1 |
48 |
robfinch |
// ============================================================================
|
2 |
|
|
// __
|
3 |
|
|
// \\__/ o\ (C) 2006-2020 Robert Finch, Waterloo
|
4 |
|
|
// \ __ / All rights reserved.
|
5 |
|
|
// \/_// robfinch@finitron.ca
|
6 |
|
|
// ||
|
7 |
|
|
//
|
8 |
|
|
// fpMultiply.v
|
9 |
|
|
// - floating point multiplier
|
10 |
|
|
// - two cycle latency
|
11 |
|
|
// - can issue every clock cycle
|
12 |
|
|
// - parameterized width
|
13 |
|
|
// - IEEE 754 representation
|
14 |
|
|
//
|
15 |
|
|
//
|
16 |
|
|
// This source file is free software: you can redistribute it and/or modify
|
17 |
|
|
// it under the terms of the GNU Lesser General Public License as published
|
18 |
|
|
// by the Free Software Foundation, either version 3 of the License, or
|
19 |
|
|
// (at your option) any later version.
|
20 |
|
|
//
|
21 |
|
|
// This source file is distributed in the hope that it will be useful,
|
22 |
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
23 |
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
24 |
|
|
// GNU General Public License for more details.
|
25 |
|
|
//
|
26 |
|
|
// You should have received a copy of the GNU General Public License
|
27 |
|
|
// along with this program. If not, see .
|
28 |
|
|
//
|
29 |
|
|
// Floating Point Multiplier / Divider
|
30 |
|
|
//
|
31 |
|
|
// This multiplier/divider handles denormalized numbers.
|
32 |
|
|
// The output format is of an internal expanded representation
|
33 |
|
|
// in preparation to be fed into a normalization unit, then
|
34 |
|
|
// rounding. Basically, it's the same as the regular format
|
35 |
|
|
// except the mantissa is doubled in size, the leading two
|
36 |
|
|
// bits of which are assumed to be whole bits.
|
37 |
|
|
//
|
38 |
|
|
//
|
39 |
|
|
// Floating Point Multiplier
|
40 |
|
|
//
|
41 |
|
|
// Properties:
|
42 |
|
|
// +-inf * +-inf = -+inf (this is handled by exOver)
|
43 |
|
|
// +-inf * 0 = QNaN
|
44 |
|
|
//
|
45 |
|
|
// 1 sign number
|
46 |
|
|
// 8 exponent
|
47 |
|
|
// 48 mantissa
|
48 |
|
|
//
|
49 |
|
|
// ============================================================================
|
50 |
|
|
|
51 |
|
|
import fp::*;
|
52 |
|
|
|
53 |
|
|
module fpMultiply(clk, ce, a, b, o, sign_exe, inf, overflow, underflow);
|
54 |
|
|
input clk;
|
55 |
|
|
input ce;
|
56 |
|
|
input [MSB:0] a, b;
|
57 |
|
|
output [EX:0] o;
|
58 |
|
|
output sign_exe;
|
59 |
|
|
output inf;
|
60 |
|
|
output overflow;
|
61 |
|
|
output underflow;
|
62 |
|
|
|
63 |
|
|
reg [EMSB:0] xo1; // extra bit for sign
|
64 |
|
|
reg [FX:0] mo1;
|
65 |
|
|
|
66 |
|
|
// constants
|
67 |
|
|
wire [EMSB:0] infXp = {EMSB+1{1'b1}}; // infinite / NaN - all ones
|
68 |
|
|
// The following is the value for an exponent of zero, with the offset
|
69 |
|
|
// eg. 8'h7f for eight bit exponent, 11'h7ff for eleven bit exponent, etc.
