| 1 |
29 |
robfinch |
// ============================================================================
|
| 2 |
|
|
// __
|
| 3 |
|
|
// \\__/ o\ (C) 2019 Robert Finch, Waterloo
|
| 4 |
|
|
// \ __ / All rights reserved.
|
| 5 |
|
|
// \/_// robfinch<remove>@finitron.ca
|
| 6 |
|
|
// ||
|
| 7 |
|
|
//
|
| 8 |
|
|
// fpFMA.v
|
| 9 |
|
|
// - floating point fused multiplier + adder
|
| 10 |
|
|
// - can issue every clock cycle
|
| 11 |
|
|
// - parameterized FPWIDth
|
| 12 |
|
|
// - IEEE 754 representation
|
| 13 |
|
|
//
|
| 14 |
|
|
//
|
| 15 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
| 16 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
| 17 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
| 18 |
|
|
// (at your option) any later version.
|
| 19 |
|
|
//
|
| 20 |
|
|
// This source file is distributed in the hope that it will be useful,
|
| 21 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 22 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 23 |
|
|
// GNU General Public License for more details.
|
| 24 |
|
|
//
|
| 25 |
|
|
// You should have received a copy of the GNU General Public License
|
| 26 |
|
|
// along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 27 |
|
|
//
|
| 28 |
|
|
// ============================================================================
|
| 29 |
|
|
|
| 30 |
|
|
`include "fpConfig.sv"
|
| 31 |
|
|
|
| 32 |
|
|
module fpFMA (clk, ce, op, rm, a, b, c, o, under, over, inf, zero);
|
| 33 |
32 |
robfinch |
parameter FPWID = 128;
|
| 34 |
|
|
parameter MUL_LATENCY = FPWID==128 ? 16 :
|
| 35 |
|
|
FPWID==80 ? 16 :
|
| 36 |
|
|
FPWID==64 ? 16 :
|
| 37 |
|
|
FPWID==32 ? 5 :
|
| 38 |
|
|
1;
|
| 39 |
29 |
robfinch |
`include "fpSize.sv"
|
| 40 |
|
|
|
| 41 |
|
|
input clk;
|
| 42 |
|
|
input ce;
|
| 43 |
|
|
input op; // operation 0 = add, 1 = subtract
|
| 44 |
|
|
input [2:0] rm;
|
| 45 |
|
|
input [MSB:0] a, b, c;
|
| 46 |
|
|
output [EX:0] o;
|
| 47 |
|
|
output under;
|
| 48 |
|
|
output over;
|
| 49 |
|
|
output inf;
|
| 50 |
|
|
output zero;
|
| 51 |
|
|
|
| 52 |
|
|
// constants
|
| 53 |
|
|
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
|
| 54 |
|
|
// The following is the value for an exponent of zero, with the offset
|
| 55 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
| 56 |
|
|
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent
|
| 57 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
| 58 |
|
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
| 59 |
|
|
|
| 60 |
|
|
// -----------------------------------------------------------
|
| 61 |
|
|
// Clock #1
|
| 62 |
|
|
// - decode the input operands
|
| 63 |
|
|
// - derive basic information
|
| 64 |
|
|
// -----------------------------------------------------------
|
| 65 |
|
|
|
| 66 |
|
|
wire sa1, sb1, sc1; // sign bit
|
| 67 |
|
|
wire [EMSB:0] xa1, xb1, xc1; // exponent bits
|
| 68 |
|
|
wire [FMSB+1:0] fracta1, fractb1, fractc1; // includes unhidden bit
|
| 69 |
|
|
wire a_dn1, b_dn1, c_dn1; // a/b is denormalized
|
| 70 |
|
|
wire aNan1, bNan1, cNan1;
|
| 71 |
|
|
wire az1, bz1, cz1;
|
| 72 |
|
|
wire aInf1, bInf1, cInf1;
|
| 73 |
|
|
reg op1;
|
| 74 |
|
|
|
| 75 |
|
|
fpDecompReg #(FPWID) u1a (.clk(clk), .ce(ce), .i(a), .sgn(sa1), .exp(xa1), .fract(fracta1), .xz(a_dn1), .vz(az1), .inf(aInf1), .nan(aNan1) );
|
| 76 |
|
|
fpDecompReg #(FPWID) u1b (.clk(clk), .ce(ce), .i(b), .sgn(sb1), .exp(xb1), .fract(fractb1), .xz(b_dn1), .vz(bz1), .inf(bInf1), .nan(bNan1) );
|
| 77 |
|
|
fpDecompReg #(FPWID) u1c (.clk(clk), .ce(ce), .i(c), .sgn(sc1), .exp(xc1), .fract(fractc1), .xz(c_dn1), .vz(cz1), .inf(cInf1), .nan(cNan1) );
|
| 78 |
|
|
|
| 79 |
|
|
always @(posedge clk)
|
| 80 |
|
|
if (ce) op1 <= op;
|
| 81 |
|
|
|
| 82 |
|
|
// -----------------------------------------------------------
|
| 83 |
|
|
// Clock #2
|
| 84 |
|
|
// Compute the sum of the exponents.
