1 |
74 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2019-2022 Robert Finch, Waterloo
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// fpFMA32combo.sv
|
9 |
|
|
// - floating point fused multiplier + adder
|
10 |
|
|
// - combinational logic only
|
11 |
|
|
// - IEEE 754 representation
|
12 |
|
|
//
|
13 |
|
|
//
|
14 |
|
|
// BSD 3-Clause License
|
15 |
|
|
// Redistribution and use in source and binary forms, with or without
|
16 |
|
|
// modification, are permitted provided that the following conditions are met:
|
17 |
|
|
//
|
18 |
|
|
// 1. Redistributions of source code must retain the above copyright notice, this
|
19 |
|
|
// list of conditions and the following disclaimer.
|
20 |
|
|
//
|
21 |
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice,
|
22 |
|
|
// this list of conditions and the following disclaimer in the documentation
|
23 |
|
|
// and/or other materials provided with the distribution.
|
24 |
|
|
//
|
25 |
|
|
// 3. Neither the name of the copyright holder nor the names of its
|
26 |
|
|
// contributors may be used to endorse or promote products derived from
|
27 |
|
|
// this software without specific prior written permission.
|
28 |
|
|
//
|
29 |
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
30 |
|
|
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
31 |
|
|
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
32 |
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
33 |
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
34 |
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
35 |
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
36 |
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
37 |
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
38 |
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
39 |
|
|
//
|
40 |
|
|
// ============================================================================
|
41 |
|
|
|
42 |
|
|
import fp32Pkg::*;
|
43 |
|
|
|
44 |
|
|
module fpFMA32combo (op, rm, a, b, c, o, under, over, inf, zero);
|
45 |
|
|
input op; // operation 0 = add, 1 = subtract
|
46 |
|
|
input [2:0] rm;
|
47 |
|
|
input FP32 a, b, c;
|
48 |
|
|
output FP32X o;
|
49 |
|
|
output under;
|
50 |
|
|
output over;
|
51 |
|
|
output inf;
|
52 |
|
|
output zero;
|
53 |
|
|
|
54 |
|
|
// constants
|
55 |
|
|
wire [fp32Pkg::EMSB:0] infXp = {fp32Pkg::EMSB+1{1'b1}}; // infinite / NaN - all ones
|
56 |
|
|
// The following is the value for an exponent of zero, with the offset
|
57 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
58 |
|
|
wire [fp32Pkg::EMSB:0] bias = {1'b0,{fp32Pkg::EMSB{1'b1}}}; //2^0 exponent
|
59 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
60 |
|
|
wire [fp32Pkg::FMSB:0] qNaN = {1'b1,{fp32Pkg::FMSB{1'b0}}};
|
61 |
|
|
|
62 |
|
|
// -----------------------------------------------------------
|
63 |
|
|
// Clock #1
|
64 |
|
|
// - decode the input operands
|
65 |
|
|
// - derive basic information
|
66 |
|
|
// -----------------------------------------------------------
|
67 |
|
|
|
68 |
|
|
wire sa1, sb1, sc1; // sign bit
|
69 |
|
|
wire [fp32Pkg::EMSB:0] xa1, xb1, xc1; // exponent bits
|
70 |
|
|
wire [fp32Pkg::FMSB+1:0] fracta1, fractb1, fractc1; // includes unhidden bit
|
71 |
|
|
wire a_dn1, b_dn1, c_dn1; // a/b is denormalized
|
72 |
|
|
wire aNan1, bNan1, cNan1;
|
73 |
|
|
wire az1, bz1, cz1;
|
74 |
|
|
wire aInf1, bInf1, cInf1;
|
75 |
|
|
reg op1;
|
76 |
|
|
|
77 |
|
|
fpDecomp32 u1a (.i(a), .sgn(sa1), .exp(xa1), .fract(fracta1), .xz(a_dn1), .vz(az1), .inf(aInf1), .nan(aNan1) );
|
78 |
|
|
fpDecomp32 u1b (.i(b), .sgn(sb1), .exp(xb1), .fract(fractb1), .xz(b_dn1), .vz(bz1), .inf(bInf1), .nan(bNan1) );
|
79 |
|
|
fpDecomp32 u1c (.i(c), .sgn(sc1), .exp(xc1), .fract(fractc1), .xz(c_dn1), .vz(cz1), .inf(cInf1), .nan(cNan1) );
|
80 |
|
|
|
81 |
|
|
always_comb
|
82 |
|
|
op1 <= op;
|
83 |
|
|
|
84 |
|
|
// -----------------------------------------------------------
|
85 |
|
|
// Clock #2
|
86 |
|
|
// Compute the sum of the exponents.