|
70 |
|
|
wire [EMSB:0] bias = {1'b0,{EMSB{1'b1}}}; //2^0 exponent
|
71 |
|
|
// The following is a template for a quiet nan. (MSB=1)
|
72 |
|
|
wire [FMSB:0] qNaN = {1'b1,{FMSB{1'b0}}};
|
73 |
|
|
|
74 |
|
|
// variables
|
75 |
|
|
reg [FX:0] fract1,fract1a;
|
76 |
|
|
wire [FX:0] fracto;
|
77 |
|
|
wire [EMSB+2:0] ex1; // sum of exponents
|
78 |
|
|
wire [EMSB :0] ex2;
|
79 |
|
|
|
80 |
|
|
// Decompose the operands
|
81 |
|
|
wire sa, sb; // sign bit
|
82 |
|
|
wire [EMSB:0] xa, xb; // exponent bits
|
83 |
|
|
wire [FMSB+1:0] fracta, fractb;
|
84 |
|
|
wire a_dn, b_dn; // a/b is denormalized
|
85 |
|
|
wire aNan, bNan, aNan1, bNan1;
|
86 |
|
|
wire az, bz;
|
87 |
|
|
wire aInf, bInf, aInf1, bInf1;
|
88 |
|
|
|
89 |
|
|
|
90 |
|
|
// -----------------------------------------------------------
|
91 |
|
|
// First clock
|
92 |
|
|
// - decode the input operands
|
93 |
|
|
// - derive basic information
|
94 |
|
|
// - calculate exponent
|
95 |
|
|
// - calculate fraction
|
96 |
|
|
// -----------------------------------------------------------
|
97 |
|
|
|
98 |
|
|
fpDecomp u1a (.i(a), .sgn(sa), .exp(xa), .fract(fracta), .xz(a_dn), .vz(az), .inf(aInf), .nan(aNan) );
|
99 |
|
|
fpDecomp u1b (.i(b), .sgn(sb), .exp(xb), .fract(fractb), .xz(b_dn), .vz(bz), .inf(bInf), .nan(bNan) );
|
100 |
|
|
|
101 |
|
|
// Compute the sum of the exponents.
|
102 |
|
|
// correct the exponent for denormalized operands
|
103 |
|
|
// adjust the sum by the exponent offset (subtract 127)
|
104 |
|
|
// mul: ex1 = xa + xb, result should always be < 1ffh
|
105 |
|
|
assign ex1 = (az|bz) ? 0 : (xa|a_dn) + (xb|b_dn) - bias;
|
106 |
|
|
|
107 |
|
|
generate
|
108 |
|
|
if (FPWID==80) begin
|
109 |
|
|
reg [31:0] p00,p01,p02,p03;
|
110 |
|
|
reg [31:0] p10,p11,p12,p13;
|
111 |
|
|
reg [31:0] p20,p21,p22,p23;
|
112 |
|
|
reg [31:0] p30,p31,p32,p33;
|
113 |
|
|
always @(posedge clk)
|
114 |
|
|
if (ce) begin
|
115 |
|
|
p00 <= fracta[15: 0] * fractb[15: 0];
|
116 |
|
|
p01 <= fracta[31:16] * fractb[15: 0];
|
117 |
|
|
p02 <= fracta[47:32] * fractb[15: 0];
|
118 |
|
|
p03 <= fracta[63:48] * fractb[15: 0];
|
119 |
|
|
|
120 |
|
|
p10 <= fracta[15: 0] * fractb[31:16];
|
121 |
|
|
p11 <= fracta[31:16] * fractb[31:16];
|
122 |
|
|
p12 <= fracta[47:32] * fractb[31:16];
|
123 |
|
|
p13 <= fracta[63:48] * fractb[31:16];
|
124 |
|
|
|
125 |
|
|
p20 <= fracta[15: 0] * fractb[47:32];
|
126 |
|
|
p21 <= fracta[31:16] * fractb[47:32];
|
127 |
|
|
p22 <= fracta[47:32] * fractb[47:32];
|
128 |
|
|
p23 <= fracta[63:48] * fractb[47:32];
|
129 |
|
|
|
130 |
|
|
p30 <= fracta[15: 0] * fractb[63:48];
|
131 |
|
|
p31 <= fracta[31:16] * fractb[63:48];
|
132 |
|
|
p32 <= fracta[47:32] * fractb[63:48];
|
133 |
|
|
p33 <= fracta[63:48] * fractb[63:48];
|
134 |
|
|
|
135 |
|
|
fract1 <= {p03,48'b0} + {p02,32'b0} + {p01,16'b0} + p00 +
|
136 |
|
|
{p13,64'b0} + {p12,48'b0} + {p11,32'b0} + {p10,16'b0} +
|
137 |
|
|
{p23,80'b0} + {p22,64'b0} + {p21,48'b0} + {p20,32'b0} +
|
138 |
|
|
{p33,96'b0} + {p32,80'b0} + {p31,64'b0} + {p30,48'b0}
|