|
| 85 |
|
|
// correct the exponent for denormalized operands
|
| 86 |
|
|
// adjust the sum by the exponent offset (subtract 127)
|
| 87 |
|
|
// mul: ex1 = xa + xb, result should always be < 1ffh
|
| 88 |
|
|
// Form partial products (clocks 2 to 5)
|
| 89 |
|
|
// -----------------------------------------------------------
|
| 90 |
|
|
|
| 91 |
|
|
reg abz2;
|
| 92 |
|
|
reg [EMSB+2:0] ex2;
|
| 93 |
|
|
reg [EMSB:0] xc2;
|
| 94 |
|
|
reg realOp2;
|
| 95 |
|
|
reg xcInf2;
|
| 96 |
|
|
|
| 97 |
|
|
always @(posedge clk)
|
| 98 |
|
|
if (ce) abz2 <= az1|bz1;
|
| 99 |
|
|
always @(posedge clk)
|
| 100 |
|
|
if (ce) ex2 <= (xa1|a_dn1) + (xb1|b_dn1) - bias;
|
| 101 |
|
|
always @(posedge clk)
|
| 102 |
|
|
if (ce) xc2 <= (xc1|c_dn1);
|
| 103 |
|
|
always @(posedge clk)
|
| 104 |
|
|
if (ce) xcInf2 = &xc1;
|
| 105 |
|
|
|
| 106 |
|
|
// Figure out which operation is really needed an add or
|
| 107 |
|
|
// subtract ?
|
| 108 |
|
|
// If the signs are the same, use the orignal op,
|
| 109 |
|
|
// otherwise flip the operation
|
| 110 |
|
|
// a + b = add,+
|
| 111 |
|
|
// a + -b = sub, so of larger
|
| 112 |
|
|
// -a + b = sub, so of larger
|
| 113 |
|
|
// -a + -b = add,-
|
| 114 |
|
|
// a - b = sub, so of larger
|
| 115 |
|
|
// a - -b = add,+
|
| 116 |
|
|
// -a - b = add,-
|
| 117 |
|
|
// -a - -b = sub, so of larger
|
| 118 |
|
|
always @(posedge clk)
|
| 119 |
|
|
if (ce) realOp2 <= op1 ^ (sa1 ^ sb1) ^ sc1;
|
| 120 |
|
|
|
| 121 |
|
|
|
| 122 |
32 |
robfinch |
wire [FX:0] fract17;
|
| 123 |
|
|
generate begin : gMults
|
| 124 |
|
|
// 16 clocks for multiply
|
| 125 |
|
|
if (FPWID==128) begin
|
| 126 |
|
|
mult114x114 umul1 (clk, ce, {1'b0,fracta1}, {1'b0,fractb1}, fract17[FX-1:0]);
|
| 127 |
|
|
assign fract17[FX] = 1'b0;
|
| 128 |
29 |
robfinch |
end
|
| 129 |
32 |
robfinch |
else if (FPWID==80) begin
|
| 130 |
|
|
mult64x64 umul2 (.CLK(clk), .CE(ce), .A(fracta1), .B(fractb1), .P(fract17[FX-1:0]));
|
| 131 |
|
|
assign fract17[FX] = 1'b0;
|
| 132 |
29 |
robfinch |
end
|
| 133 |
32 |
robfinch |
else if (FPWID==64) begin
|
| 134 |
|
|
mult53x53 umul3 (.CLK(clk), .CE(ce), .A(fracta1), .B(fractb1), .P(fract17[FX-1:0]));
|
| 135 |
|
|
assign fract17[FX] = 1'b0;
|
| 136 |
29 |
robfinch |
end
|
| 137 |
32 |
robfinch |
else if (FPWID==32) begin
|
| 138 |
|
|
mult24x24 umul4 (.CLK(clk), .CE(ce), .A(fracta1), .B(fractb1), .P(fract17[FX-1:0]));
|
| 139 |
|
|
assign fract17[FX] = 1'b0;
|
| 140 |
29 |
robfinch |
end
|
| 141 |
|
|
else begin
|
| 142 |
32 |
robfinch |
reg [FX:0] fract17a;
|
| 143 |
29 |
robfinch |
always @(posedge clk)
|
| 144 |
32 |
robfinch |
if (ce) fract17a <= fracta1 * fractb1;
|
| 145 |
|
|
assign fract17 = fract17a;
|
| 146 |
29 |
robfinch |
end
|
| 147 |
32 |
robfinch |
end
|
| 148 |
29 |
robfinch |
endgenerate
|
| 149 |
|
|
|
| 150 |
|
|
// -----------------------------------------------------------
|
| 151 |
|
|
// Clock #3
|
| 152 |
|
|
// Select zero exponent
|
| 153 |
|
|
// -----------------------------------------------------------
|
| 154 |
|
|
|
| 155 |
|
|
reg [EMSB+2:0] ex3;
|
| 156 |
|
|
reg [EMSB:0] xc3;
|
| 157 |
|
|
always @(posedge clk)
|
| 158 |
|
|
if (ce) ex3 <= abz2 ? 1'd0 : ex2;
|
| 159 |
|
|
always @(posedge clk)
|
| 160 |
|
|
if (ce) xc3 <= xc2;
|
| 161 |
|
|
|
| 162 |
|
|
// -----------------------------------------------------------
|
| 163 |
|
|
// Clock #4
|
| 164 |
|
|
// Generate partial products.