|
87 |
|
|
// correct the exponent for denormalized operands
|
88 |
|
|
// adjust the sum by the exponent offset (subtract 127)
|
89 |
|
|
// mul: ex1 = xa + xb, result should always be < 1ffh
|
90 |
|
|
// Form partial products (clocks 2 to 5)
|
91 |
|
|
// -----------------------------------------------------------
|
92 |
|
|
|
93 |
|
|
reg abz2;
|
94 |
|
|
reg [fp32Pkg::EMSB+2:0] ex2;
|
95 |
|
|
reg [fp32Pkg::EMSB:0] xc2;
|
96 |
|
|
reg realOp2;
|
97 |
|
|
reg xcInf2;
|
98 |
|
|
|
99 |
|
|
always_comb
|
100 |
|
|
abz2 <= az1|bz1;
|
101 |
|
|
always_comb
|
102 |
|
|
ex2 <= (xa1|(a_dn1&~az1)) + (xb1|(b_dn1&~bz1)) - bias;
|
103 |
|
|
always_comb
|
104 |
|
|
xc2 <= (xc1|(c_dn1&~cz1));
|
105 |
|
|
always_comb
|
106 |
|
|
xcInf2 = &xc1;
|
107 |
|
|
|
108 |
|
|
// Figure out which operation is really needed an add or
|
109 |
|
|
// subtract ?
|
110 |
|
|
// If the signs are the same, use the orignal op,
|
111 |
|
|
// otherwise flip the operation
|
112 |
|
|
// a + b = add,+
|
113 |
|
|
// a + -b = sub, so of larger
|
114 |
|
|
// -a + b = sub, so of larger
|
115 |
|
|
// -a + -b = add,-
|
116 |
|
|
// a - b = sub, so of larger
|
117 |
|
|
// a - -b = add,+
|
118 |
|
|
// -a - b = add,-
|
119 |
|
|
// -a - -b = sub, so of larger
|
120 |
|
|
always_comb
|
121 |
|
|
realOp2 <= (sa1 ^ sb1) ^ sc1 ? ~op1 : op1;
|
122 |
|
|
|
123 |
|
|
reg [fp32Pkg::FX:0] fract5;
|
124 |
|
|
wire [63:0] fractoo;
|
125 |
|
|
mult32x32combo umul1 (.a({9'd0,fracta1}), .b({9'd0,fractb1}), .o(fractoo));
|
126 |
|
|
always_comb
|
127 |
|
|
fract5 <= fractoo[fp32Pkg::FX:0];
|
128 |
|
|
|
129 |
|
|
// -----------------------------------------------------------
|
130 |
|
|
// Clock #3
|
131 |
|
|
// Select zero exponent
|
132 |
|
|
// -----------------------------------------------------------
|
133 |
|
|
|
134 |
|
|
reg [fp32Pkg::EMSB+2:0] ex3;
|
135 |
|
|
reg [fp32Pkg::EMSB:0] xc3;
|
136 |
|
|
always_comb
|
137 |
|
|
ex3 <= abz2 ? 1'd0 : ex2;
|
138 |
|
|
always_comb
|
139 |
|
|
xc3 <= xc2;
|
140 |
|
|
|
141 |
|
|
// -----------------------------------------------------------
|
142 |
|
|
// Clock #4
|
143 |
|
|
// Generate partial products.