139 |
|
|
;
|
140 |
|
|
end
|
141 |
|
|
end
|
142 |
|
|
else if (FPWID==64) begin
|
143 |
|
|
reg [35:0] p00,p01,p02;
|
144 |
|
|
reg [35:0] p10,p11,p12;
|
145 |
|
|
reg [35:0] p20,p21,p22;
|
146 |
|
|
always @(posedge clk)
|
147 |
|
|
if (ce) begin
|
148 |
|
|
p00 <= fracta[17: 0] * fractb[17: 0];
|
149 |
|
|
p01 <= fracta[35:18] * fractb[17: 0];
|
150 |
|
|
p02 <= fracta[52:36] * fractb[17: 0];
|
151 |
|
|
p10 <= fracta[17: 0] * fractb[35:18];
|
152 |
|
|
p11 <= fracta[35:18] * fractb[35:18];
|
153 |
|
|
p12 <= fracta[52:36] * fractb[35:18];
|
154 |
|
|
p20 <= fracta[17: 0] * fractb[52:36];
|
155 |
|
|
p21 <= fracta[35:18] * fractb[52:36];
|
156 |
|
|
p22 <= fracta[52:36] * fractb[52:36];
|
157 |
|
|
fract1 <= {p02,36'b0} + {p01,18'b0} + p00 +
|
158 |
|
|
{p12,54'b0} + {p11,36'b0} + {p10,18'b0} +
|
159 |
|
|
{p22,72'b0} + {p21,54'b0} + {p20,36'b0}
|
160 |
|
|
;
|
161 |
|
|
end
|
162 |
|
|
end
|
163 |
|
|
else if (FPWID==32) begin
|
164 |
|
|
reg [23:0] p00,p01,p02;
|
165 |
|
|
reg [23:0] p10,p11,p12;
|
166 |
|
|
reg [23:0] p20,p21,p22;
|
167 |
|
|
always @(posedge clk)
|
168 |
|
|
if (ce) begin
|
169 |
|
|
p00 <= fracta[11: 0] * fractb[11: 0];
|
170 |
|
|
p01 <= fracta[23:12] * fractb[11: 0];
|
171 |
|
|
p10 <= fracta[11: 0] * fractb[23:12];
|
172 |
|
|
p11 <= fracta[23:12] * fractb[23:12];
|
173 |
|
|
fract1 <= {p11,p00} + {p01,12'b0} + {p10,12'b0};
|
174 |
|
|
end
|
175 |
|
|
end
|
176 |
|
|
else begin
|
177 |
|
|
always @(posedge clk)
|
178 |
|
|
if (ce) begin
|
179 |
|
|
fract1a <= fracta * fractb;
|
180 |
|
|
fract1 <= fract1a;
|
181 |
|
|
end
|
182 |
|
|
end
|
183 |
|
|
endgenerate
|
184 |
|
|
|
185 |
|
|
// Status
|
186 |
|
|
wire under1, over1;
|
187 |
|
|
wire under = ex1[EMSB+2]; // exponent underflow
|
188 |
|
|
wire over = (&ex1[EMSB:0] | ex1[EMSB+1]) & !ex1[EMSB+2];
|
189 |
|
|
|
190 |
|
|
delay2 #(EMSB+1) u3 (.clk(clk), .ce(ce), .i(ex1[EMSB:0]), .o(ex2) );
|
191 |
|
|
delay2 u2a (.clk(clk), .ce(ce), .i(aInf), .o(aInf1) );
|
192 |
|
|
delay2 u2b (.clk(clk), .ce(ce), .i(bInf), .o(bInf1) );
|
193 |
|
|
delay2 u6 (.clk(clk), .ce(ce), .i(under), .o(under1) );
|
194 |
|
|
delay2 u7 (.clk(clk), .ce(ce), .i(over), .o(over1) );
|
195 |
|
|
|
196 |
|
|
// determine when a NaN is output
|
197 |
|
|
wire qNaNOut;
|
198 |
|
|
wire [FPWID-1:0] a1,b1;
|
199 |
|
|
delay2 u5 (.clk(clk), .ce(ce), .i((aInf&bz)|(bInf&az)), .o(qNaNOut) );
|
200 |
|
|
delay2 u14 (.clk(clk), .ce(ce), .i(aNan), .o(aNan1) );
|
201 |
|
|
delay2 u15 (.clk(clk), .ce(ce), .i(bNan), .o(bNan1) );
|
202 |
|
|
delay2 #(FPWID) u16 (.clk(clk), .ce(ce), .i(a), .o(a1) );
|
203 |
|
|
delay2 #(FPWID) u17 (.clk(clk), .ce(ce), .i(b), .o(b1) );
|
204 |
|
|
|
205 |
|
|
// -----------------------------------------------------------
|
206 |
|
|
// Second clock
|
207 |
|
|
// - correct xponent and mantissa for exceptional conditions
|
208 |
|
|
// -----------------------------------------------------------
|
209 |
|
|
|
210 |
|
|
wire so1;
|
211 |
|
|
delay3 u8 (.clk(clk), .ce(ce), .i(sa ^ sb), .o(so1) );// two clock delay!
