1)|(bInf1&az1)), .o(qNaNOut5) );
|
397 |
|
|
delay4 u14 (.clk(clk), .ce(ce), .i(aNan1), .o(aNan5) );
|
398 |
|
|
delay4 u15 (.clk(clk), .ce(ce), .i(bNan1), .o(bNan5) );
|
399 |
|
|
delay5 #(MSB+1) u16 (.clk(clk), .ce(ce), .i(a), .o(a5) );
|
400 |
|
|
delay5 #(MSB+1) u17 (.clk(clk), .ce(ce), .i(b), .o(b5) );
|
401 |
|
|
|
402 |
|
|
// -----------------------------------------------------------
|
403 |
|
|
// Clock #6
|
404 |
|
|
// - figure multiplier mantissa output
|
405 |
|
|
// - figure multiplier exponent output
|
406 |
|
|
// - correct xponent and mantissa for exceptional conditions
|
407 |
|
|
// -----------------------------------------------------------
|
408 |
|
|
|
409 |
|
|
reg [FX:0] mo6;
|
410 |
|
|
reg [EMSB+2:0] ex6;
|
411 |
|
|
reg [EMSB:0] xc6;
|
412 |
|
|
wire [FMSB+1:0] fractc6;
|
413 |
|
|
vtdl #(FMSB+2) u61 (.clk(clk), .ce(ce), .a(4'd4), .d(fractc1), .q(fractc6) );
|
414 |
|
|
delay1 u62 (.clk(clk), .ce(ce), .i(under5), .o(under6));
|
415 |
|
|
|
416 |
|
|
always @(posedge clk)
|
417 |
|
|
if (ce) xc6 <= xc5;
|
418 |
|
|
|
419 |
|
|
always @(posedge clk)
|
420 |
|
|
if (ce)
|
421 |
|
|
casez({aNan5,bNan5,qNaNOut5,aInf5,bInf5,over5})
|
422 |
|
|
6'b1?????: mo6 <= {1'b1,1'b1,a5[FMSB-1:0],{FMSB+1{1'b0}}};
|
423 |
|
|
6'b01????: mo6 <= {1'b1,1'b1,b5[FMSB-1:0],{FMSB+1{1'b0}}};
|
424 |
|
|
6'b001???: mo6 <= {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero
|
425 |
|
|
6'b0001??: mo6 <= 0; // mul inf's
|
426 |
|
|
6'b00001?: mo6 <= 0; // mul inf's
|
427 |
|
|
6'b000001: mo6 <= 0; // mul overflow
|
428 |
|
|
default: mo6 <= fract5;
|
429 |
|
|
endcase
|
430 |
|
|
|
431 |
|
|
always @(posedge clk)
|
432 |
|
|
if (ce)
|
433 |
|
|
casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5})
|
434 |
|
|
5'b1????: ex6 <= infXp; // qNaN - infinity * zero
|
435 |
|
|
5'b01???: ex6 <= infXp; // 'a' infinite
|
436 |
|
|
5'b001??: ex6 <= infXp; // 'b' infinite
|
437 |
|
|
5'b0001?: ex6 <= infXp; // result overflow
|
438 |
|
|
5'b00001: ex6 <= ex5; //0; // underflow
|
439 |
|
|
default: ex6 <= ex5; // situation normal
|
440 |
|
|
endcase
|
441 |
|
|
|
442 |
|
|
// -----------------------------------------------------------
|
443 |
|
|
// Clock #7
|
444 |
|
|
// - prep for addition, determine greater operand
|
445 |
|
|
// -----------------------------------------------------------