|
| 165 |
|
|
// -----------------------------------------------------------
|
| 166 |
|
|
|
| 167 |
|
|
reg [EMSB+2:0] ex4;
|
| 168 |
|
|
reg [EMSB:0] xc4;
|
| 169 |
|
|
|
| 170 |
|
|
always @(posedge clk)
|
| 171 |
|
|
if (ce) ex4 <= ex3;
|
| 172 |
|
|
always @(posedge clk)
|
| 173 |
|
|
if (ce) xc4 <= xc3;
|
| 174 |
|
|
|
| 175 |
|
|
// -----------------------------------------------------------
|
| 176 |
|
|
// Clock #5
|
| 177 |
|
|
// Sum partial products (above)
|
| 178 |
|
|
// compute multiplier overflow and underflow
|
| 179 |
|
|
// -----------------------------------------------------------
|
| 180 |
|
|
|
| 181 |
|
|
// Status
|
| 182 |
32 |
robfinch |
wire under5;
|
| 183 |
|
|
wire over5;
|
| 184 |
|
|
wire [EMSB+2:0] ex5;
|
| 185 |
|
|
wire [EMSB:0] xc5;
|
| 186 |
29 |
robfinch |
wire aInf5, bInf5;
|
| 187 |
|
|
wire aNan5, bNan5;
|
| 188 |
|
|
wire qNaNOut5;
|
| 189 |
|
|
|
| 190 |
32 |
robfinch |
vtdl u5a (.clk(clk), .ce(ce), .a(MUL_LATENCY-5), .d(ex4[EMSB+2]), .q(under5));
|
| 191 |
|
|
vtdl u5b (.clk(clk), .ce(ce), .a(MUL_LATENCY-5), .d((&ex4[EMSB:0] | ex4[EMSB+1]) & !ex4[EMSB+2]), .q(over5));
|
| 192 |
|
|
vtdl #(EMSB+3) u5c (.clk(clk), .ce(ce), .a(MUL_LATENCY-5), .d(ex4), .q(ex5));
|
| 193 |
|
|
vtdl #(EMSB+1) u5d (.clk(clk), .ce(ce), .a(MUL_LATENCY-5), .d(xc4), .q(xc5));
|
| 194 |
29 |
robfinch |
|
| 195 |
32 |
robfinch |
vtdl u2a (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d(aInf1), .q(aInf5) );
|
| 196 |
|
|
vtdl u2b (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d(bInf1), .q(bInf5) );
|
| 197 |
29 |
robfinch |
|
| 198 |
|
|
// determine when a NaN is output
|
| 199 |
|
|
wire [MSB:0] a5,b5;
|
| 200 |
32 |
robfinch |
vtdl u5 (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d((aInf1&bz1)|(bInf1&az1)), .q(qNaNOut5) );
|
| 201 |
|
|
vtdl u14 (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d(aNan1), .q(aNan5) );
|
| 202 |
|
|
vtdl u15 (.clk(clk), .ce(ce), .a(MUL_LATENCY-2), .d(bNan1), .q(bNan5) );
|
| 203 |
|
|
vtdl #(MSB+1) u16 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(a), .q(a5) );
|
| 204 |
|
|
vtdl #(MSB+1) u17 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(b), .q(b5) );
|
| 205 |
29 |
robfinch |
|
| 206 |
|
|
// -----------------------------------------------------------
|
| 207 |
|
|
// Clock #6
|
| 208 |
|
|
// - figure multiplier mantissa output
|
| 209 |
|
|
// - figure multiplier exponent output
|
| 210 |
|
|
// - correct xponent and mantissa for exceptional conditions
|
| 211 |
|
|
// -----------------------------------------------------------
|
| 212 |
|
|
|
| 213 |
|
|
reg [FX:0] mo6;
|
| 214 |
|
|
reg [EMSB+2:0] ex6;
|
| 215 |
|
|
reg [EMSB:0] xc6;
|
| 216 |
|
|
wire [FMSB+1:0] fractc6;
|
| 217 |
32 |
robfinch |
wire under6;
|
| 218 |
|
|
vtdl #(FMSB+2) u61 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(fractc1), .q(fractc6) );
|
| 219 |
29 |
robfinch |
delay1 u62 (.clk(clk), .ce(ce), .i(under5), .o(under6));
|
| 220 |
|
|
|
| 221 |
|
|
always @(posedge clk)
|
| 222 |
|
|
if (ce) xc6 <= xc5;
|
| 223 |
|
|
|
| 224 |
|
|
always @(posedge clk)
|
| 225 |
|
|
if (ce)
|
| 226 |
|
|
casez({aNan5,bNan5,qNaNOut5,aInf5,bInf5,over5})
|
| 227 |
|
|
6'b1?????: mo6 <= {1'b1,1'b1,a5[FMSB-1:0],{FMSB+1{1'b0}}};
|
| 228 |
|
|
6'b01????: mo6 <= {1'b1,1'b1,b5[FMSB-1:0],{FMSB+1{1'b0}}};
|
| 229 |
|
|
6'b001???: mo6 <= {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero
|
| 230 |
|
|
6'b0001??: mo6 <= 0; // mul inf's
|
| 231 |
|
|
6'b00001?: mo6 <= 0; // mul inf's
|
| 232 |