|
144 |
|
|
// -----------------------------------------------------------
|
145 |
|
|
|
146 |
|
|
reg [fp32Pkg::EMSB+2:0] ex4;
|
147 |
|
|
reg [fp32Pkg::EMSB:0] xc4;
|
148 |
|
|
|
149 |
|
|
always_comb
|
150 |
|
|
ex4 <= ex3;
|
151 |
|
|
always_comb
|
152 |
|
|
xc4 <= xc3;
|
153 |
|
|
|
154 |
|
|
// -----------------------------------------------------------
|
155 |
|
|
// Clock #5
|
156 |
|
|
// Sum partial products (above)
|
157 |
|
|
// compute multiplier overflow and underflow
|
158 |
|
|
// -----------------------------------------------------------
|
159 |
|
|
|
160 |
|
|
// Status
|
161 |
|
|
reg under5;
|
162 |
|
|
reg over5;
|
163 |
|
|
reg [fp32Pkg::EMSB+2:0] ex5;
|
164 |
|
|
reg [fp32Pkg::EMSB:0] xc5;
|
165 |
|
|
reg aInf5, bInf5;
|
166 |
|
|
reg aNan5, bNan5;
|
167 |
|
|
reg qNaNOut5;
|
168 |
|
|
|
169 |
|
|
always_comb
|
170 |
|
|
under5 <= ex4[fp32Pkg::EMSB+2];
|
171 |
|
|
always_comb
|
172 |
|
|
over5 <= (&ex4[fp32Pkg::EMSB:0] | ex4[fp32Pkg::EMSB+1]) & !ex4[fp32Pkg::EMSB+2];
|
173 |
|
|
always_comb
|
174 |
|
|
ex5 <= ex4;
|
175 |
|
|
always_comb
|
176 |
|
|
xc5 <= xc4;
|
177 |
|
|
always_comb
|
178 |
|
|
aInf5 <= aInf1;
|
179 |
|
|
always_comb
|
180 |
|
|
bInf5 <= bInf1;
|
181 |
|
|
|
182 |
|
|
// determine when a NaN is output
|
183 |
|
|
reg [fp32Pkg::MSB:0] a5,b5;
|
184 |
|
|
always_comb
|
185 |
|
|
qNaNOut5 <= (aInf1&bz1)|(bInf1&az1);
|
186 |
|
|
always_comb
|
187 |
|
|
aNan5 <= aNan1;
|
188 |
|
|
always_comb
|
189 |
|
|
bNan5 <= bNan1;
|
190 |
|
|
always_comb
|
191 |
|
|
a5 <= a;
|
192 |
|
|
always_comb
|
193 |
|
|
b5 <= b;
|
194 |
|
|
|
195 |
|
|
// -----------------------------------------------------------
|
196 |
|
|
// Clock #6
|
197 |
|
|
// - figure multiplier mantissa output
|
198 |
|
|
// - figure multiplier exponent output
|
199 |
|
|
// - correct xponent and mantissa for exceptional conditions
|
200 |
|
|
// -----------------------------------------------------------
|
201 |
|
|
|
202 |
|
|
reg [fp32Pkg::FX:0] mo6;
|
203 |
|
|
reg [fp32Pkg::EMSB+2:0] ex6;
|
204 |
|
|
reg [fp32Pkg::EMSB:0] xc6;
|
205 |
|
|
reg [fp32Pkg::FMSB+1:0] fractc6;
|
206 |
|
|
reg under6;
|
207 |
|
|
always_comb
|
208 |
|
|
fractc6 <= fractc1;
|
209 |
|
|
always_comb
|
210 |
|
|
under6 <= under5;
|
211 |
|
|
|
212 |
|
|
always_comb
|
213 |
|
|
xc6 <= xc5;
|
214 |
|
|
|
215 |
|
|
always_comb
|
216 |
|
|
casez({aNan5,bNan5,qNaNOut5,aInf5,bInf5,over5})
|
217 |
|
|
6'b1?????: mo6 <= {1'b1,1'b1,a5[fp32Pkg::FMSB-1:0],{fp32Pkg::FMSB+1{1'b0}}};
|
218 |
|
|
6'b01????: mo6 <= {1'b1,1'b1,b5[fp32Pkg::FMSB-1:0],{fp32Pkg::FMSB+1{1'b0}}};
|
219 |
|
|
6'b001???: mo6 <= {1'b1,qNaN|3'd4,{fp32Pkg::FMSB+1{1'b0}}}; // multiply inf * zero
|
220 |
|
|
6'b0001??: mo6 <= 0; // mul inf's
|
221 |
|
|
6'b00001?: mo6 <= 0; // mul inf's
|
222 |
|
|
6'b000001: mo6 <= 0; // mul overflow
|
223 |
|
|
default: mo6 <= fract5;
|
224 |
|
|
endcase
|
225 |
|
|
|
226 |
|
|
always_comb
|
227 |
|
|
casez({qNaNOut5|aNan5|bNan5,aInf5,bInf5,over5,under5})
|
228 |
|
|
5'b1????: ex6 <= infXp; // qNaN - infinity * zero