|
446 |
|
|
reg ex_gt_xc7;
|
447 |
|
|
reg xeq7;
|
448 |
|
|
reg ma_gt_mc7;
|
449 |
|
|
reg meq7;
|
450 |
|
|
wire az7, bz7, cz7;
|
451 |
|
|
wire realOp7;
|
452 |
|
|
|
453 |
|
|
// which has greater magnitude ? Used for sign calc
|
454 |
|
|
always @(posedge clk)
|
455 |
|
|
if (ce) ex_gt_xc7 <= $signed(ex6) > $signed({2'b0,xc6});
|
456 |
|
|
always @(posedge clk)
|
457 |
|
|
if (ce) xeq7 <= (ex6=={2'b0,xc6});
|
458 |
|
|
always @(posedge clk)
|
459 |
|
|
if (ce) ma_gt_mc7 <= mo6 > {fractc6,{FMSB+1{1'b0}}};
|
460 |
|
|
always @(posedge clk)
|
461 |
|
|
if (ce) meq7 <= mo6 == {fractc6,{FMSB+1{1'b0}}};
|
462 |
|
|
vtdl #(1) u71 (.clk(clk), .ce(ce), .a(4'd5), .d(az1), .q(az7));
|
463 |
|
|
vtdl #(1) u72 (.clk(clk), .ce(ce), .a(4'd5), .d(bz1), .q(bz7));
|
464 |
|
|
vtdl #(1) u73 (.clk(clk), .ce(ce), .a(4'd5), .d(cz1), .q(cz7));
|
465 |
|
|
vtdl #(1) u74 (.clk(clk), .ce(ce), .a(4'd4), .d(realOp2), .q(realOp7));
|
466 |
|
|
|
467 |
|
|
// -----------------------------------------------------------
|
468 |
|
|
// Clock #8
|
469 |
|
|
// - prep for addition, determine greater operand
|
470 |
|
|
// - determine if result will be zero
|
471 |
|
|
// -----------------------------------------------------------
|
472 |
|
|
|
473 |
|
|
reg a_gt_b8;
|
474 |
|
|
reg resZero8;
|
475 |
|
|
reg ex_gt_xc8;
|
476 |
|
|
wire [EMSB+2:0] ex8;
|
477 |
|
|
wire [EMSB:0] xc8;
|
478 |
|
|
wire xcInf8;
|
479 |
|
|
wire [2:0] rm8;
|
480 |
|
|
wire op8;
|
481 |
|
|
wire sa8, sc8;
|
482 |
|
|
|
483 |
|
|
delay2 #(EMSB+3) u81 (.clk(clk), .ce(ce), .i(ex6), .o(ex8));
|
484 |
|
|
delay2 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xc6), .o(xc8));
|
485 |
|
|
vtdl #(1) u83 (.clk(clk), .ce(ce), .a(4'd5), .d(xcInf2), .q(xcInf8));
|
486 |
|
|
vtdl #(3) u84 (.clk(clk), .ce(ce), .a(4'd7), .d(rm), .q(rm8));
|
487 |
|
|
vtdl #(1) u85 (.clk(clk), .ce(ce), .a(4'd6), .d(op1), .q(op8));
|
488 |
|
|
vtdl #(1) u86 (.clk(clk), .ce(ce), .a(4'd6), .d(sa1 ^ sb1), .q(sa8));
|
489 |
|
|
vtdl #(1) u87 (.clk(clk), .ce(ce), .a(4'd6), .d(sc1), .q(sc8));
|
490 |
|
|
|
491 |
|
|
always @(posedge clk)
|
492 |
|
|
if (ce) ex_gt_xc8 <= ex_gt_xc7;
|
493 |
|
|
always @(posedge clk)
|
494 |
|
|
if (ce)
|
495 |
|
|
a_gt_b8 <= ex_gt_xc7 || (xeq7 && ma_gt_mc7);
|
496 |
|
|
|
497 |
|
|
// Find out if the result will be zero.