|
|
6'b000001: mo6 <= 0; // mul overflow
|
| 233 |
32 |
robfinch |
default: mo6 <= fract17;
|
| 234 |
29 |
robfinch |
endcase
|
| 235 |
|
|
|
| 236 |
|
|
always @(posedge clk)
|
| 237 |
|
|
if (ce)
|
| 238 |
|
|
casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5})
|
| 239 |
|
|
5'b1????: ex6 <= infXp; // qNaN - infinity * zero
|
| 240 |
|
|
5'b01???: ex6 <= infXp; // 'a' infinite
|
| 241 |
|
|
5'b001??: ex6 <= infXp; // 'b' infinite
|
| 242 |
|
|
5'b0001?: ex6 <= infXp; // result overflow
|
| 243 |
|
|
5'b00001: ex6 <= ex5; //0; // underflow
|
| 244 |
|
|
default: ex6 <= ex5; // situation normal
|
| 245 |
|
|
endcase
|
| 246 |
|
|
|
| 247 |
|
|
// -----------------------------------------------------------
|
| 248 |
|
|
// Clock #7
|
| 249 |
|
|
// - prep for addition, determine greater operand
|
| 250 |
|
|
// -----------------------------------------------------------
|
| 251 |
|
|
reg ex_gt_xc7;
|
| 252 |
|
|
reg xeq7;
|
| 253 |
|
|
reg ma_gt_mc7;
|
| 254 |
|
|
reg meq7;
|
| 255 |
|
|
wire az7, bz7, cz7;
|
| 256 |
|
|
wire realOp7;
|
| 257 |
|
|
|
| 258 |
|
|
// which has greater magnitude ? Used for sign calc
|
| 259 |
|
|
always @(posedge clk)
|
| 260 |
|
|
if (ce) ex_gt_xc7 <= $signed(ex6) > $signed({2'b0,xc6});
|
| 261 |
|
|
always @(posedge clk)
|
| 262 |
|
|
if (ce) xeq7 <= (ex6=={2'b0,xc6});
|
| 263 |
|
|
always @(posedge clk)
|
| 264 |
|
|
if (ce) ma_gt_mc7 <= mo6 > {fractc6,{FMSB+1{1'b0}}};
|
| 265 |
|
|
always @(posedge clk)
|
| 266 |
|
|
if (ce) meq7 <= mo6 == {fractc6,{FMSB+1{1'b0}}};
|
| 267 |
32 |
robfinch |
vtdl #(1,32) u71 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(az1), .q(az7));
|
| 268 |
|
|
vtdl #(1,32) u72 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(bz1), .q(bz7));
|
| 269 |
|
|
vtdl #(1,32) u73 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(cz1), .q(cz7));
|
| 270 |
|
|
vtdl #(1,32) u74 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(realOp2), .q(realOp7));
|
| 271 |
29 |
robfinch |
|
| 272 |
|
|
// -----------------------------------------------------------
|
| 273 |
|
|
// Clock #8
|
| 274 |
|
|
// - prep for addition, determine greater operand
|
| 275 |
|
|
// - determine if result will be zero
|
| 276 |
|
|
// -----------------------------------------------------------
|
| 277 |
|
|
|
| 278 |
|
|
reg a_gt_b8;
|
| 279 |
|
|
reg resZero8;
|
| 280 |
|
|
reg ex_gt_xc8;
|
| 281 |
|
|
wire [EMSB+2:0] ex8;
|
| 282 |
|
|
wire [EMSB:0] xc8;
|
| 283 |
|
|
wire xcInf8;
|
| 284 |
|
|
wire [2:0] rm8;
|
| 285 |
|
|
wire op8;
|
| 286 |
|
|
wire sa8, sc8;
|
| 287 |
|
|
|
| 288 |
|
|
delay2 #(EMSB+3) u81 (.clk(clk), .ce(ce), .i(ex6), .o(ex8));
|
| 289 |
|
|
delay2 #(EMSB+1) u82 (.clk(clk), .ce(ce), .i(xc6), .o(xc8));
|
| 290 |
32 |
robfinch |
vtdl #(1,32) u83 (.clk(clk), .ce(ce), .a(MUL_LATENCY-1), .d(xcInf2), .q(xcInf8));
|
| 291 |
|
|
vtdl #(3,32) u84 (.clk(clk), .ce(ce), .a(MUL_LATENCY+1), .d(rm), .q(rm8));
|
| 292 |
|
|
vtdl #(1,32) u85 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(op1), .q(op8));
|
| 293 |
|
|
vtdl #(1,32) u86 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(sa1 ^ sb1), .q(sa8));
|
| 294 |
|
|
vtdl #(1,32) u87 (.clk(clk), .ce(ce), .a(MUL_LATENCY), .d(sc1), .q(sc8));
|
| 295 |
29 |
robfinch |
|
| 296 |
|
|
always @(posedge clk)
|
| 297 |
|
|
if (ce) ex_gt_xc8 <= ex_gt_xc7;
|
| 298 |
|
|
always @(posedge clk)
|
| 299 |
|
|
if (ce)
|
| 300 |
|
|
a_gt_b8 <= ex_gt_xc7 || (xeq7 && ma_gt_mc7);
|
| 301 |
|
|
|
| 302 |
|
|
// Find out if the result will be zero.