|
229 |
|
|
5'b01???: ex6 <= infXp; // 'a' infinite
|
230 |
|
|
5'b001??: ex6 <= infXp; // 'b' infinite
|
231 |
|
|
5'b0001?: ex6 <= infXp; // result overflow
|
232 |
|
|
5'b00001: ex6 <= ex5; //0; // underflow
|
233 |
|
|
default: ex6 <= ex5; // situation normal
|
234 |
|
|
endcase
|
235 |
|
|
|
236 |
|
|
// -----------------------------------------------------------
|
237 |
|
|
// Clock #7
|
238 |
|
|
// - prep for addition, determine greater operand
|
239 |
|
|
// -----------------------------------------------------------
|
240 |
|
|
reg ex_gt_xc7;
|
241 |
|
|
reg xeq7;
|
242 |
|
|
reg ma_gt_mc7;
|
243 |
|
|
reg meq7;
|
244 |
|
|
reg az7, bz7, cz7;
|
245 |
|
|
reg realOp7;
|
246 |
|
|
|
247 |
|
|
// which has greater magnitude ? Used for sign calc
|
248 |
|
|
always_comb
|
249 |
|
|
ex_gt_xc7 <= xc6=='d0 ? |ex6 : $signed(ex6) > $signed({2'b0,xc6});
|
250 |
|
|
always_comb
|
251 |
|
|
xeq7 <= (ex6=={2'b0,xc6});
|
252 |
|
|
always_comb
|
253 |
|
|
ma_gt_mc7 <= mo6 > {fractc6,{fp32Pkg::FMSB+1{1'b0}}};
|
254 |
|
|
always_comb
|
255 |
|
|
meq7 <= mo6 == {fractc6,{fp32Pkg::FMSB+1{1'b0}}};
|
256 |
|
|
always_comb
|
257 |
|
|
az7 <= az1;
|
258 |
|
|
always_comb
|
259 |
|
|
bz7 <= bz1;
|
260 |
|
|
always_comb
|
261 |
|
|
cz7 <= cz1;
|
262 |
|
|
always_comb
|
263 |
|
|
realOp7 <= realOp2;
|
264 |
|
|
|
265 |
|
|
// -----------------------------------------------------------
|
266 |
|
|
// Clock #8
|
267 |
|
|
// - prep for addition, determine greater operand
|
268 |
|
|
// - determine if result will be zero
|
269 |
|
|
// -----------------------------------------------------------
|
270 |
|
|
|
271 |
|
|
reg a_gt_b8;
|
272 |
|
|
reg resZero8;
|
273 |
|
|
reg ex_gt_xc8;
|
274 |
|
|
reg [fp32Pkg::EMSB+2:0] ex8;
|
275 |
|
|
reg [fp32Pkg::EMSB:0] xc8;
|
276 |
|
|
reg xcInf8;
|
277 |
|
|
reg [2:0] rm8;
|
278 |
|
|
reg op8;
|
279 |
|
|
reg sa8, sc8;
|
280 |
|
|
|
281 |
|
|
always_comb
|
282 |
|
|
ex8 <= ex6;
|
283 |
|
|
always_comb
|
284 |
|
|
xc8 <= xc6;
|
285 |
|
|
always_comb
|
286 |
|
|
xcInf8 <= xcInf2;
|
287 |
|
|
always_comb
|
288 |
|
|
rm8 <= rm;
|
289 |
|
|
always_comb
|
290 |
|
|
op8 <= op1;
|
291 |
|
|
always_comb
|
292 |
|
|
sa8 <= sa1 ^ sb1;
|
293 |
|
|
always_comb
|
294 |
|
|
sc8 <= sc1;
|
295 |
|
|
|
296 |
|
|
always_comb
|
297 |
|
|
ex_gt_xc8 <= ex_gt_xc7;
|
298 |
|
|
always_comb
|
299 |
|
|
a_gt_b8 <= ex_gt_xc7 || (xeq7 && ma_gt_mc7);
|
300 |
|
|
|
301 |
|
|
// Find out if the result will be zero.
|
302 |
|
|
always_comb
|
303 |
|
|
resZero8 <= (realOp7 & xeq7 & meq7) || // subtract, same magnitude
|
304 |
|
|
((az7 | bz7) & cz7); // a or b zero and c zero
|
305 |
|
|
|
306 |
|
|
// -----------------------------------------------------------
|
307 |
|
|
// CLock #9
|
308 |
|
|
// Compute output exponent and sign
|
309 |
|
|
//
|
310 |
|
|
// The output exponent is the larger of the two exponents,
|
311 |
|
|
// unless a subtract operation is in progress and the two
|
312 |
|
|
// numbers are equal, in which case the exponent should be
|
313 |
|
|
// zero.