|
498 |
|
|
always @(posedge clk)
|
499 |
|
|
if (ce)
|
500 |
|
|
resZero8 <= (realOp7 & xeq7 & meq7) || // subtract, same magnitude
|
501 |
|
|
((az7 | bz7) & cz7); // a or b zero and c zero
|
502 |
|
|
|
503 |
|
|
// -----------------------------------------------------------
|
504 |
|
|
// CLock #9
|
505 |
|
|
// Compute output exponent and sign
|
506 |
|
|
//
|
507 |
|
|
// The output exponent is the larger of the two exponents,
|
508 |
|
|
// unless a subtract operation is in progress and the two
|
509 |
|
|
// numbers are equal, in which case the exponent should be
|
510 |
|
|
// zero.
|
511 |
|
|
// -----------------------------------------------------------
|
512 |
|
|
|
513 |
|
|
reg so9;
|
514 |
|
|
reg [EMSB+2:0] ex9;
|
515 |
|
|
reg [EMSB+2:0] ex9a;
|
516 |
|
|
reg ex_gt_xc9;
|
517 |
|
|
reg [EMSB:0] xc9;
|
518 |
|
|
reg a_gt_c9;
|
519 |
|
|
wire [FX:0] mo9;
|
520 |
|
|
wire [FMSB+1:0] fractc9;
|
521 |
|
|
wire under9;
|
522 |
|
|
wire xeq9;
|
523 |
|
|
|
524 |
|
|
always @(posedge clk)
|
525 |
|
|
if (ce) ex_gt_xc9 <= ex_gt_xc8;
|
526 |
|
|
always @(posedge clk)
|
527 |
|
|
if (ce) a_gt_c9 <= a_gt_b8;
|
528 |
|
|
always @(posedge clk)
|
529 |
|
|
if (ce) xc9 <= xc8;
|
530 |
|
|
always @(posedge clk)
|
531 |
|
|
if (ce) ex9a <= ex8;
|
532 |
|
|
|
533 |
|
|
delay3 #(FX+1) u93 (.clk(clk), .ce(ce), .i(mo6), .o(mo9));
|
534 |
|
|
delay3 #(FMSB+2) u94 (.clk(clk), .ce(ce), .i(fractc6), .o(fractc9));
|
535 |
|
|
delay3 u95 (.clk(clk), .ce(ce), .i(under6), .o(under9));
|
536 |
|
|
delay2 u96 (.clk(clk), .ce(ce), .i(xeq7), .o(xeq9));
|
537 |
|
|
|
538 |
|
|
always @(posedge clk)
|
539 |
|
|
if (ce) ex9 <= resZero8 ? 1'd0 : ex_gt_xc8 ? ex8 : {2'b0,xc8};
|
540 |
|
|
|
541 |
|
|
// Compute output sign
|
542 |
|
|
always @(posedge clk)
|
543 |
|
|
if (ce)
|
544 |
|
|
case ({resZero8,sa8,op8,sc8}) // synopsys full_case parallel_case
|
545 |
|
|
4'b0000: so9 <= 0; // + + + = +
|
546 |
|
|
4'b0001: so9 <= !a_gt_b8; // + + - = sign of larger
|
547 |
|
|
4'b0010: so9 <= !a_gt_b8; // + - + = sign of larger
|
548 |
|
|
4'b0011: so9 <= 0; // + - - = +
|
549 |
|
|
4'b0100: so9 <= a_gt_b8; // - + + = sign of larger
|
550 |
|
|
4'b0101: so9 <= 1; // - + - = -
|
551 |
|
|
4'b0110: so9 <= 1; // - - + = -
|
552 |
|
|
4'b0111: so9 <= a_gt_b8; // - - - = sign of larger
|
553 |
|
|
4'b1000: so9 <= 0; // A + B, sign = +
|
554 |
|
|
4'b1001: so9 <= rm8==3; // A + -B, sign = + unless rounding down
|
555 |
|
|
4'b1010: so9 <= rm8==3; // A - B, sign = + unless rounding down
|
556 |
|
|
4'b1011: so9 <= 0; // +A - -B, sign = +
|
557 |
|
|
4'b1100: so9 <= rm8==3; // -A + B, sign = + unless rounding down
|
558 |
|
|
4'b1101: so9 <= 1; // -A + -B, sign = -
|
559 |
|
|
4'b1110: so9 <= 1; // -A - +B, sign = -
|
560 |
|
|
4'b1111: so9 <= rm8==3; // -A - -B, sign = + unless rounding down
|
561 |
|
|
endcase
|
562 |
|
|
|
563 |
|
|
// -----------------------------------------------------------
|
564 |
|
|
// Clock #10
|
565 |
|
|
// Compute the difference in exponents, provides shift amount
|
566 |
|
|
// Note that ex9a will be negative for an underflow condition
|
567 |
|
|
// so it's added rather than subtracted from xc9 as -(-num)
|
568 |
|
|
// is the same as an add. The underflow is tracked rather than
|
569 |
|
|
// using extra bits in the exponent.