|
| 303 |
|
|
always @(posedge clk)
|
| 304 |
|
|
if (ce)
|
| 305 |
|
|
resZero8 <= (realOp7 & xeq7 & meq7) || // subtract, same magnitude
|
| 306 |
|
|
((az7 | bz7) & cz7); // a or b zero and c zero
|
| 307 |
|
|
|
| 308 |
|
|
// -----------------------------------------------------------
|
| 309 |
|
|
// CLock #9
|
| 310 |
|
|
// Compute output exponent and sign
|
| 311 |
|
|
//
|
| 312 |
|
|
// The output exponent is the larger of the two exponents,
|
| 313 |
|
|
// unless a subtract operation is in progress and the two
|
| 314 |
|
|
// numbers are equal, in which case the exponent should be
|
| 315 |
|
|
// zero.
|
| 316 |
|
|
// -----------------------------------------------------------
|
| 317 |
|
|
|
| 318 |
|
|
reg so9;
|
| 319 |
|
|
reg [EMSB+2:0] ex9;
|
| 320 |
|
|
reg [EMSB+2:0] ex9a;
|
| 321 |
|
|
reg ex_gt_xc9;
|
| 322 |
|
|
reg [EMSB:0] xc9;
|
| 323 |
|
|
reg a_gt_c9;
|
| 324 |
|
|
wire [FX:0] mo9;
|
| 325 |
|
|
wire [FMSB+1:0] fractc9;
|
| 326 |
|
|
wire under9;
|
| 327 |
|
|
wire xeq9;
|
| 328 |
|
|
|
| 329 |
|
|
always @(posedge clk)
|
| 330 |
|
|
if (ce) ex_gt_xc9 <= ex_gt_xc8;
|
| 331 |
|
|
always @(posedge clk)
|
| 332 |
|
|
if (ce) a_gt_c9 <= a_gt_b8;
|
| 333 |
|
|
always @(posedge clk)
|
| 334 |
|
|
if (ce) xc9 <= xc8;
|
| 335 |
|
|
always @(posedge clk)
|
| 336 |
|
|
if (ce) ex9a <= ex8;
|
| 337 |
|
|
|
| 338 |
|
|
delay3 #(FX+1) u93 (.clk(clk), .ce(ce), .i(mo6), .o(mo9));
|
| 339 |
|
|
delay3 #(FMSB+2) u94 (.clk(clk), .ce(ce), .i(fractc6), .o(fractc9));
|
| 340 |
|
|
delay3 u95 (.clk(clk), .ce(ce), .i(under6), .o(under9));
|
| 341 |
|
|
delay2 u96 (.clk(clk), .ce(ce), .i(xeq7), .o(xeq9));
|
| 342 |
|
|
|
| 343 |
|
|
always @(posedge clk)
|
| 344 |
|
|
if (ce) ex9 <= resZero8 ? 1'd0 : ex_gt_xc8 ? ex8 : {2'b0,xc8};
|
| 345 |
|
|
|
| 346 |
|
|
// Compute output sign
|
| 347 |
|
|
always @(posedge clk)
|
| 348 |
|
|
if (ce)
|
| 349 |
|
|
case ({resZero8,sa8,op8,sc8}) // synopsys full_case parallel_case
|
| 350 |
|
|
4'b0000: so9 <= 0; // + + + = +
|
| 351 |
|
|
4'b0001: so9 <= !a_gt_b8; // + + - = sign of larger
|
| 352 |
|
|
4'b0010: so9 <= !a_gt_b8; // + - + = sign of larger
|
| 353 |
|
|
4'b0011: so9 <= 0; // + - - = +
|
| 354 |
|
|
4'b0100: so9 <= a_gt_b8; // - + + = sign of larger
|
| 355 |
|
|
4'b0101: so9 <= 1; // - + - = -
|
| 356 |
|
|
4'b0110: so9 <= 1; // - - + = -
|
| 357 |
|
|
4'b0111: so9 <= a_gt_b8; // - - - = sign of larger
|
| 358 |
|
|
4'b1000: so9 <= 0; // A + B, sign = +
|
| 359 |
|
|
4'b1001: so9 <= rm8==3; // A + -B, sign = + unless rounding down
|
| 360 |
|
|
4'b1010: so9 <= rm8==3; // A - B, sign = + unless rounding down
|
| 361 |
|
|
4'b1011: so9 <= 0; // +A - -B, sign = +
|
| 362 |
|
|
4'b1100: so9 <= rm8==3; // -A + B, sign = + unless rounding down
|
| 363 |
|
|
4'b1101: so9 <= 1; // -A + -B, sign = -
|
| 364 |
|
|
4'b1110: so9 <= 1; // -A - +B, sign = -
|
| 365 |
|
|
4'b1111: so9 <= rm8==3; // -A - -B, sign = + unless rounding down
|
| 366 |
|
|
endcase
|
| 367 |
|
|
|
| 368 |
|
|
// -----------------------------------------------------------
|
| 369 |
|
|
// Clock #10
|
| 370 |
|
|
// Compute the difference in exponents, provides shift amount
|
| 371 |
|
|
// Note that ex9a will be negative for an underflow condition
|
| 372 |
|
|
// so it's added rather than subtracted from xc9 as -(-num)
|
| 373 |
|
|
// is the same as an add. The underflow is tracked rather than
|
| 374 |
|
|
// using extra bits in the exponent.