|
212 |
|
|
|
213 |
|
|
always @(posedge clk)
|
214 |
|
|
if (ce)
|
215 |
|
|
casez({qNaNOut|aNan1|bNan1,aInf1,bInf1,over1,under1})
|
216 |
|
|
5'b1????: xo1 = infXp; // qNaN - infinity * zero
|
217 |
|
|
5'b01???: xo1 = infXp; // 'a' infinite
|
218 |
|
|
5'b001??: xo1 = infXp; // 'b' infinite
|
219 |
|
|
5'b0001?: xo1 = infXp; // result overflow
|
220 |
|
|
5'b00001: xo1 = ex2[EMSB:0];//0; // underflow
|
221 |
|
|
default: xo1 = ex2[EMSB:0]; // situation normal
|
222 |
|
|
endcase
|
223 |
|
|
|
224 |
|
|
always @(posedge clk)
|
225 |
|
|
if (ce)
|
226 |
|
|
casez({aNan1,bNan1,qNaNOut,aInf1,bInf1,over1})
|
227 |
|
|
6'b1?????: mo1 = {1'b1,a1[FMSB:0],{FMSB+1{1'b0}}};
|
228 |
|
|
6'b01????: mo1 = {1'b1,b1[FMSB:0],{FMSB+1{1'b0}}};
|
229 |
|
|
6'b001???: mo1 = {1'b1,qNaN|3'd4,{FMSB+1{1'b0}}}; // multiply inf * zero
|
230 |
|
|
6'b0001??: mo1 = 0; // mul inf's
|
231 |
|
|
6'b00001?: mo1 = 0; // mul inf's
|
232 |
|
|
6'b000001: mo1 = 0; // mul overflow
|
233 |
|
|
default: mo1 = fract1;
|
234 |
|
|
endcase
|
235 |
|
|
|
236 |
|
|
delay3 u10 (.clk(clk), .ce(ce), .i(sa & sb), .o(sign_exe) );
|
237 |
|
|
delay1 u11 (.clk(clk), .ce(ce), .i(over1), .o(overflow) );
|
238 |
|
|
delay1 u12 (.clk(clk), .ce(ce), .i(over1), .o(inf) );
|
239 |
|
|
delay1 u13 (.clk(clk), .ce(ce), .i(under1), .o(underflow) );
|
240 |
|
|
|
241 |
|
|
assign o = {so1,xo1,mo1};
|
242 |
|
|
|
243 |
|
|
endmodule
|
244 |
|
|
|
245 |
|
|
|
246 |
|
|
// Multiplier with normalization and rounding.
|
247 |
|
|
|
248 |
|
|
module fpMulnr(clk, ce, a, b, o, rm, sign_exe, inf, overflow, underflow);
|
249 |
|
|
input clk;
|
250 |
|
|
input ce;
|
251 |
|
|
input [MSB:0] a, b;
|
252 |
|
|
output [MSB:0] o;
|
253 |
|
|
input [2:0] rm;
|
254 |
|
|
output sign_exe;
|
255 |
|
|
output inf;
|
256 |
|
|
output overflow;
|
257 |
|
|
output underflow;
|
258 |
|
|
|
259 |
|
|
wire [EX:0] o1;
|
260 |
|
|
wire sign_exe1, inf1, overflow1, underflow1;
|
261 |
|
|
wire [MSB+3:0] fpn0;
|
262 |
|
|
|
263 |
|
|
fpMul #(FPWID) u1 (clk, ce, a, b, o1, sign_exe1, inf1, overflow1, underflow1);
|
264 |
|
|
fpNormalize #(FPWID) u2(.clk(clk), .ce(ce), .under_i(underflow1), .i(o1), .o(fpn0) );
|
265 |
|
|
fpRound #(FPWID) u3(.clk(clk), .ce(ce), .rm(rm), .i(fpn0), .o(o) );
|
266 |
|
|
delay2 #(1) u4(.clk(clk), .ce(ce), .i(sign_exe1), .o(sign_exe));
|
267 |
|
|
delay2 #(1) u5(.clk(clk), .ce(ce), .i(inf1), .o(inf));
|
268 |
|
|
delay2 #(1) u6(.clk(clk), .ce(ce), .i(overflow1), .o(overflow));
|
269 |
|
|
delay2 #(1) u7(.clk(clk), .ce(ce), .i(underflow1), .o(underflow));
|
270 |
|
|
endmodule
|