|
570 |
|
|
// -----------------------------------------------------------
|
571 |
|
|
reg [EMSB+2:0] xdiff10;
|
572 |
|
|
reg [FX:0] mfs;
|
573 |
|
|
reg ops10;
|
574 |
|
|
|
575 |
|
|
// If the multiplier exponent was negative (underflowed) then
|
576 |
|
|
// the mantissa needs to be shifted right even more (until
|
577 |
|
|
// the exponent is zero. The total shift would be xc9-0-
|
578 |
|
|
// amount underflows which is xc9 + -ex9a.
|
579 |
|
|
|
580 |
|
|
always @(posedge clk)
|
581 |
|
|
if (ce) xdiff10 <= ex_gt_xc9 ? ex9a - xc9
|
582 |
|
|
: ex9a[EMSB+2] ? xc9 + (~ex9a+2'd1)
|
583 |
|
|
: xc9 - ex9a;
|
584 |
|
|
|
585 |
|
|
// Determine which fraction to denormalize (the one with the
|
586 |
|
|
// smaller exponent is denormalized). If the exponents are equal
|
587 |
|
|
// denormalize the smaller fraction.
|
588 |
|
|
always @(posedge clk)
|
589 |
|
|
if (ce) mfs <=
|
590 |
|
|
xeq9 ? (a_gt_c9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9)
|
591 |
|
|
: ex_gt_xc9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9;
|
592 |
|
|
|
593 |
|
|
always @(posedge clk)
|
594 |
|
|
if (ce) ops10 <= xeq9 ? (a_gt_c9 ? 1'b1 : 1'b0)
|
595 |
|
|
: (ex_gt_xc9 ? 1'b1 : 1'b0);
|
596 |
|
|
|
597 |
|
|
// -----------------------------------------------------------
|
598 |
|
|
// Clock #11
|
599 |
|
|
// Limit the size of the shifter to only bits needed.
|
600 |
|
|
// -----------------------------------------------------------
|
601 |
|
|
reg [7:0] xdif11;
|
602 |
|
|
|
603 |
|
|
always @(posedge clk)
|
604 |
|
|
if (ce) xdif11 <= xdiff10 > FX+3 ? FX+3 : xdiff10;
|
605 |
|
|
|
606 |
|
|
// -----------------------------------------------------------
|
607 |
|
|
// Clock #12
|
608 |
|
|
// Determine the sticky bit
|
609 |
|
|
// -----------------------------------------------------------
|
610 |
|
|
|
611 |
|
|
wire sticky, sticky12;
|
612 |
|
|
wire [FX:0] mfs12;
|
613 |
|
|
wire [7:0] xdif12;
|
614 |
|
|
|
615 |
|
|
generate
|
616 |
|
|
begin
|
617 |
|
|
if (FPWID==128)
|
618 |
|
|
redor128 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
619 |
|
|
else if (FPWID==96)
|
620 |
|
|
redor96 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
621 |
|
|
else if (FPWID==84)
|
622 |
|
|
redor84 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
623 |
|
|
else if (FPWID==80)
|
624 |
|
|
redor80 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
625 |
|
|
else if (FPWID==64)
|
626 |
|
|
redor64 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
627 |
|
|
else if (FPWID==32)
|
628 |
|
|
redor32 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
629 |
|
|
else begin
|
630 |
|
|
always @* begin
|
631 |
|
|
$display("redor operation needed in fpFMA");
|
632 |
|
|
$finish;
|