|
314 |
|
|
// -----------------------------------------------------------
|
315 |
|
|
|
316 |
|
|
reg so9;
|
317 |
|
|
reg [fp32Pkg::EMSB+2:0] ex9;
|
318 |
|
|
reg [fp32Pkg::EMSB+2:0] ex9a;
|
319 |
|
|
reg ex_gt_xc9;
|
320 |
|
|
reg [fp32Pkg::EMSB:0] xc9;
|
321 |
|
|
reg a_gt_c9;
|
322 |
|
|
reg [fp32Pkg::FX:0] mo9;
|
323 |
|
|
reg [fp32Pkg::FMSB+1:0] fractc9;
|
324 |
|
|
reg under9;
|
325 |
|
|
reg xeq9;
|
326 |
|
|
|
327 |
|
|
always_comb
|
328 |
|
|
ex_gt_xc9 <= ex_gt_xc8;
|
329 |
|
|
always_comb
|
330 |
|
|
a_gt_c9 <= a_gt_b8;
|
331 |
|
|
always_comb
|
332 |
|
|
xc9 <= xc8;
|
333 |
|
|
always_comb
|
334 |
|
|
ex9a <= ex8;
|
335 |
|
|
always_comb
|
336 |
|
|
mo9 <= mo6;
|
337 |
|
|
always_comb
|
338 |
|
|
fractc9 <= fractc6;
|
339 |
|
|
always_comb
|
340 |
|
|
under9 <= under6;
|
341 |
|
|
always_comb
|
342 |
|
|
xeq9 <= xeq7;
|
343 |
|
|
|
344 |
|
|
always_comb
|
345 |
|
|
ex9 <= resZero8 ? 1'd0 : ex_gt_xc8 ? ex8 : {2'b0,xc8};
|
346 |
|
|
|
347 |
|
|
// Compute output sign
|
348 |
|
|
always_comb
|
349 |
|
|
case ({resZero8,sa8,op8,sc8}) // synopsys full_case parallel_case
|
350 |
|
|
4'b0000: so9 <= 0; // + + + = +
|
351 |
|
|
4'b0001: so9 <= !a_gt_b8; // + + - = sign of larger
|
352 |
|
|
4'b0010: so9 <= !a_gt_b8; // + - + = sign of larger
|
353 |
|
|
4'b0011: so9 <= 0; // + - - = +
|
354 |
|
|
4'b0100: so9 <= a_gt_b8; // - + + = sign of larger
|
355 |
|
|
4'b0101: so9 <= 1; // - + - = -
|
356 |
|
|
4'b0110: so9 <= 1; // - - + = -
|
357 |
|
|
4'b0111: so9 <= a_gt_b8; // - - - = sign of larger
|
358 |
|
|
4'b1000: so9 <= 0; // A + B, sign = +
|
359 |
|
|
4'b1001: so9 <= rm8==3; // A + -B, sign = + unless rounding down
|
360 |
|
|
4'b1010: so9 <= rm8==3; // A - B, sign = + unless rounding down
|
361 |
|
|
4'b1011: so9 <= 0; // +A - -B, sign = +
|
362 |
|
|
4'b1100: so9 <= rm8==3; // -A + B, sign = + unless rounding down
|
363 |
|
|
4'b1101: so9 <= 1; // -A + -B, sign = -
|
364 |
|
|
4'b1110: so9 <= 1; // -A - +B, sign = -
|
365 |
|
|
4'b1111: so9 <= rm8==3; // -A - -B, sign = + unless rounding down
|
366 |
|
|
endcase
|
367 |
|
|
|
368 |
|
|
// -----------------------------------------------------------
|
369 |
|
|
// Clock #10
|
370 |
|
|
// Compute the difference in exponents, provides shift amount
|
371 |
|
|
// Note that ex9a will be negative for an underflow condition
|
372 |
|
|
// so it's added rather than subtracted from xc9 as -(-num)
|
373 |
|
|
// is the same as an add. The underflow is tracked rather than
|
374 |
|
|
// using extra bits in the exponent.
|
375 |
|
|
// -----------------------------------------------------------
|
376 |
|
|
reg [fp32Pkg::EMSB+2:0] xdiff10;
|
377 |
|
|
reg [fp32Pkg::FX:0] mfs;
|
378 |
|
|
reg ops10;
|
379 |
|
|
|
380 |
|
|
// If the multiplier exponent was negative (underflowed) then
|
381 |
|
|
// the mantissa needs to be shifted right even more (until
|
382 |
|
|
// the exponent is zero. The total shift would be xc9-0-
|
383 |
|
|
// amount underflows which is xc9 + -ex9a.
|
384 |
|
|
|
385 |
|
|
always_comb
|
386 |
|
|
xdiff10 <= ex_gt_xc9 ? ex9a - xc9
|
387 |
|
|
: ex9a[fp32Pkg::EMSB+2] ? xc9 + (~ex9a+2'd1)
|
388 |
|
|
: xc9 - ex9a;
|
389 |
|
|
|
390 |
|
|
// Determine which fraction to denormalize (the one with the
|
391 |
|
|
// smaller exponent is denormalized). If the exponents are equal
|
392 |
|
|
// denormalize the smaller fraction.