|
| 375 |
|
|
// -----------------------------------------------------------
|
| 376 |
|
|
reg [EMSB+2:0] xdiff10;
|
| 377 |
|
|
reg [FX:0] mfs;
|
| 378 |
|
|
reg ops10;
|
| 379 |
|
|
|
| 380 |
|
|
// If the multiplier exponent was negative (underflowed) then
|
| 381 |
|
|
// the mantissa needs to be shifted right even more (until
|
| 382 |
|
|
// the exponent is zero. The total shift would be xc9-0-
|
| 383 |
|
|
// amount underflows which is xc9 + -ex9a.
|
| 384 |
|
|
|
| 385 |
|
|
always @(posedge clk)
|
| 386 |
|
|
if (ce) xdiff10 <= ex_gt_xc9 ? ex9a - xc9
|
| 387 |
|
|
: ex9a[EMSB+2] ? xc9 + (~ex9a+2'd1)
|
| 388 |
|
|
: xc9 - ex9a;
|
| 389 |
|
|
|
| 390 |
|
|
// Determine which fraction to denormalize (the one with the
|
| 391 |
|
|
// smaller exponent is denormalized). If the exponents are equal
|
| 392 |
|
|
// denormalize the smaller fraction.
|
| 393 |
|
|
always @(posedge clk)
|
| 394 |
|
|
if (ce) mfs <=
|
| 395 |
|
|
xeq9 ? (a_gt_c9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9)
|
| 396 |
|
|
: ex_gt_xc9 ? {4'b0,fractc9,{FMSB+1{1'b0}}} : mo9;
|
| 397 |
|
|
|
| 398 |
|
|
always @(posedge clk)
|
| 399 |
|
|
if (ce) ops10 <= xeq9 ? (a_gt_c9 ? 1'b1 : 1'b0)
|
| 400 |
|
|
: (ex_gt_xc9 ? 1'b1 : 1'b0);
|
| 401 |
|
|
|
| 402 |
|
|
// -----------------------------------------------------------
|
| 403 |
|
|
// Clock #11
|
| 404 |
|
|
// Limit the size of the shifter to only bits needed.
|
| 405 |
|
|
// -----------------------------------------------------------
|
| 406 |
|
|
reg [7:0] xdif11;
|
| 407 |
|
|
|
| 408 |
|
|
always @(posedge clk)
|
| 409 |
|
|
if (ce) xdif11 <= xdiff10 > FX+3 ? FX+3 : xdiff10;
|
| 410 |
|
|
|
| 411 |
|
|
// -----------------------------------------------------------
|
| 412 |
|
|
// Clock #12
|
| 413 |
|
|
// Determine the sticky bit
|
| 414 |
|
|
// -----------------------------------------------------------
|
| 415 |
|
|
|
| 416 |
|
|
wire sticky, sticky12;
|
| 417 |
|
|
wire [FX:0] mfs12;
|
| 418 |
|
|
wire [7:0] xdif12;
|
| 419 |
|
|
|
| 420 |
|
|
generate
|
| 421 |
|
|
begin
|
| 422 |
32 |
robfinch |
if (FPWID==128)
|
| 423 |
29 |
robfinch |
redor128 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
| 424 |
32 |
robfinch |
else if (FPWID==80)
|
| 425 |
29 |
robfinch |
redor80 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
| 426 |
32 |
robfinch |
else if (FPWID==64)
|
| 427 |
29 |
robfinch |
redor64 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
| 428 |
32 |
robfinch |
else if (FPWID==32)
|
| 429 |
29 |
robfinch |
redor32 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
| 430 |
|
|
end
|
| 431 |
|
|
endgenerate
|
| 432 |
|
|
|
| 433 |
|
|
// register inputs to shifter and shift
|
| 434 |
|
|
delay1 #(1) u122(.clk(clk), .ce(ce), .i(sticky), .o(sticky12) );
|
| 435 |
|
|
delay1 #(8) u123(.clk(clk), .ce(ce), .i(xdif11), .o(xdif12) );
|
| 436 |
|
|
delay2 #(FX+1) u124(.clk(clk), .ce(ce), .i(mfs), .o(mfs12) );
|
| 437 |
|
|
|
| 438 |
|
|
// -----------------------------------------------------------
|
| 439 |
|
|
// Clock #13
|
| 440 |
|
|
// - denormalize operand (shift right)
|
| 441 |
|
|
// -----------------------------------------------------------
|
| 442 |
|
|
reg [FX+2:0] mfs13;
|
| 443 |
|
|
wire [FX:0] mo13;
|
| 444 |
|
|
wire ex_gt_xc13;
|
| 445 |
|
|
wire [FMSB+1:0] fractc13;
|
| 446 |
|
|
wire ops13;
|
| 447 |
|
|
|
| 448 |
|
|
delay4 #(FX+1) u131 (.clk(clk), .ce(ce), .i(mo9), .o(mo13));