633 |
|
|
end
|
634 |
|
|
end
|
635 |
|
|
end
|
636 |
|
|
endgenerate
|
637 |
|
|
|
638 |
|
|
// register inputs to shifter and shift
|
639 |
|
|
delay1 #(1) u122(.clk(clk), .ce(ce), .i(sticky), .o(sticky12) );
|
640 |
|
|
delay1 #(8) u123(.clk(clk), .ce(ce), .i(xdif11), .o(xdif12) );
|
641 |
|
|
delay2 #(FX+1) u124(.clk(clk), .ce(ce), .i(mfs), .o(mfs12) );
|
642 |
|
|
|
643 |
|
|
// -----------------------------------------------------------
|
644 |
|
|
// Clock #13
|
645 |
|
|
// - denormalize operand (shift right)
|
646 |
|
|
// -----------------------------------------------------------
|
647 |
|
|
reg [FX+2:0] mfs13;
|
648 |
|
|
wire [FX:0] mo13;
|
649 |
|
|
wire ex_gt_xc13;
|
650 |
|
|
wire [FMSB+1:0] fractc13;
|
651 |
|
|
wire ops13;
|
652 |
|
|
|
653 |
|
|
delay4 #(FX+1) u131 (.clk(clk), .ce(ce), .i(mo9), .o(mo13));
|
654 |
|
|
delay4 u132 (.clk(clk), .ce(ce), .i(ex_gt_xc9), .o(ex_gt_xc13));
|
655 |
|
|
vtdl #(FMSB+2) u133 (.clk(clk), .ce(ce), .a(4'd3), .d(fractc9), .q(fractc13));
|
656 |
|
|
delay3 u134 (.clk(clk), .ce(ce), .i(ops10), .o(ops13));
|
657 |
|
|
|
658 |
|
|
always @(posedge clk)
|
659 |
|
|
if (ce) mfs13 <= ({mfs12,2'b0} >> xdif12)|sticky12;
|
660 |
|
|
|
661 |
|
|
// -----------------------------------------------------------
|
662 |
|
|
// Clock #14
|
663 |
|
|
// Sort operands
|
664 |
|
|
// -----------------------------------------------------------
|
665 |
|
|
reg [FX+2:0] oa, ob;
|
666 |
|
|
wire a_gt_b14;
|
667 |
|
|
|
668 |
|
|
vtdl #(1) u141 (.clk(clk), .ce(ce), .a(4'd5), .d(a_gt_b8), .q(a_gt_b14));
|
669 |
|
|
|
670 |
|
|
always @(posedge clk)
|
671 |
|
|
if (ce) oa <= ops13 ? {mo13,2'b00} : mfs13;
|
672 |
|
|
always @(posedge clk)
|
673 |
|
|
if (ce) ob <= ops13 ? mfs13 : {fractc13,{FMSB+1{1'b0}},2'b00};
|
674 |
|
|
|
675 |
|
|
// -----------------------------------------------------------
|
676 |
|
|
// Clock #15
|
677 |
|
|
// - Sort operands
|
678 |
|
|
// -----------------------------------------------------------
|
679 |
|
|
reg [FX+2:0] oaa, obb;
|
680 |
|
|
wire realOp15;
|
681 |
|
|
wire [EMSB:0] ex15;
|
682 |
|
|
wire [EMSB:0] ex9c = ex9[EMSB+1] ? infXp : ex9[EMSB:0];
|
683 |
|
|
wire overflow15;
|
684 |
|
|
vtdl #(1) u151 (.clk(clk), .ce(ce), .a(4'd7), .d(realOp7), .q(realOp15));
|
685 |
|
|
vtdl #(EMSB+1) u152 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9c), .q(ex15));
|
686 |
|
|
vtdl #(EMSB+1) u153 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9[EMSB+1]| &ex9[EMSB:0]), .q(overflow15));
|
687 |
|
|
|
688 |
|
|
always @(posedge clk)
|
689 |
|
|
if (ce) oaa <= a_gt_b14 ? oa : ob;
|
690 |
|
|
always @(posedge clk)
|
691 |
|
|
if (ce) obb <= a_gt_b14 ? ob : oa;
|
692 |
|
|
|
693 |
|
|
// -----------------------------------------------------------