|
393 |
|
|
always_comb
|
394 |
|
|
mfs <=
|
395 |
|
|
xeq9 ? (a_gt_c9 ? {4'b0,fractc9,{fp32Pkg::FMSB+1{1'b0}}} : mo9)
|
396 |
|
|
: ex_gt_xc9 ? {4'b0,fractc9,{fp32Pkg::FMSB+1{1'b0}}} : mo9;
|
397 |
|
|
|
398 |
|
|
always_comb
|
399 |
|
|
ops10 <= xeq9 ? (a_gt_c9 ? 1'b1 : 1'b0)
|
400 |
|
|
: (ex_gt_xc9 ? 1'b1 : 1'b0);
|
401 |
|
|
|
402 |
|
|
// -----------------------------------------------------------
|
403 |
|
|
// Clock #11
|
404 |
|
|
// Limit the size of the shifter to only bits needed.
|
405 |
|
|
// -----------------------------------------------------------
|
406 |
|
|
reg [7:0] xdif11;
|
407 |
|
|
|
408 |
|
|
always_comb
|
409 |
|
|
xdif11 <= xdiff10 > fp32Pkg::FX+3 ? fp32Pkg::FX+3 : xdiff10;
|
410 |
|
|
|
411 |
|
|
// -----------------------------------------------------------
|
412 |
|
|
// Clock #12
|
413 |
|
|
// Determine the sticky bit
|
414 |
|
|
// -----------------------------------------------------------
|
415 |
|
|
|
416 |
|
|
wire sticky;
|
417 |
|
|
reg sticky12;
|
418 |
|
|
reg [fp32Pkg::FX:0] mfs12;
|
419 |
|
|
reg [7:0] xdif12;
|
420 |
|
|
|
421 |
|
|
redorN #(.BSIZE(fp32Pkg::FX+1)) uredor1 (.a({1'b0,xdif11+fp32Pkg::FMSB}), .b(mfs), .o(sticky));
|
422 |
|
|
/*
|
423 |
|
|
generate
|
424 |
|
|
begin
|
425 |
|
|
if (FPWID==128)
|
426 |
|
|
redor128 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
427 |
|
|
else if (FPWID==96)
|
428 |
|
|
redor96 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
429 |
|
|
else if (FPWID==84)
|
430 |
|
|
redor84 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
431 |
|
|
else if (FPWID==80)
|
432 |
|
|
redor80 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
433 |
|
|
else if (FPWID==64)
|
434 |
|
|
redor64 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
435 |
|
|
else if (FPWID==32)
|
436 |
|
|
redor32 u121 (.a(xdif11), .b({mfs,2'b0}), .o(sticky) );
|
437 |
|
|
else begin
|
438 |
|
|
always @* begin
|
439 |
|
|
$display("redor operation needed in fpFMA");
|
440 |
|
|
$finish;
|
441 |
|
|
end
|
442 |
|
|
end
|
443 |
|
|
end
|
444 |
|
|
endgenerate
|
445 |
|
|
*/
|
446 |
|
|
|
447 |
|
|
// register inputs to shifter and shift
|
448 |
|
|
always_comb
|
449 |
|
|
sticky12 <= sticky;
|
450 |
|
|
always_comb
|
451 |
|
|
xdif12 <= xdif11;
|
452 |
|
|
always_comb
|
453 |
|
|
mfs12 <= mfs;
|
454 |
|
|
|
455 |
|
|
// -----------------------------------------------------------
|
456 |
|
|
// Clock #13
|
457 |
|
|
// - denormalize operand (shift right)
|
458 |
|
|
// -----------------------------------------------------------
|
459 |
|
|
reg [fp32Pkg::FX+2:0] mfs13;
|
460 |
|
|
reg [fp32Pkg::FX:0] mo13;
|
461 |
|
|
reg ex_gt_xc13;
|
462 |
|
|
reg [fp32Pkg::FMSB+1:0] fractc13;
|
463 |
|
|
reg ops13;
|
464 |
|
|
|
465 |
|
|
always_comb
|
466 |
|
|
mo13 <= mo9;
|
467 |
|
|
always_comb
|
468 |
|
|
ex_gt_xc13 <= ex_gt_xc9;
|
469 |
|
|
always_comb
|
470 |
|
|
fractc13 <= fractc9;
|
471 |
|
|
always_comb
|
472 |
|
|