|
| 449 |
|
|
delay4 u132 (.clk(clk), .ce(ce), .i(ex_gt_xc9), .o(ex_gt_xc13));
|
| 450 |
|
|
vtdl #(FMSB+2) u133 (.clk(clk), .ce(ce), .a(4'd3), .d(fractc9), .q(fractc13));
|
| 451 |
|
|
delay3 u134 (.clk(clk), .ce(ce), .i(ops10), .o(ops13));
|
| 452 |
|
|
|
| 453 |
|
|
always @(posedge clk)
|
| 454 |
|
|
if (ce) mfs13 <= ({mfs12,2'b0} >> xdif12)|sticky12;
|
| 455 |
|
|
|
| 456 |
|
|
// -----------------------------------------------------------
|
| 457 |
|
|
// Clock #14
|
| 458 |
|
|
// Sort operands
|
| 459 |
|
|
// -----------------------------------------------------------
|
| 460 |
|
|
reg [FX+2:0] oa, ob;
|
| 461 |
|
|
wire a_gt_b14;
|
| 462 |
|
|
|
| 463 |
|
|
vtdl #(1) u141 (.clk(clk), .ce(ce), .a(4'd5), .d(a_gt_b8), .q(a_gt_b14));
|
| 464 |
|
|
|
| 465 |
|
|
always @(posedge clk)
|
| 466 |
|
|
if (ce) oa <= ops13 ? {mo13,2'b00} : mfs13;
|
| 467 |
|
|
always @(posedge clk)
|
| 468 |
|
|
if (ce) ob <= ops13 ? mfs13 : {fractc13,{FMSB+1{1'b0}},2'b00};
|
| 469 |
|
|
|
| 470 |
|
|
// -----------------------------------------------------------
|
| 471 |
|
|
// Clock #15
|
| 472 |
|
|
// - Sort operands
|
| 473 |
|
|
// -----------------------------------------------------------
|
| 474 |
|
|
reg [FX+2:0] oaa, obb;
|
| 475 |
|
|
wire realOp15;
|
| 476 |
|
|
wire [EMSB:0] ex15;
|
| 477 |
|
|
wire [EMSB:0] ex9c = ex9[EMSB+1] ? infXp : ex9[EMSB:0];
|
| 478 |
|
|
wire overflow15;
|
| 479 |
|
|
vtdl #(1) u151 (.clk(clk), .ce(ce), .a(4'd7), .d(realOp7), .q(realOp15));
|
| 480 |
|
|
vtdl #(EMSB+1) u152 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9c), .q(ex15));
|
| 481 |
|
|
vtdl #(EMSB+1) u153 (.clk(clk), .ce(ce), .a(4'd5), .d(ex9[EMSB+1]| &ex9[EMSB:0]), .q(overflow15));
|
| 482 |
|
|
|
| 483 |
|
|
always @(posedge clk)
|
| 484 |
|
|
if (ce) oaa <= a_gt_b14 ? oa : ob;
|
| 485 |
|
|
always @(posedge clk)
|
| 486 |
|
|
if (ce) obb <= a_gt_b14 ? ob : oa;
|
| 487 |
|
|
|
| 488 |
|
|
// -----------------------------------------------------------
|
| 489 |
|
|
// Clock #16
|
| 490 |
|
|
// - perform add/subtract
|
| 491 |
|
|
// - addition can generate an extra bit, subtract can't go negative
|
| 492 |
|
|
// -----------------------------------------------------------
|
| 493 |
|
|
reg [FX+3:0] mab;
|
| 494 |
|
|
wire [FX:0] mo16;
|
| 495 |
|
|
wire [FMSB+1:0] fractc16;
|
| 496 |
|
|
wire Nan16;
|
| 497 |
|
|
wire cNan16;
|
| 498 |
|
|
wire aInf16, cInf16;
|
| 499 |
|
|
wire op16;
|
| 500 |
|
|
wire exinf16;
|
| 501 |
|
|
|
| 502 |
|
|
vtdl #(1) u161 (.clk(clk), .ce(ce), .a(4'd10), .d(qNaNOut5|aNan5|bNan5), .q(Nan16));
|
| 503 |
|
|
vtdl #(1) u162 (.clk(clk), .ce(ce), .a(4'd14), .d(cNan1), .q(cNan16));
|
| 504 |
|
|
vtdl #(1) u163 (.clk(clk), .ce(ce), .a(4'd9), .d(&ex6), .q(aInf16));
|
| 505 |
|
|
vtdl #(1) u164 (.clk(clk), .ce(ce), .a(4'd14), .d(cInf1), .q(cInf16));
|
| 506 |
|
|
vtdl #(1) u165 (.clk(clk), .ce(ce), .a(4'd14), .d(op1), .q(op16));
|
| 507 |
|
|
delay3 #(FX+1) u166 (.clk(clk), .ce(ce), .i(mo13), .o(mo16));
|
| 508 |
|
|
vtdl #(FMSB+2) u167 (.clk(clk), .ce(ce), .a(4'd6), .d(fractc9), .q(fractc16));
|
| 509 |
|
|
delay1 u169 (.clk(clk), .ce(ce), .i(&ex15), .o(exinf16));
|
| 510 |
|
|
|
| 511 |
|
|
always @(posedge clk)
|
| 512 |
|
|
if (ce) mab <= realOp15 ? oaa - obb : oaa + obb;
|
| 513 |
|
|
|
| 514 |
|
|
// -----------------------------------------------------------
|
| 515 |
|
|
// Clock #17
|
| 516 |