|
694 |
|
|
// Clock #16
|
695 |
|
|
// - perform add/subtract
|
696 |
|
|
// - addition can generate an extra bit, subtract can't go negative
|
697 |
|
|
// -----------------------------------------------------------
|
698 |
|
|
reg [FX+3:0] mab;
|
699 |
|
|
wire [FX:0] mo16;
|
700 |
|
|
wire [FMSB+1:0] fractc16;
|
701 |
|
|
wire Nan16;
|
702 |
|
|
wire cNan16;
|
703 |
|
|
wire aInf16, cInf16;
|
704 |
|
|
wire op16;
|
705 |
|
|
wire exinf16;
|
706 |
|
|
|
707 |
|
|
vtdl #(1) u161 (.clk(clk), .ce(ce), .a(4'd10), .d(qNaNOut5|aNan5|bNan5), .q(Nan16));
|
708 |
|
|
vtdl #(1) u162 (.clk(clk), .ce(ce), .a(4'd14), .d(cNan1), .q(cNan16));
|
709 |
|
|
vtdl #(1) u163 (.clk(clk), .ce(ce), .a(4'd9), .d(&ex6), .q(aInf16));
|
710 |
|
|
vtdl #(1) u164 (.clk(clk), .ce(ce), .a(4'd14), .d(cInf1), .q(cInf16));
|
711 |
|
|
vtdl #(1) u165 (.clk(clk), .ce(ce), .a(4'd14), .d(op1), .q(op16));
|
712 |
|
|
delay3 #(FX+1) u166 (.clk(clk), .ce(ce), .i(mo13), .o(mo16));
|
713 |
|
|
vtdl #(FMSB+2) u167 (.clk(clk), .ce(ce), .a(4'd6), .d(fractc9), .q(fractc16));
|
714 |
|
|
delay1 u169 (.clk(clk), .ce(ce), .i(&ex15), .o(exinf16));
|
715 |
|
|
|
716 |
|
|
always @(posedge clk)
|
717 |
|
|
if (ce) mab <= realOp15 ? oaa - obb : oaa + obb;
|
718 |
|
|
|
719 |
|
|
// -----------------------------------------------------------
|
720 |
|
|
// Clock #17
|
721 |
|
|
// - adjust for Nans
|
722 |
|
|
// -----------------------------------------------------------
|
723 |
|
|
wire [EMSB:0] ex17;
|
724 |
|
|
reg [FX:0] mo17;
|
725 |
|
|
wire so17;
|
726 |
|
|
wire exinf17;
|
727 |
|
|
wire overflow17;
|
728 |
|
|
|
729 |
|
|
vtdl #(1) u171 (.clk(clk), .ce(ce), .a(4'd7), .d(so9), .q(so17));
|
730 |
|
|
delay2 #(EMSB+1) u172 (.clk(clk), .ce(ce), .i(ex15), .o(ex17));
|
731 |
|
|
delay1 #(1) u173 (.clk(clk), .ce(ce), .i(exinf16), .o(exinf17));
|
732 |
|
|
delay2 u174 (.clk(clk), .ce(ce), .i(overflow15), .o(overflow17));
|
733 |
|
|
|
734 |
|
|
always @(posedge clk)
|
735 |
|
|
casez({aInf16&cInf16,Nan16,cNan16,exinf16})
|
736 |
|
|
4'b1???: mo17 <= {1'b0,op16,{FMSB-1{1'b0}},op16,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
737 |
|
|
4'b01??: mo17 <= {1'b0,mo16};
|
738 |
|
|
4'b001?: mo17 <= {1'b1,1'b1,fractc16[FMSB-1:0],{FMSB+1{1'b0}}};
|
739 |
|
|
4'b0001: mo17 <= 1'd0;
|
740 |
|
|
default: mo17 <= mab[FX+3:2]; // mab has two extra lead bits and two trailing bits
|
741 |
|
|
endcase
|
742 |
|
|
|
743 |
|
|
assign o = {so17,ex17,mo17};
|
744 |
|
|
assign zero = {ex17,mo17}==1'd0;
|
745 |
|
|
assign inf = exinf17;
|
746 |
|
|
assign under = ex17==1'd0;
|
747 |
|
|
assign over = overflow17;
|
748 |
|
|
|
749 |
|
|
endmodule
|
750 |
|
|
|
751 |
|
|
|
752 |
|
|
// Multiplier with normalization and rounding.