ops13 <= ops10;
|
473 |
|
|
|
474 |
|
|
always_comb
|
475 |
|
|
mfs13 <= ({mfs12,2'b0} >> xdif12)|sticky12;
|
476 |
|
|
|
477 |
|
|
// -----------------------------------------------------------
|
478 |
|
|
// Clock #14
|
479 |
|
|
// Sort operands
|
480 |
|
|
// -----------------------------------------------------------
|
481 |
|
|
reg [fp32Pkg::FX+2:0] oa, ob;
|
482 |
|
|
reg a_gt_b14;
|
483 |
|
|
|
484 |
|
|
always_comb
|
485 |
|
|
a_gt_b14 <= a_gt_b8;
|
486 |
|
|
|
487 |
|
|
always_comb
|
488 |
|
|
oa <= ops13 ? {mo13,2'b00} : mfs13;
|
489 |
|
|
always_comb
|
490 |
|
|
ob <= ops13 ? mfs13 : {fractc13,{fp32Pkg::FMSB+1{1'b0}},2'b00};
|
491 |
|
|
|
492 |
|
|
// -----------------------------------------------------------
|
493 |
|
|
// Clock #15
|
494 |
|
|
// - Sort operands
|
495 |
|
|
// -----------------------------------------------------------
|
496 |
|
|
reg [fp32Pkg::FX+2:0] oaa, obb;
|
497 |
|
|
reg realOp15;
|
498 |
|
|
reg [fp32Pkg::EMSB:0] ex15;
|
499 |
|
|
reg underflow15;
|
500 |
|
|
|
501 |
|
|
//wire [fp32Pkg::EMSB:0] ex9c = ex9[fp32Pkg::EMSB+1] ? infXp : ex9[fp32Pkg::EMSB:0];
|
502 |
|
|
wire [fp32Pkg::EMSB:0] ex9c = (&ex9[fp32Pkg::EMSB:0] | ex9[fp32Pkg::EMSB+1]) & !ex9[fp32Pkg::EMSB+2] ? infXp : ex9[fp32Pkg::EMSB:0];
|
503 |
|
|
reg overflow15;
|
504 |
|
|
always_comb
|
505 |
|
|
realOp15 <= realOp7;
|
506 |
|
|
always_comb
|
507 |
|
|
ex15 <= ex9c;
|
508 |
|
|
always_comb
|
509 |
|
|
overflow15 <= (ex9[fp32Pkg::EMSB+1]| &ex9[fp32Pkg::EMSB:0]) & !ex9[fp32Pkg::EMSB+2];
|
510 |
|
|
always_comb
|
511 |
|
|
underflow15 = ex9[fp32Pkg::EMSB+2];
|
512 |
|
|
always_comb
|
513 |
|
|
oaa <= a_gt_b14 ? oa : ob;
|
514 |
|
|
always_comb
|
515 |
|
|
obb <= a_gt_b14 ? ob : oa;
|
516 |
|
|
|
517 |
|
|
// -----------------------------------------------------------
|
518 |
|
|
// Clock #16
|
519 |
|
|
// - perform add/subtract
|
520 |
|
|
// - addition can generate an extra bit, subtract can't go negative
|
521 |
|
|
// -----------------------------------------------------------
|
522 |
|
|
reg [fp32Pkg::FX+3:0] mab;
|
523 |
|
|
reg [fp32Pkg::FX:0] mo16;
|
524 |
|
|
reg [fp32Pkg::FMSB+1:0] fractc16;
|
525 |
|
|
reg Nan16;
|
526 |
|
|
reg cNan16;
|
527 |
|
|
reg aInf16, cInf16;
|
528 |
|
|
reg op16;
|
529 |
|
|
reg exinf16;
|
530 |
|
|
|
531 |
|
|
always_comb
|
532 |
|
|
Nan16 <= qNaNOut5|aNan5|bNan5;
|
533 |
|
|
always_comb
|
534 |
|
|
cNan16 <= cNan1;
|
535 |
|
|
always_comb
|
536 |
|
|
aInf16 <= &ex6;
|
537 |
|
|
always_comb
|
538 |
|
|
cInf16 <= cInf1;
|
539 |
|
|
always_comb
|
540 |
|
|
op16 <= op1;
|
541 |
|
|
always_comb
|
542 |
|
|
mo16 <= mo13;
|
543 |
|
|
always_comb
|
544 |
|
|
fractc16 <= fractc9;
|
545 |
|
|
always_comb
|
546 |
|
|
exinf16 <= &ex15;
|
547 |
|
|
|
548 |
|
|
always_comb
|
549 |
|
|
mab <= realOp15 ? oaa - obb : oaa + obb;
|
550 |
|
|
|
551 |
|
|
// -----------------------------------------------------------
|
552 |
|
|
// Clock #17
|
553 |
|
|
// - adjust for Nans