|
|
// - adjust for Nans
|
| 517 |
|
|
// -----------------------------------------------------------
|
| 518 |
|
|
wire [EMSB:0] ex17;
|
| 519 |
|
|
reg [FX:0] mo17;
|
| 520 |
|
|
wire so17;
|
| 521 |
|
|
wire exinf17;
|
| 522 |
|
|
wire overflow17;
|
| 523 |
|
|
|
| 524 |
|
|
vtdl #(1) u171 (.clk(clk), .ce(ce), .a(4'd7), .d(so9), .q(so17));
|
| 525 |
|
|
delay2 #(EMSB+1) u172 (.clk(clk), .ce(ce), .i(ex15), .o(ex17));
|
| 526 |
|
|
delay1 #(1) u173 (.clk(clk), .ce(ce), .i(exinf16), .o(exinf17));
|
| 527 |
|
|
delay2 u174 (.clk(clk), .ce(ce), .i(overflow15), .o(overflow17));
|
| 528 |
|
|
|
| 529 |
|
|
always @(posedge clk)
|
| 530 |
|
|
casez({aInf16&cInf16,Nan16,cNan16,exinf16})
|
| 531 |
|
|
4'b1???: mo17 <= {1'b0,op16,{FMSB-1{1'b0}},op16,{FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
| 532 |
|
|
4'b01??: mo17 <= {1'b0,mo16};
|
| 533 |
|
|
4'b001?: mo17 <= {1'b1,1'b1,fractc16[FMSB-1:0],{FMSB+1{1'b0}}};
|
| 534 |
|
|
4'b0001: mo17 <= 1'd0;
|
| 535 |
|
|
default: mo17 <= mab[FX+3:2]; // mab has two extra lead bits and two trailing bits
|
| 536 |
|
|
endcase
|
| 537 |
|
|
|
| 538 |
|
|
assign o = {so17,ex17,mo17};
|
| 539 |
|
|
assign zero = {ex17,mo17}==1'd0;
|
| 540 |
|
|
assign inf = exinf17;
|
| 541 |
|
|
assign under = ex17==1'd0;
|
| 542 |
|
|
assign over = overflow17;
|
| 543 |
|
|
|
| 544 |
|
|
endmodule
|
| 545 |
|
|
|
| 546 |
|
|
|
| 547 |
|
|
// Multiplier with normalization and rounding.
|
| 548 |
|
|
|
| 549 |
|
|
module fpFMAnr(clk, ce, op, rm, a, b, c, o, inf, zero, overflow, underflow, inexact);
|
| 550 |
32 |
robfinch |
parameter FPWID=128;
|
| 551 |
29 |
robfinch |
`include "fpSize.sv"
|
| 552 |
|
|
|
| 553 |
|
|
input clk;
|
| 554 |
|
|
input ce;
|
| 555 |
|
|
input op;
|
| 556 |
|
|
input [2:0] rm;
|
| 557 |
|
|
input [MSB:0] a, b, c;
|
| 558 |
|
|
output [MSB:0] o;
|
| 559 |
|
|
output zero;
|
| 560 |
|
|
output inf;
|
| 561 |
|
|
output overflow;
|
| 562 |
|
|
output underflow;
|
| 563 |
|
|
output inexact;
|
| 564 |
|
|
|
| 565 |
|
|
wire [EX:0] fma_o;
|
| 566 |
|
|
wire fma_underflow;
|
| 567 |
|
|
wire fma_overflow;
|
| 568 |
|
|
wire norm_underflow;
|
| 569 |
|
|
wire norm_inexact;
|
| 570 |
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
| 571 |
|
|
wire [MSB+3:0] fpn0;
|
| 572 |
|
|
|
| 573 |
|
|
fpFMA #(FPWID) u1
|
| 574 |
|
|
(
|
| 575 |
|
|
.clk(clk),
|
| 576 |
|
|
.ce(ce),
|
| 577 |
|
|
.op(op),
|
| 578 |
|
|
.rm(rm),
|
| 579 |
|
|
.a(a),
|
| 580 |
|
|
.b(b),
|
| 581 |
|
|
.c(c),
|
| 582 |
|
|
.o(fma_o),
|
| 583 |
|
|
.under(fma_underflow),
|
| 584 |
|
|
.over(fma_overflow),
|
| 585 |
|
|
.zero(),
|
| 586 |
|
|
.inf()
|
| 587 |
|
|
);
|
| 588 |
|
|
fpNormalize #(FPWID) u2
|
| 589 |
|
|
(
|
| 590 |
|
|
.clk(clk),
|
| 591 |
|
|
.ce(ce),
|
| 592 |
|
|
.i(fma_o),
|
| 593 |
|
|
.o(fpn0),
|
| 594 |
|
|
.under_i(fma_underflow),
|
| 595 |
|
|
.under_o(norm_underflow),
|
| 596 |
|
|
.inexact_o(norm_inexact)
|
| 597 |
|
|
);
|
| 598 |
|
|
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
| 599 |
|
|
fpDecomp #(FPWID) u4(.i(o), .xz(), .vz(zero), .inf(inf));
|
| 600 |
|
|
vtdl u5 (.clk(clk), .ce(ce), .a(4'd11), .d(fma_underflow), .q(underflow));
|
| 601 |
|
|
vtdl u6 (.clk(clk), .ce(ce), .a(4'd11), .d(fma_overflow), .q(overflow));
|
| 602 |
|
|
delay3 #(1) u7 (.clk(clk), .ce(ce), .i(norm_inexact), .o(inexact));
|
| 603 |
|
|
assign overflow = inf;
|
| 604 |
|
|
|
| 605 |
|
|
endmodule
|
| 606 |
|
|
|