|
753 |
|
|
|
754 |
|
|
module fpFMAnr(clk, ce, op, rm, a, b, c, o, inf, zero, overflow, underflow, inexact);
|
755 |
|
|
input clk;
|
756 |
|
|
input ce;
|
757 |
|
|
input op;
|
758 |
|
|
input [2:0] rm;
|
759 |
|
|
input [MSB:0] a, b, c;
|
760 |
|
|
output [MSB:0] o;
|
761 |
|
|
output zero;
|
762 |
|
|
output inf;
|
763 |
|
|
output overflow;
|
764 |
|
|
output underflow;
|
765 |
|
|
output inexact;
|
766 |
|
|
|
767 |
|
|
wire [EX:0] fma_o;
|
768 |
|
|
wire fma_underflow;
|
769 |
|
|
wire fma_overflow;
|
770 |
|
|
wire norm_underflow;
|
771 |
|
|
wire norm_inexact;
|
772 |
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
773 |
|
|
wire [MSB+3:0] fpn0;
|
774 |
|
|
|
775 |
|
|
fpFMA #(FPWID) u1
|
776 |
|
|
(
|
777 |
|
|
.clk(clk),
|
778 |
|
|
.ce(ce),
|
779 |
|
|
.op(op),
|
780 |
|
|
.rm(rm),
|
781 |
|
|
.a(a),
|
782 |
|
|
.b(b),
|
783 |
|
|
.c(c),
|
784 |
|
|
.o(fma_o),
|
785 |
|
|
.under(fma_underflow),
|
786 |
|
|
.over(fma_overflow),
|
787 |
|
|
.zero(),
|
788 |
|
|
.inf()
|
789 |
|
|
);
|
790 |
|
|
fpNormalize #(FPWID) u2
|
791 |
|
|
(
|
792 |
|
|
.clk(clk),
|
793 |
|
|
.ce(ce),
|
794 |
|
|
.i(fma_o),
|
795 |
|
|
.o(fpn0),
|
796 |
|
|
.under_i(fma_underflow),
|
797 |
|
|
.under_o(norm_underflow),
|
798 |
|
|
.inexact_o(norm_inexact)
|
799 |
|
|
);
|
800 |
|
|
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
801 |
|
|
fpDecomp #(FPWID) u4(.i(o), .xz(), .vz(zero), .inf(inf));
|
802 |
|
|
vtdl u5 (.clk(clk), .ce(ce), .a(4'd11), .d(fma_underflow), .q(underflow));
|
803 |
|
|
vtdl u6 (.clk(clk), .ce(ce), .a(4'd11), .d(fma_overflow), .q(overflow));
|
804 |
|
|
delay3 #(1) u7 (.clk(clk), .ce(ce), .i(norm_inexact), .o(inexact));
|
805 |
|
|
assign overflow = inf;
|
806 |
|
|
|
807 |
|
|
endmodule
|
808 |
|
|
|