|
554 |
|
|
// -----------------------------------------------------------
|
555 |
|
|
reg [fp32Pkg::EMSB:0] ex17;
|
556 |
|
|
reg [fp32Pkg::FX:0] mo17;
|
557 |
|
|
reg so17;
|
558 |
|
|
reg exinf17;
|
559 |
|
|
reg overflow17;
|
560 |
|
|
|
561 |
|
|
always_comb
|
562 |
|
|
so17 <= so9;
|
563 |
|
|
always_comb
|
564 |
|
|
ex17 <= ex15;
|
565 |
|
|
always_comb
|
566 |
|
|
exinf17 <= exinf16;
|
567 |
|
|
always_comb
|
568 |
|
|
overflow17 <= overflow15;
|
569 |
|
|
|
570 |
|
|
always_comb
|
571 |
|
|
casez({aInf16&cInf16,Nan16,cNan16,exinf16})
|
572 |
|
|
4'b1???: mo17 <= {1'b0,op16,{fp32Pkg::FMSB-1{1'b0}},op16,{fp32Pkg::FMSB{1'b0}}}; // inf +/- inf - generate QNaN on subtract, inf on add
|
573 |
|
|
4'b01??: mo17 <= {1'b0,mo16};
|
574 |
|
|
4'b001?: mo17 <= {1'b1,1'b1,fractc16[fp32Pkg::FMSB-1:0],{fp32Pkg::FMSB+1{1'b0}}};
|
575 |
|
|
4'b0001: mo17 <= 1'd0;
|
576 |
|
|
default: mo17 <= mab[fp32Pkg::FX+3:2]; // mab has two extra lead bits and two trailing bits
|
577 |
|
|
endcase
|
578 |
|
|
|
579 |
|
|
assign o.sign = so17;
|
580 |
|
|
assign o.exp = ex17;
|
581 |
|
|
assign o.sig = mo17;
|
582 |
|
|
|
583 |
|
|
assign zero = {ex17,mo17}==1'd0;
|
584 |
|
|
assign inf = exinf17;
|
585 |
|
|
assign under = underflow15;//ex17==1'd0;
|
586 |
|
|
assign over = overflow17;
|
587 |
|
|
|
588 |
|
|
endmodule
|
589 |
|
|
|
590 |
|
|
|
591 |
|
|
// Multiplier with normalization and rounding.
|
592 |
|
|
|
593 |
|
|
module fpFMA32nrCombo(op, rm, a, b, c, o, inf, zero, overflow, underflow, inexact);
|
594 |
|
|
input op;
|
595 |
|
|
input [2:0] rm;
|
596 |
|
|
input FP32 a, b, c;
|
597 |
|
|
output FP32 o;
|
598 |
|
|
output zero;
|
599 |
|
|
output inf;
|
600 |
|
|
output reg overflow;
|
601 |
|
|
output reg underflow;
|
602 |
|
|
output reg inexact;
|
603 |
|
|
|
604 |
|
|
wire FP32X fma_o;
|
605 |
|
|
wire fma_underflow;
|
606 |
|
|
wire fma_overflow;
|
607 |
|
|
wire norm_underflow;
|
608 |
|
|
wire norm_inexact;
|
609 |
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
610 |
|
|
wire FP32N fpn0;
|
611 |
|
|
|
612 |
|
|
fpFMA32combo u1
|
613 |
|
|
(
|
614 |
|
|
.op(op),
|
615 |
|
|
.rm(rm),
|
616 |
|
|
.a(a),
|
617 |
|
|
.b(b),
|
618 |
|
|
.c(c),
|
619 |
|
|
.o(fma_o),
|
620 |
|
|
.under(fma_underflow),
|
621 |
|
|
.over(fma_overflow),
|
622 |
|
|
.zero(),
|
623 |
|
|
.inf()
|
624 |
|
|
);
|
625 |
|
|
fpNormalize32combo u2
|
626 |
|
|
(
|
627 |
|
|
.i(fma_o),
|
628 |
|
|
.o(fpn0),
|
629 |
|
|
.under_i(fma_underflow),
|
630 |
|
|
.under_o(norm_underflow),
|
631 |
|
|
.inexact_o(norm_inexact)
|
632 |
|
|
);
|
633 |
|
|
fpRound32combo u3(.rm(rm), .i(fpn0), .o(o) );
|
634 |
|
|
fpDecomp32 u4(.i(o), .xz(), .vz(zero), .inf(inf));
|
635 |
|
|
always_comb
|
636 |
|
|
underflow <= fma_underflow;
|
637 |
|
|
always_comb
|
638 |
|
|
overflow <= fma_overflow;
|
639 |
|
|
always_comb
|
640 |
|
|
inexact <= norm_inexact;
|
641 |
|
|
//assign overflow = inf;
|
642 |
|
|
|
643 |
|
|
endmodule
|
644 |
|
|
|